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FOREWORD 

According to resolutions of the Scientific Council of the Academy of 
Sciences of the USSR on the topic of "Scientific Bases of Strength and 
Plasticity' '  and of the Presidium of the Academy of Sciences of the Armenian 
SSR, the fourth regular All-Union Conference on the Theory of Shells and 
Plates  took place in Yerevan;: between 24  and 31 October 1962.  
ference was organized by the Institute of Mathematics and Mechanics of the 
Academy of Sciences of the Armenian SSR, by the Yerevan State University, 
and the Yerevan Polytechnic Institute im.  K. Marx. 

with the following membership: R .  A. Adadurov. N. A .  Alumyae. S. A.  
Ambartsumyan (chairman). N.  Kh. Arutyunyan. V.  V. Bolotin. A.  N. Volkov 
(scientific secretary) ,  A .  S .  Vol'mir. I. I. Vorovich, A.  L. Gol'denveizer 
(deputy chairman), S. M. Durgar'yan (scientific secretary) ,  A. V.  Karmishin 
(deputy chairman), N. A.  Kil'chevskii, S. G. Lekhnitskii. A. I. Lur'e, Kh. M. 
Mushtari, V.  V .  Novozhilov. V. M. Panferov. A .  V. Pogorelov, G. N.  Savin, 
0. M. Sapondzhyan, A .  A .  Umanskii, and T .  T.  Khachaturyan. D. S. Gevondyan 
served as  the technical secretary.  

The conference conducted i t s  business in plenary sessions and in sub- 
committees for: 

1) general problems of the theory of shells and plates; 
2 )  stability and nonlinear problems of the theory of shells and plates; 
3) dynamics of shells and plates; 
4) thermo-elasticity. creep, and plasticity of shells and plates; 
5) s t ructural  mechanics of shells and plates. 
The conference was attended by 437 delegates from 29 cities of the 

The papers were arranged in [ Cyrillic] alphabetical order  according to the 

The Con- 

The work of the conference was managed by an organizing committee 

Soviet Union. 

name of the author; papers read a t  plenary sessions of the conference a re  here  
arranged separately [first par t  of the collection 1. 

a r e  not included in this collection. 

included in the program of the conference, but were not presented by the 
authors for publication. 

the manuscripts,  which was performed by B. L. Abramyan. N. 0. Gulkanyan, 
S .  M. Durgar'yan. R .  S. Minasyan, D. V. Peshtmaldzhyan, and K. S.Chobanyan, 
staff members  of the Institute of Mathematics and Mechanics of the Academy 
of Sciences of the Armenian SSR. 

Discussions on a number of papers ,  which took place at  the conference, 

At the end of this collection there appears a l ist  of papers which were 

The organizing committee of the conference supervised the editing of 

* [Also known as Erevan. I 
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P A P E R S  R E A D  A T  P L E N A R Y  SESSIONS 

APPLICATION OF METHODS OF THE THEORY OF 
PROBABILITY IN THE THEORY OF PLATES 
AND SHELLS 

V .  V .  B o l o t i n  

( M O S C O W )  

INTRODUCTION 

A great deal of interest has been expressed during the las t  few years  in 
the application of methods of the theory of probability and mathematical 
statistics to the theory of plates and shells. 
desirability of applying these methods to problems of the theory of plates 
and shells was expressed, as ,  for example, by A. S. Vol'mir 1171 and 
V. I. Feodos'ev 1601, in Langhaar's survey of the theory of stability of 
elastic systems 1381, and also in T 's in  Hu-sen 's  and Khu Khai-dhan's 
review 1641 of the book by Kh. M. Mushtari and K. 2.  Galimov 1471.  At 
present, however, active investigations a r e  proceeding in severaldirect ions.  
These trends a r e  in part reviewed in 16, 12, 27, 79, 1301. 

The application of probability methods to the theory of plates and shells 
is based on the fact that the behavior of thin-walled s t ructures  subjected to 
static or dynamic loads depends on a number of random factors. These 
factors  can be divided into two groups by their  origin. One group includes 
geometric and physical parameters  of the design proper, i. e . ,  random 
deviations from the ideal geometric shape, diversity of methods for  obtain- 
ing boundary conditions, spread of elastic and strength character is t ics  of 
the mater ia ls ,  e tc .  The second group includes random factors  depending 
on the load and other "external" service and experimental conditions. 
Henceforth we shall distinguish between " i n t e r n a 1 " and I' e x t e r n a 1 " 
parameters ,  altnough this division is, of course, arbi t rary.  

These factors a r e  encountered not only in the analysis of thin-walled, 
but, to a varying extent also of any other s t ructure .  Nevertheless, the 
applications of probability (also known as  statistical) methods a r e  being 
developed most intensively in the theory of plates and shell?. 
due to two causes. Firs t ly ,  thin-walled s t ructures  a r e  particularly 
sensitive to smal l  changes in initial shape, small  variations in the boundary 
conditions, etc. Minor causes may frequently have major effects. An 
example is t,he well-known scat ter  of the experimental cr i t ical  forces  in 
shel ls ,  which is due to small  deviations from the idealized s ta te  of the 
tes t  specimens. Secondly, it is precisely the application of statistical 
methods to  thin-walled s t ructures  which is of major interest  today. A s  
example w e  can cite the elements of a i rcraf t  skins, subjected to random 
loads due to atmospheric turbulence, pulsations in the turbulent boundary 
layer ,  sound waves from the engines, meteoritic dust, etc. 

Until recently, only the 

This may be 
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With reference to the above we should mention the existence of a more 
general  division of mechanics which we shall call "S t a t  i s  t i c a 1  
D y n a m i c s  of  a S o l i d  B o d y  U n d e r g o i n g  D e f o r m a t i o n . "  This 
in i ts  turn is par t  of the " S t a t i s t i c a l  D y n a m i c s , "  which is a field of 
applied mathematics devoted to the application of probability methods to 
mechanical, e lectr ical ,  radioengineering, cybernetic, and s imilar  systems.  
We do not require  new methods to  investigate the probability behavior of 
mechanical systems.  A s  a rule ,  such methods can be obtained from other 
branches of statistical mechanics; they must only be adapted to the 
problems dealing with the mechanics of a body undergoing deformation, in 
particular, to  the theory of plates and shells. 

Which problems require the application of probability methods in the 
theory of plates and shel ls?  All problems can be divided into two groups. 
The first group includes problems concerning the r e 1 i a b  i 1 i t  y of thin- 
walled s t ructures  subjected to static and dynamic loads. These problems 
can be formulated in different manners.  In some cases  the probability of 
a dangerous state attained at  the end of the planned period of operation, or 
the average or most probable service life has to be determined. In other 
cases ,  the laws governing the distribution of parameters  determining the 
s ta te  of s t ra in  (e. g. , residual s t ra ins  accumulating toward the end of the 
service life) have to be found. 
or "internal" parameters  (e. g. , tolerances in the manufacture of com- 
ponents, or the level of fluctuating loads), which ensure standard reliability 
of the structure, may have to be derived. These examples a r e  not ex- 
haustive. The formulation of the problem depends on the intended service 
and operating conditions of the s t ructure ,  i .  e . ,  whether it w i l l  be used 
only once, or is designed for long service. whether loading is a prolonged 
steady-rate random process  or a shortunsteady process,  whether the s t ructure  
is expected to fail as a resu l t  of an intensive action of short  duration, through 
accumulation of plastic deformations or development Qf fatigue c racks ,  
etc. Formulating the problem itself is important, but this belongs to the 
theory of reliability ra ther  than to the subject of the present conference, 
and is therefore not within the scope of this paper. 

p r e t a t i o n  of  r e s u l t s  o f  t e s t i n g  plates and shel ls .  The most 
typical example is stability tes t s  of thin shells. 
due to the extensive scat ter  exhibited by the experimental resul ts  obtained 
for the cr i t ical  forces ,  no complete comparison of experimental data with 
the resul ts  of the nonlinear theory can be carr ied out. 
this comparison possible it is necessary to know the statistical distribution 
of the initial i r regular i t ies ,  fluctuations in obtaining the boundary conditions, 
and other factors affecting the magnitude of the critical loads. We recal l  
two typical statements of problems in this field. The basic problem con- 
s i s t s  in finding the relationships governing the distribution of the cr i t ical  
forces  on the basis of known distributions of random parameters  which 
characterize the shell and the conditions of the experiment. The opposite 
problem - of deducing the laws governing the distribution of "internal" 
parameters  for shells undergoing tes t s  on the basis of the empirical  
distribution of the cr i t ical  loads - may also a r i s e .  
problems a r e  not directly related to the reliability problem and may a r i se  
also when the la t ter  does not exist. 

Laws governing the distribution of "external" 

The second group of problems relates  to the a n a l y s i s  a n d  i n t e r  - 

It is widely known that, 

In order  to make 

Obviously, these 
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In dealing with the question of methoas for solving statistical problems 
of the theory of plates and shells we must note that the selection of a 
method is pr imari ly  determined by the probability nature and properties of 
those parameters  upon which the behavior of the s t ructure  depends. Some 
parameters  a r e  r a n d o m  q u a n t i t i e s ,  others a r e  r a n d o m  f u n c t i o n s  
of t ime o r  position (not infrequently of both), o r ,  a s  it is said, they r e -  
present a random process .  
characterized by random quantities; the loads must generally be treated 
a s  random processes .  This division is, of course,  quite arbi t rary.  It is 
known that a certain c lass  of random functions can be represented a s  a 
sum of a finite o r  infinite number of appropriately selected deterministic 
(nonrandom) functions which depend on random parameters .  
of these parameters  is finite, we can make a transition from operations 
on random functions to operations on the corresponding random parameters .  
On the other hand, if the number is infinite but countable, then it may be 
that the behavior of the random functions can, with a good approximation, 
be described by a moderate number of parameters .  
i r regular i t ies  of a shell a r e ,  s t r ic t ly  speaking, random functions of the 
position. 
deterministic functions we can describe tine i r regular i t ies  by using random 
numbers,  i. e . ,  the coefficients of these ser ies .  Another example is 
impulsive loads of short duration. 
quite simple and a s  such can be described by deterministic functions of 
timc and of several  random parameters .  Conversely, random loads such 
as  the pressure due to pulsations in the boundary layer  and sound waves 
from engines in operation, wave action on vessels  and [shore]  protecting 
s t ructures ,  etc. , can be adequately described only within the framework 
of the theory of random processes .  

into three groups: q u a s i s t e a d y  m e t h o d s .  c o r r e l a t i o n  and 
related m e t h o d s  and, finally, m e t h o d s  b a s e d  o n  t h e  u s e  of  
k i n e t i c  e q u a t i o n s .  Each method has i ts  advantages and djsadvantages 
and i ts  fields of application. These fields may overlap; however, for  each 
concrete problem there  is always a preferable method. 

theory of probability. 
problems in which the random factors can be described by a finite (not 
excessive) number of random quantities. 
must have the solutions of the corresponding deterministic problems in the 
entire range of variations of the random parameters ;  the subsequent 
operations reduce to transformation of the probability distributions for 
these parameters .  
limited to problems in which the loads vary slowly ("quasisteadily"). If 
the random dynamic loads can be represented in the form of deterministic 
functions of t ime,  depending on a finite number of random quantities. then 
the quasisteady methods can also be effectively applied. 

C o r r e 1 a t  i o n  m e t  h o d s a r e  based on the utilization of the relation- 
ships between correlation (or moment) functions of "input" parameters  
(e. g. , loads) and "output" parameters  (deflections, internal forces  and 
s t r e s ses ) .  
integral-differential equations, a s  well a s  in elementary cases  by finite 
relationships. The spectral  method, method of canonical expansions, etc. , 

The properties of the s t ructure  a re ,  a s  a rule, 

If the number 

Thus, the initial 

By expanding these functions in se r i e s  in t e rms  of certain 

The shape of random impulses is usually 

Probability methods used in the theory of plates and shells can be divided 

Q u a s i s t e a d y  m e t h o d s  a r e  based on the known equations of the 
These methods can be used successfully with those 

In order  to use this method we 

The applicability of quasisteady methods is not 

These relationships can be expressed by differential and 
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can be regarded a s  modifications of correlation methods. These methods, 
whose theoretical foundations were developed by A. N. Kolmogorov, A. Ya. 
Khinchin, and N. Wiener. have come into extensive use in modern physics 
and technology. In particular, the correlation methods have become the 
operating tools of the theory of turbulence, the theory of information, 
statistical dynamics of automatic control systems,  e tc .  The field of 
application of these methods a r e  problems in which the external load is a 
correlated random process.  These methods a r e  most effective when the 
load is a Gaussian process  and the system is l inear .  
systems can also be solved by using methods of nonlinear mechanics. 

and integral-differential equations which describe the evolution with time 
of distribution functions of random parameters .  The Boltzmann equation 
in the kinetic theory of gases  and the Smoluchowski-Einstein equation in 
theory of Brownian motion are typical examples of such equations. Methods 
based on the use of kinetic equations have been worked out in detail in 
particular for  processes  without heredity effects (Markov processes) .  
Hence these methods should be applied to problems in which the output 
quantities can be treated a s  components of a Markov process .  The main 
advantage of these methods is the possibility of obtaining the distribution 
functions directly. However, this advantage cannot always be utilized, 
since solving the kinetic equations is difficult. 
particular to noneteady-state solutions. 

of problems in the theory of plates and shells. 
a r e  used pr imari ly  for  interpretation and analysis of stability tes t s  of 
shells. 
small  oscillations of plates and shells under the action of loads representing 
a steady-state random process .  
descr ibe the behavior of shells a t  such large random "impacts" that 
''popping" [collapse accompanied by a loud bang] becomes possible. 
Systematization of work by the methods used is thus basically identical 
with systematization by groups of problems in the theory of plates and 
shells. 

Below we give a survey of studies belonging to each of the afore-  
mentioned groups. 
the present state, and descr ibe possible trends of future studies. 

However, nonlinear 

The third group of methods is based on the consideration of differential 

The above applies in 

Each of these three groups of methods is applicable to a certain range 
The quasisteady methods 

The correlation methods a r e  used pr imari ly  to solve problems of 

Finally, the kinetic equations are used to 

In conclusion we shall give an overall evaluation of 

1. QUASISTEADY METHODS 

The t e rm q u a s i s t e a d y  m e t h o d s  will be used here  to denote 
methods which a r e  based entirely on equations of the elementary theory of 
probability without resor t ing to  the theory of random processes .  The use 
of quasisteady methods presupposes preliminary solution of the correspond- 
ing deterministic (s ta t ic  o r  dynamic) problems. 

It should be noted that the t e rm "quasisteady methods" is in this case 
used arbi t rar i ly  and does not precisely convey the content and field of 
application of these methods. 
methods" would be more appropriate, thus reflecting the division of the 

In our opinion the name "semideterministic 
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problem into two stages, the f i rs t  of which is purely deterministic. 
paper, however, the te rm "quasisteady methods" w i l l  be used, which w i l l  
cause l e s s  misunderstanding than t e r m s  such a s  "s ta t icd  method", 
"methods of inertialess transformations'' and others  used in the l i terature .  

Quasisteady methods a r e  extensively used in statistical dynamics. Thus. 
the problem well-known in radioengineering and in the theory of automatic 
controls of a random signal passing through a detector or inertialess relay. 
reduces to the corresponding transformation of the probability density for  
the input signal. 
by the quasisteady method. 

If we res t r ic t  ourselves to mechanical systems,  we can re fer  to works 
by N. S. Streletskii,  A. R.  Rzhanitsyn, and their  followers, who have ex- 
tensively used quasisteady methods for statistical substantiation of safety 
factors  in engineering s t ructures .  
in 191. Closest to the theme of this paper is the paper by A. R.  Rzhanitsyn 
1521 .  in which he considers the problem of combined buckling and bending 
of beams in the presence of random initial deflections and random 
eccentricities. By specifying distribution functions for the initial de-  
flections and eccentricities a s  well a s  for  the axial force and the yield 
point of the mater ia l ,  and by using the deterministic relationship between 
the f i r s t  three parameters  and the edge s t r e s ses  in the beam, A. R. 
Rzhanitsyn seeks the probability of a dangerous state, and gives a 
statistical interpretation of the known "buckling coefficient" on the basis 
of his calculations. 

Quasisteady methods were introduced into the theory of plates and 
shells by this author in 141. 
field of application is contained in / 91. 
methods to various problems of shell stability a r e  given by A. S. Vol'mir 
1191, V. M.Goncharenko 1 2 3 1 ,  and B .P .  Makarov 143-451, 

The application of quasisteady methods to the theory of plates and shells 
presupposes fulfillment of the following conditions: 

a.  Factors  influencing the behavior of the s t ructure  can be described 
by a finite number of random parameters  ul, u t , - .  e ,  K,,,. ql, q2,. ., q, with a 
known joint probability density p (ul, u2, . ., u,,,; 9,, 9,;. ., 9,). Here u. denotes 
the "internal" parameters  which characterize the shape and the mechanical 
properties of the s t ructure ,  while 9. denotes the parameters  characterizing 
the load and other "external" service o r  experimental conditions. 

b. Factors  characterizing the behavior of the s t ructure  (displacements, 
s t ra ins ,  forces ,  moments, and s t r e s ses ) ,  can also be described by a finite 
number of random parameters  v,, w2,. . ., wn. 

known deterministic relationships 

In this 

Consequently, it can be stated that the problem is solved 

A summary of these works can be found 

A certain generalization and expansion of the 
Applications of quasisteady 

c. The aforementioned two groups of parameters  a r e  connected by the 

v .=V.(ul ,  Pt,"', urn, 91, 9 * , . * . ,  q r ) ,  ( - - l , 2 . . . . n ) .  (1 .I) 

which a r e  assumed to be uniquely determined and piecewise continuous. 
To obtain (1.1) it is generally required to solve the Cauchy problem for  a 
s t ructure  loaded by forces varying with time. If the initial conditions a r e  
random, they should be included among the parameters  u,, ut; %. 

With these assumptions, the joint probability density p (vl, %; * e ,  *&) is 
found from known formulas for the probability densities of functions of 
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random quantities. In particular, if n < m and if equations (1.1) permit 
the solution 

where 

is the Jacobian of LI. with respect  to V, . 
U, a r e  not uniquely determined (when the integration interval is divided 
into a number of subintervals), the case when these functions a r e  piecewise 
continuous (when the probability density for  v,, v2:. .vn contains delta- 
shaped overshoots), etc. Details w i l l  not be discussed here. 

If n > m + r ,  part  of the 
parameters  w,, v2,. . . , v,, will, obviously, be mutually dependent. 
then assume that n = m + r and seek the joint probability density for  vl, v2,.  . . . 
TI,+,. 

We can generalize (1.3) to include the case  when the functions U,, U2...., 

When m < n < m + r ,  (1.3) can be rewritten. 
We may 

Instead of (1.2) we then obtain 

II. = U a ( ~ 1 ,  v,:.., V m + r ) ,  

qa= (&(VI,  v ~ ; . . .  v m . r r ) ,  

(0-1.2 ,..., m ) ,  

( a = 1 , 2 .  . _ _ _  r ) .  

The joint probability density p (v,,  v Z : ' . ,  vu,+,) is 

Let us  now find P (*), the probability of the limiting state. The t e rm 
"limiting s ta te"  as  used here denotes not only "popping" but also the 
appearance of large elastic or residual deformations. etc. Analysis shows 
that the surface corresponding to "pop" conditions in the v,, v,,..., v, space 
forms only par t  of the boundary surface Y (w,, v2 , .  . . , v,) = 0, which separates  
the region of limiting s ta tes  from the region of normal service.  
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Let us  assume that points in the wl. w2,. . .wn space for  which 'P (wI.wz:~ . , ern) > 
> O  belong to  the region of limiting s ta tes .  
limiting state is 

Then the probability of a 

This probability can also be found in a different manner 191. 
Y (vl, wz,. . . ,vn) ). 0 has a corresponding region V (ul .  u2 , .  . . , l l m ,  ql. Q~.. . ., qr )  > 0. 
in the u,, u z . .  .. um, 91, q,;.,, qr  space, then 

If region 

A different problem ar i ses  in the analysis and interpretation of data. 
The ''internal'' parameters  of the system ul, u t , . . - ,  u,,, a r e  the independent 
random quantities; it is required to find the joint probability density for  
the limiting values of ql .q l , . - - ,qr ,  which w i l l  be denoted by q;. q;,... , q:. We 
shall assume that the deterministic relationships between qi, q i , - . - ,  q: and 
ul, u,,.. ., um, (the "internal" parameters  of the s t ructure)  a s  well a s  the 
joint probability density p ( u , ,  uz,.  . -, um) areknown. Assume further that r < m 
and, in addition, let there exist uniquely determined and continuous 
relationships 

I'hen the joint probability density p ( q ; ,  ql,...,q;) can be found from ex-  
pressions s imi la r  to (1.3) 

The limitations imposed upon (1.9) can be easily removed; the case 

It is also possible to state the inverse problem: to find, f roma  given 
when the relationship is not uniquely determined is discussed in 191. 

probability distribution for the limiting loads, the probability distribution 
for the "internal" parameters  of a shell. The solution of this problem is 
again given by expressions s imilar  to (1.3), (1.5), and (1.9) .  Assume for 
example that r = m ,  and let q:= Q:(u,,  u p , . . . ,  u,) be uniquely determined and 
continuous. Then 
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Substituting (1.11) into the right-hand side of (1.7) w e  obtain the con- 
ditional probability of the limiting s ta te  

P(*l 4;. q;! . . ., q;) = 1.- (ul, u?,. . ., um) du,dlr,.. .dum, (1.12) 

. .  
'y,(u,,~,.-~~~~,l~l~ '1.2. e . . .  q:) > 0. 

It is easy to see that (1.12) gives the joint distribution functions for 
4;. q;, . . . , 4:. From this 

(1.13) 

This method of obtaining the probability density for  cr i t ical  forces  w a s  

We now present some particular problems which a r e  solved by quasi- 
f i r s t  described (for r = 1 )  by V. M.Goncharenko 1231. 

steady methods, Several studies have been devoted to the following 
problem: a plate or shell is loaded by external forces  which a r e  specified 
to within one common multiplier - the parameter  q.  
increases  slowly (quasisteadily) and monotonically, f rom zero to some 
finite value. 
(usually in generalized coordinates which characterize the normal de- 
flection), which is attained toward the end of the loading process .  
that theproblem be solvable, condition (b) must be satisfied. It is easy 
to show that this w i l l  be t rue in this problem if the system is conservative 
and if not more than two stable forms of equilibrium exist when the load 
parameter  is fixed. In this case the equilibrium mode which is achieved 
can be easily determined from quasisteady considerations if the history of 
the system is known. The majority of solved deterministic problems of 
the nonlinear theory of plates and shells 117, 471 satisfies condition (b). 
If relationships (1.1) cannot be obtained from quasisteady considerations, 
then the Cauchy problem must be solved. 

Paper  / 4 /  considers the probability distribution of the t o t d  deflection 
of an elastic shallow cylindrical panel with movable edges, compressed by 
axial forces  whose intensity is q.  
parameter  is a random quantity, while the load parameter  is deterministic. 
The solution of the corresponding deterministic problem, given by A. S. 
Vol'mir 1171 was applied. 
problem was calculated in the same paper on the assumption that the initial 
deflections have a symmetr ical  normal distribution. 
probability as  a function of the load. 
that the effect of negative initial deflections on the distribution of the 
"popping" probability was f i r s t  s t ressed .  
of the stability of a closed circular  cylindrical shell w e r e  obtained by 
V. M. Goncharenko 1231. 

In the elementary case ,  when the load is specified to within one parameter  q 
and the i r regular i t ies  to within one parameter  u ,  (1.9) takes on the form / 4 /  

This parameter  

It is required to find the distribution of the s t ra in  parameters  

In order  

It is assumed that the initial deflection 

The probability of "popping" for the same 

Figure 1 shows this 
It is in connection with this problem 

Similar curves for  the problem 

One family of these curves is shown in Figure 2 .  
The distribution of critical forces  was most extensively investigated. 

(1.14) 
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The renormalizing multiplier in the denominator takes into account the 
circumstance that "popping" may take place only when u1< u < 11,. 

2.5 5.0 7.5 I) 

0-4 I 
0-3 I 
O2 I 
Om' 0 -  I 

FIGURE 1. FlGURE 2. 

Figure 3 shows the probability density p (q*) for  a shallow cylindrical 
panel 141. The table gives the mathematical expectation calculated for  
a symmetr ical  normal distribution of u for the mean-square values on = 0.1 
and 3, = 0.25. The theoretical values were in close agreement with those 
obtained experimentally. 

TABLE 1 

0" 

0.1 

0.25 

4.8m 
4.50 

B. P. Makarov 1441 carr ied out a thorough investigation of the theoretical 
laws governing the distribution of cr i t ical  forces in the following problems: 
axial compression of a closed circular  cylindrical shell; compression of 
a shell by a t ransverse normal pressure ,  including compression on all 
sides;) torsion of a circular  cylindrical shell; compression of a cylindrical 
panel by a normal pressure .  
of the corresponding deterministic problems, due to A. S. Vol'mir 1181, 
Kh. M. Mushtari and M. S. Kornishin 134, 471, N. I. Krivosheev 1351, andalso 
Donne11 and Wan 1831, Nash 1114, 1151, and others. 

Makarov. 
shell undergoing compression on all s ides ,  when various assumptions a r e  
made about the distribution of the initial deflections (1 - uniform distribu- 
tion for 0 < u Q u l ,  2.3,4 - normal distributions for  the standard [deviation] 

Extensive use was made of known solutions 

We shall now discuss severa l  interesting resul ts  obtained by B. P. 
Figure 4 shows the probability distribution p (q*)for a cylindrical 
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ou = 0.3 and different values of the average i). 
distribution of the initial deflections has a pronounced effect on the 
distribution of the cr i t ical  forces .  
undergoing axial compression a r e  given in Figure 5. 
the distribution of the initial deflection parameter  

It can be seen that the 

Similar curves for a cylindrical shell 
It was assumed that 

( q, is the initial deflection, n is the number of waves around circumferences, 
m is the rat io  of half-wave lengths in circumferential and axial directions) was 
normal. It is interesting that some curves have two extrema: one near the lower 
cr i t ical  value, the second slightly displaced toward the upper cr i t ical  value. 
A s imi la r  result was obtained la te r  by V. M. Goncharenko 1231.  

FIGURE 3. FIGURE 4. 

B. P. Makarov / 4 5 /  has investigated oil a cylindrical panel subject to 
axial compression, the combined effect of the scat ter  of initial deflections 
and support conditions. 
values the probability density of critical forces  has two extrem-a. 

Of great interest is the application of quasisteady methods to the 
analysis of data obtained in stability tes ts  of shells. Using empirical  
formulas,  proposed by Donne11 and Wan 1 8 3 1  and Nash 11141. for the 
dimensionless initial deflection of a cylindrical shell, A. S. Vol'mir I 191 
analyzed the influence of the ratio Rlh on the distribution of cr i t ical  forces .  
He showed that, from the statistical point of view, we should expect a 
successive decrease in the average critical p ressure  z% a s  the ratio 
increases  (Figure 6 ) .  

B. P. Makarov / 4 3 /  gives a statistical analysis of the resul ts  of 222  
tes t s  performed on cylindrical shells subjected to axial compression, 
contained in the paper by Harr is ,  Suer, Suene, and Benjamin 1921, who 

It was found that for some distributions of these 
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only plotted curves corresponding to a 10 7'0 and 1 yo probability of "popping. I' 

The experimental data a re  given in Figure 7, while Figure 8 presents 
histograms for different ranges of Rlh. 
grams have two maxima, which is in agreement with theoretical conclu- 
sion obtained previously in 1441. 
existence of two maxima is due to the use of' two groups of data with 
different statistical properties (the resul ts  analyzed were obtained in 
severa l  experiments). 

Fo r  small  values of R/h the histo- 

However, it is still possible that the 

4 

3 

2 

i 

0 
0.3 0.4 0.5 0.6 0.7 0.8 

FIGURE 5. 

An important problem is to  find the laws governing the distribution of 
F ig-  initial deflections when the distribution of critical forces  is known. 

ure  9 shows a histogram for  a certain interval of RIA. obtained by B. P. 
Makarov, 
corresponding to a normal distribution of I L  for  a mean % = 0.1 and a 
standard [deviation] G= = 0 . 0 6 .  

It includes for comparison a probability-density curve 



Up to now we have considered problems of quasisteady monotonic load- 
ing. There exist, however, problems of the stability of plates and shells 
which cannot be treated by quasisteady methods no matter  how slowly the 
load is applied. Let, for  example, a shell subjected to the action of 
fixed external forces have more than two stable forms of equilibrium. 
When the value of 0% is attained from below, either stable s ta te  may be 
obtained. A choice between them cannot be made on the basis  of quasi- 
steady considerations. This indeterminacy can be removed, and con- 
dition (b) satisfied by considering, for example, loading at a finite (although 
low) rate  and taking into account the initial conditions. Once the de- 
terministic problem is solved, the quasisteady method can be applied. 
Difficulties involved in the selection of solutions a r i s e  and a r e  overcome 
in the f i r s t ,  purely deterministic, stage of investigation. 

R / h = 5 0 0 t  1000 

FIGURE 8. FIGURE 9. 

A method for solving certain dynamic problems of the stability of shells 
is given in / 9 / .  A s  an example we now consider the problem of dynamic 
"popping" of a shallow cylindrical panel subjected to a normal impulsive 
load q = O  ( t  < 0) and q = qoe-cl ( t  >, 0). The corresponding deterministic problem 
w a s  solved by a group of authors / 6 / .  Figure 10 shows the region of in-  
stability in the ;rc, q,,plane. Then the 
probability of ''popping" can be determined from (1.7). Some resul ts ,  
obtained for  a uniform distribution of c and qo,  a re  presented in Figure 11. 
Another example is the problem of dynamic "popping" of a cylindrical 
panel subjected to axial compression by a load which increases  at a random 
though constant ra te  f rom ze ro  to some value 4>qu. 
resul ts  obtained in solving the deterministic problem / 7 1 .  Having obtained 
the deterministic dependence of the maximum deflections wmal occurring 
immediately af ter  ''popping" on the ra te  c, and using equations s imilar  
to (1.3) and (1.5), we can easily determine the probability density for p (wmaX). 
Results obtained for  a normal distribution a r e  given in Figure 13. 

According to Bartlett / 2 /  the loadings considered above represent 
degenerate random processes  whose occurrence is expressed in t e rms  of 
deterministic functions which depend on a finite (practically, quite small) 
number of random parameters .  

Let c and qo be random quantities. 

Figure 12 presents  

Many loads acting on s t ructures  (for 
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example, loads due to atmospheric turbulence, wave pressure,  etc. ) can- 
not be satisfactorily described in this manner.  
the theory of random processes  have to be applied. 
whether these methods use certain averaged character is t ics  of the process ,  
or directly the joint probability densities for some quantities, we can 
distinguish two groups, the f i r s t  of which w i l l  be discussed now. 

In this case, methods of 
Depending upon 

P o  

i. 7 

0.8 

0.4 

V I I I 
0 1 2 3 3  

FIGURE 10.  

P(*, 
0.75 

0.50 

0.25 

0 

FIGURE 12. 

2 .  CORRELATION MBTHODS 

- 
0.5 1.0 1.5 

FIGURE 11. 

0.4 

0.3 

0.2 

0.1 

0 

FIGURE 13. 

Correlation methods a re  based on the relationships between certain 
character is t ics  of input and output processes ,  i. e . ,  between correlation 
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functions o r  between functions related to the la t ter .  Let ql (t) ,  q2 (t); .  .. q,, (t)  
be certain random functions of the time t (for example, generalized forces  
for a plate o r  shell). We shall use a bar  to denote averaging over the 
ensemble of functions. We shall also assume that the average of the 
functions 9, ( t )  = 0 (this requirement is easily satisfied by appropriate 
transformations). 

__ 

We now consider the following process  

K9a9p(fl’ fz)= 4. (fl) 4,(tz)l 

( z .  p. 7 ; . . =  I ,  2 ; . . n )  

etc., where K (f,, f2), K ( t  f t ) ,  etc . ,  a r e  the second-, third-, e tc . ,  

order  c o r r e 1 a t  i o n  f u n c t i o n  s . Complete description of the process  
requires the knowledge of the full system of correlation functions. 
appreciable par t  of the information on the random process  is contained in 
the average q. ( t )  and in the second-order correlation functions K9,q,(tl, t,), 
which a r e  henceforth simply called correlation functions. In a number of 
problems (for example, in those problems where it is known a p r i o r  i 
that the generalized coordinates have a normal distribution) it suffices to 
know the correlation functions in order  to obtain the joint probability 
densities and solve the reliability problems. 

Correlation functions for generalized forces can be found if the 
corresponding functions for the local load density a r e  known. 
example, the normal load 9 ( x 1 ,  x2, f) be a random function of position and 
time. Expanding the normal deflection in a s e r i e s  of the eigenfunctions 

9# 4p 9e9p9, 

An 

Let, for 

‘p, ( X u  X ? )  

‘W ( x l ,  X ? ,  t )  y .  2 a.(t) pn (XI. xz). (2.2) 

we obtain 

Here ds and do a r e  elements of the a rea  of the middle plane, the integration 
being performed over i ts  entire a rea .  

s t e a d  y - s t a t  e process ,  that is, i f  all i ts  statistical character is t ics  r e  - 
main unchanged with time. The concept of steady-state random processes  
is a very convenient abstraction for describing r ea l  processes .  The 
statistical characteristics of atmospheric turbulence, of the noise of 
engines in operation, of s ea  waves, e t c . ,  can be regarded a s  constant 
within a sufficiently wide range of observations. The average values for 
steady-state random process a r e  constant, and the correlation functions 
(2.1) depend only on the differences t, - t2, t, - t , ,  etc. In particular, the 
second-order correlation functions a r e  

The description of a random process  becomes simplified when it is a 

Almost ali the steady-state cases  of random loads which a re  of interest 
a lso have the property of e r g o d  i c i t  y . This means that a sufficiently 

14 



long loading process yields practically all the information about i ts  steady- 
state properties. 
semble can be replaced by averaging with respect to time. 

For ergodic random processes averaging over the en- 
In particular, 

r - 
Kqaqg(4 =,"" :. 5 q. (n q6 ( t  -t- T) df. (2.5) 

T 
2 
- 

We also introduce the Fourier representation for  the correlation function 

Funct ionso  (w)wil l  be called j o i n t  s p e c t r a l  d e n s i t i e s .  If 
'I. Q!, 

the process contains discrete components, then the spectral  densities w i l l  
have properties s imilar  to delta -functions. 

convenient not only because they permit us to describe the most important 
properties of the random process in the simplest manner. 
relatively easily measurable characterist ics of the process.  Special 
instruments (correlators,  spectral  analyzers, etc. ) have been developed 
which make it possible to obtain these characterist ics directly during 
measuring o r  from recordings. 

loads. 
studied both experimentally and theoretically 116, 481. 
can, to a good approximation, be regarded as a randomprocess,  constant 
with time and homogeneous in space. 

Correlation functions and the corresponding spectral  densities a r e  

They a r e  also 

Let us  now consider several  of the more important kinds of random 
Pres su re  pulsations due to atmospheric turbulence have been 

These pulsations 

FIGURE 14. FIGURE 15. 

Figure 14 shows the spectral  p ressure  density Oq (E) for different values of the 
Reynoldsnumber ZJ,X~. (vO is the average flow velocity, A is the turbulence 
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scale, 
frequency E=wA/v,. 
density has the form 1581 

is absolute viscosity). The independent variable is the reduced 
The most frequently used expression for  the spectral  

Pulsations in a turbulent boundary layer  in the vicinity of an aircraf t  
Tack and Lambert  skin have a l so  been studied by a number of authors. 

11331  suggest the following expression for  the correlation function for  
p re s  sure  

Here Ax and ky a r e  turbulence scales  along and across  flow, 
time, E and 9 a r e  distances between two points along and ac ross  flow, 
r e  s pe c t ively . 

by V. V. Ekimov 1321 and others ;  of the foreign authors w e  mention 
Bartsch 1701.  

pulsations caused by jet engine noise 161, 77, 91, 123 ,  1251. 
pressure  fields have a pronounced nonhomogeneity. This can be seen, for 
example, from Figure 15 which shows lines of equal noise in decibels. 
The spectrum of pressure  pulsations is very wide, extending practically 
over the entire sound range (Figure 16) .  

is relaxation 

Correlation functions and spectral  densities for sea  waves were studied 

During the past years  an intensive investigation was begun of pressure  
These 

FIGURE 16. FIGURE 17 

Obtaining the correlation functions of the sound pressure  is difficult 
both theoretically and experimentally. 
is the "space correlation spectrum. I' i. e. , the Fourier transformation with 
respect to time of correlation functions of pressure 

The most convenient characteristic 

( R  and 
due to 

R a r e  the radius vectors of points M ,  M '  in Figure 17). 
Lighthill / l o l l  makes it possible to determine the space 

The theory 
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correlation spectrum theoretically. The perturbation of the density p of the 
acoustic medium is given by the nonhomogeneous wave equation 

where c is the velocity of sound in the medium and the "density of sources"  
x is expressed in t e rms  of the Reynolds s t r e s s  components T . ~  as 

Having solved (2.8) in t e rms  of the retarded potentia3 and using (2.7), we 
obt a h  

Here r and r' a r e  the radius vectors of points M, MI of the emitting region; 
it is assumed that the control surface does not intersect this region 
(Figure 17). 

Equation (2.9) becomes appreciably simplified only in the case of a 
so-called "distant" acoustic field, in which the dimensions of the emitting 
region may be neglected a s  compared to their distances from the points at 
which the pressure  is measured: ~ R - r ~ ~ l R ~ , ~ R ' - r ' ~ ~ ~ R ' ~ .  In particular, 
for  radial correlation we find 

$ ( R- R , )  

RR' ' 
(4 e 

Kq ( R ,  R'; :) Y - (2.10) 

where Y (w) is a function characterizing the spectral  character is t ics  of the 
source. In particular. it follows from (2.10) that sound pressure  w i l l  be 
a temporary white noise even when the source power is delta-correlated 
in time. 

character is t ics  a r e  very convenient for  the description of rea l  loads acting 
on aircraf t ,  vessels ,  and other s t ructures .  The main purpose of correla-  
tion methods consists in finding the character is t ics  of output processes  
when the correlation functions (or other character is t ics  related to them) 
of the input processes  a re  known. 

If stochastic differential equations relating the input and output para-  
me te r s  a r e  given, differential equations interrelating the correlation 
functions a r e  easily obtained. This is achieved by term-by-term multi- 
plication of the stochastic equations by the unknown functions and their  
products and by averaging over the ensembles.  In the general  case an 
infinite sequence of differential equations containing higher -order  cor  - 
relation functions is obtained, as  a r e  a lso mixed correlation functions of 
input and output quantities. 
hypotheses, investigation of the infinite system need only be carr ied out to 
second- or third-order correlations. 

A s  can be seen from data presented above, spectral  and correlation 

By introducing appropriate statistical 

This method was used by Maxwell 
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for  solving Boltzmann's equation in gas kinetics; in physical kinetics this 
method is called the method of moments. This method is also used in the 
theory of turbulence for  obtaining differential equations relating the cor  - 
relations of the s t r e s s  tensor from the Navier-Stokes equation. 

systems.  
spectral  method, which a re  extensively discussed in textbooks and in 
engineering l i terature  140, 46, 49, 5 3 1  a r e  more effective. 
inputs and w.(t) the outputs of a linear system (u = 1, 2,. . . n) and H.(f) be the 
reaction pe r  unit pulse applied at t ime t=O.  
equations which satisfy zero initial conditions at t =  to ,  is written in the 
form 

The method of moments is particularly simple when applied to l inear  
However, here  the method of transient pulse functions and the 

Let q = ( t )  be the 

The solution of the stochastic 

H. ( t  -~ 7 )  9, (T) dr (a = 1. 2. . , ., m) 

From this we obtain 

and s imi la r  expressions for correlation functions of higher order  (the 
aster isk denotes a complex conjugate quantity). 
processes  there  exists a corresponding expression relating the spectral  
densities of input and output: 

For steady-state random 

(2 .12 )  

where F,(iw) ( a  = 1. 2 , . . . )  a r e  t ransfer  functions of the linear system. 
Equation (2.12) and the functions in it have an explicit physical meaning 
and a r e  very convenient for  calculations; on them a r e  based many en- 
gineering applications in the theory of automatic controls, in the theory 
of communications, etc. 

Let US assume that the motion of a mechanical system is described by 

where E. a r e  the damping coefficients, pa a re  the inertia coefficients, and 
LO. a re  the partial frequencies of natural oscillations; the dots denote 
differentiation with respect to time. Equation (2.12) then becomes 

If the system is nonlinear, then a solution can, in principle, be obtained 
by integrating the moments equations. Difficulties usually a r i s e  when doing 
this (e. g . ,  in the theory of homogeneous turbulence /16/), but these can 
be overcome by appropriately linearizing the equations. Many linearization 
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theories have been developed 149, 53, 5 5 1  which a r e  largely s imilar  to the 
methods of nonlinear mechanics. 
statistical linearization (I. E.  Kazakov, Booton) which is similar to the 
method of harmonic linearization o r  harmonic balance in nonlinear 
mechanics. We may also mention the method of direct  linearization 
(V.  S. Pugachev), the method of slowly changing amplitude and phase 
(Rice, V. I. Bunirr,ovich), etc.  

quantities is not an end in itself. The aim is to find the joint probability 
distribution for the output quantities (frequently together with the f i r s t  
and second derivatives) and to estimate the reliability of the structure on 
this basis.  The complete system of correlation functions contains ex- 
haustive information on the process .  In practice, however, only f i r s t -  
and secorid-order functions a r e  considered. If the output process has a 
normal distribution (e. g. , in a l inear system with a normal-distribution 
input), then knowledge of second-order average and correlation functions 
is sufficient to obtain the distribution functions, and may also suffice in 
certain other cases  when the method by which the random output quantities 
a r e  formed is known from other considerations. 

After the distribution of input quantities is found w e  have to apply the 
r e 1 i a b  i l  i t  y t h e o r  y . The limiting state of the structure ("failure" in 
the reliability theory) can take place a s  a result  of brittle breakdown or 
of reaching the elastic limit, a s  a result  of large elastic o r  plastic de-  
formatioqs (for example, the ''popping" of shells)  a s  a result  of accumu- 
lation of residual damage and development of fatigue cracks,  mechanical 
wear,  etc.  

is solved by methods of the t h e o r y  o f  o v e r s h o o t s  o f  r a n d o m  
f u n  c t i o n s  . 
primarily for problems i n  radioengineering and automatic controls. An 
important contribution to the development of the theory of overshoots w a s  
made by the disciples of S. P. Strelkov (V. I. Tikhonov, R. L. Stratonovich, 
and others).  A comprehensive survey of this field was recently published 
by V. I. Tikhonov 1 5 6 1 .  
methods of finding the average number of intersections of a givenlevel per  
unit t ime, the diFtribution of extrema and ze ros  of a random function, the 
distribution of absolute maxima over a specified time interval, etc.  If, 
for example, the limiting state of a structure is defined a s  that in which 
a specified s t r e s s  (strain) is exceeded, the problem reduces to finding the 
probability of overshoot of a random function during the specified t ime 
interval, equal to the period of reliable service.  "Popping" of a shell  can 
also be interpreted as a random overshoot beyond the boundaries of a 
certain region of the phase or configurational space.  Solving the problem 
of accumulation of residual damage requires  knowledge of the distribution 
of the extrema of the random function, o r ,  more precisely, the distribution 
of the random function over "cycles. 
s t r e s s e s  vary over  a narrow range only the distribution of the maxima 
must be known. 
processes  requires  a knowledge of the joint probability densities for several  
successive extrema. 
s t ra in  must be considered a s  an i r reversible  (more precisely,  partially 

ILTost extensively used is the method of 

Determination of correlation and spectral  characterist ics of output 

A number of reliability problems in s t ructures  loaded by random forces 

This theory, originated by Rice I 511. w a s  developed 

We have at present at ou r  disposal effective 

While for processes  in which the 

It was shown in 1151 that the solution of wide-range 

The accumulation of plastic deformations and creep 
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i r revers ible)  process ,  caused by another (input) process .  In our opinion 
this problem is very important, but it would seem that i ts  solution should 
be sought by the methods of kinetic equations. These methods should also 
be used for the more complete (nonphenomenological) theory of accumula- 
tion of residual damage and mechanical wear.  

correlation and related methods to  the theory of plates and shells. 
solving problems of the strength of s t ructures  these methods were apparent - 
ly first applied by Lippman 1 3 9 1 ,  Fang 1581, and Miles 11121 a t  the be- 
ginning of the fifties. 
in conjunction with designing aircraf t  s t ructures  to withstand gusts and 
[tail] buffeting. 
conjunction with the problem of damage accumulation according to the 
Mayner-Bakharev concept and gave a partial solution of this problem. 
These papers do not explicitly deal with plates and shells. This a lso 
applies to l a t e r  works by P r e s s  and Houbolt /120/ ,  Ribner 11221, Thomson 
and Barton 1571. 
no substantial difference between the applications of statistical methods to 
beams, beam systems,  plates, shells, etc. The difference disappears 
almost immediately af ter  the vibrational problem is expressed in t e rms  of 
eigenfunctions and ordinary differential equations a re  obtained which have 
the same form for any elast ic  system. 

Vibrations of round and rectangular plates supported along the entire 
contour, subjected to  random loads, were f i r s t  considered theoreticallv 

We shall now give a systematic review of work done on the application of 
Fo r  

These authors considered these problems pr imari ly  

Miles f i r s t  considered random vibrations of s t ructures  in 

However, it was alreay pointed out that there is 

FIGURE 18. 

by Eringen I S S l .  
correlation function of the deflection at the 
center of a round plate due to a concentrated 
random force applied at the center. 

systems loaded by random forces  was 
presented by this author on the basis of 
correlation methods 191. In particular, the 
role of the correlation between the various 
degrees of freedom of an elastic system was 
investigated. It was shown that mutual co r -  
relation can be neglected i f  the damping co- 
efficients for the natural vibrations of the 
elastic system a r e  sufficiently small  in 
comparison with the differences between the 
par t ia l  frequencies and if the spectral  
density of the input does not have excessively 
sharp  maxima. 

vibrations can be determined precisely only 

Figure 18 shows the " 

The general  theory of vibrations of elastic 

It is known that the modes of natural 

in a few cases .  Usual approximative methods give reliable-results -only- 
for the lower modes of vibrations. F o r  this reason it seems reasonable 
to use a s y m  p t o t i c representations for  the eigenfunction% and natural 
frequencies, as in a method developed by this author 18.  101. 
this idea w a s  applied to solve the problem of vibrations of a clamped plate. 
Complete spatial correlation w a s  assumed, while the time correlation was 
given in the form of the spectral-density graph. 

In paper 1111 

The mean-square value 
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of normal s t r e s ses  near  the clamped edge was calculated. 
developed further by M. F. Dimentberg 1 2 8 ,  291, and w i l l  be discussedlater .  

If the spectrum of excitation frequencies is sufficiently wide, a large 
number of degrees of freedom a r e  excited immediately and the use of cor -  
relation methods becomes excessively difficult. However, a substantial 
simplification is possible due to the p l u r a l i t y  of  t h e  e x c i t e d  
m o d e s  of  v i b r a t i o n .  Noting that (Figure 19) 

This was 

k l ~ = m , r + O ( l ) ,  k,a,= m,r:+0(1). ( n i , . m , = l . 2 . . . . ) .  

a r e  t rue for the wave numbers kl and k,  of a plate o r  of a shallow shell 
whose sides a r e  a, and a,, w e  can find an approximate formula for  the 
average number of natural frequencies per  unit frequency range 1131 

where 

(2.15) 

and R, and R2 a re  the principal radi i  of curvature of the middle surface. 
When w,=O, (2 .15)  becomes Courant's equation for the density of the 
natural frequencies of a plate. The integral in (2.15) is expressed by 
elliptic integrals. It was found that the distance between neighboring 
frequencies amounts to several  cycles per  second for thin plates and 
shells and to several  tens of cycles per  second for comparatively thick 
plates and shells. The width of the the spectrum of excitation frequencies 
can, a s  we have seen, amount to hundreds and even thousand of cycles 
pe r  second. 

FIGURE 19. FIGURE 20. 

This author has shown 1141 that under certain sufficiently general 
conditions, it is possible to give integral estimates for the correlation 
functions and the mean-squares and spectral  densities. More precisely, 
summation over the lattice points of a "quantum" network is replaced by 
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integration over the entire region of wave numbers k ,  >O,  k,  1, 0 and division 
by the a rea  of one "quantum" cell AklAk2 (Figure 19). 
now give the expression for the mean-square s t r e s ses  which a r i s e  in a 
sufficiently large plate due to a steady-state random pressure which is 
delta-correlated in space. 
we have 

A s  an example we 

For  points sufficiently distant from the contour 

while the maximum s t r e s ses  at the clamped edge w i l l  be 

where Y ( r )  is a function characterizing the spectral  density of the load, + ( r )  
is the relative energy dissipation, and r' = k: + k i .  

The method of integral estimates makes it possible to obtain in closed 
form the asymptotic solution for a number of problems and to investigate 
the effect of such properties of external Ioad a s  damping, boundary con- 
ditions, e t c . ,  on the statistical character is t ics  of the input quantities. 

In recent years  considerable interest has a r i sen  in problems concerning 
the vibration of elements of a i rcraf t  skins due to random pressures  caused 
by engine noise, pulsations in the boundary layer ,  etc. These problems 
have two aspects; one is purely acoustical, being related to problems of 
sound-proofing, diffraction of the noise on the vibrating surface, etc. 
second aspect is related to the strength and reliability of the aircraf t  
s t ructures .  
of s t ructures  due to random forces w-hose characteristic frequencies l ie 
in the sonic range). 

mention the paper by Lyon 11051 on the response of a s t r ing to random 
noise fields. 
under Crandall's editorship, and in i 6 1 ,  791. 
the vibrations of a plate, f reely supported along i ts  contour, due to a 
distant noise field. 

to solve the problem of s t r e s ses  ar is ing in a clamped plate in a distant 
noise field. 
ditions" vary for  clamped plates, taking into account the correlation at  
multiple frequencies. Thereafter 1 2  91 he investigated under the same 
assumptions, the vibrations of cylindrical panels clamped along their 
straight edges and showed that the mean-square s t r e s ses  a r e  appreciably 
lower than in a flat panel. This is in agreement with resul ts  obtained ex-  
perimentally. 
closed cylindrical shell in a pressure  field generated by axisymmetrically 
arranged sources  (Figure 20) .  
by (2.10); the angular correlation was determined by methods of geometric 
acoustics. These resul ts  pertain to a certain intermediate case between 
"distant" and "close" noise fields, since the space nonhomogeneity of the 
pressure  was partly taken into account. 

The 

It is expressed by the t e rm "acoustic fatigue" (fatigue failure 

Work  on this subject was f i r s t  published five o r  six years  ago. We 

The s ta te  of the science in 1958 is reflected in 1781, published 
Later ,  Dyer / 8 4 /  considered 

M. F. Dimentberg / 2 8 /  applied the asymptotic expansion of eigenfunctions 

He f i rs t  investigated the problem of how the "congruence con- 

Yu. A. Fedorov / 591 has considered the vibrations of a 

The longitudinal correlation was introduced 

The correction which had to be 
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made in comparison with the theory of a "distant" field can be seen in 
Figure 21. 

Recently, Lin 1 1021 investigated the vibrations of regularly shaped 
continuous plates, reinforced by r ibs ,  in a distant noise field. Tack and 
Lambert 1 1331 considered vibrations caused by pulsations in the turbulent 
boundary layer. Acoustic aspects of interaction between the plate and a 
random pressure field were investigated by L. IVI. Lyamshev 141, 421.  

FIGURE 22. FIGURE 21. 

Experimental hvestigations of vibrations and fatigue failure in sound- 
pressure  fields were apparently f i rs t  carr ied out by Lassi ter ,  Hess, and 
Hubbard 1 991. 
22 and 23. 
noise level. 
a s  the average sound pressure increases approximately by a factor of 20) 
the service life decreases  from 500 minutes to 30-40 seconds. Recently, 
Clarkson and Ford /77/ published the resul ts  of measurements of spectral 
densities and correlation functions of s t r e s ses  ar is ing in the skin of the 
"Caravelle" a i rcraf t .  Also, Smith and Lambert 1 1321 investigated ex-  
perimentally the vibrations of a plate, caused by pulsations in the boundary 

The resul ts  of these experiments a r e  presented in Figures 
Figure 2 3  shows the dependence of the time until failure on the 

A s  the noise level increases from 140 to 166 decibels (that is, 

layer .  Certain other resul ts  a r e  given in 1 

FIGURE 23. 
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The effect of nonlinear factors on random vibrations of plates was noted 
in a number of papers .  
i. e.  , "tightening" and "breakoff" of vibrations, were noticed already at  
comparatively low s t r e s ses  (about 350 kg/cm2). 

analysis of nonlinear problems of statistical dynamics by correlation 

Thus, according to 1991, typically nonlinear effects, 

A s  was previously pointed out, an extensive l i terature  is devoted to the 

methods. Works by Lyon 1106-1101 
and Caughey 173, 761 a r e  closest to the 

- E theme of this survey. In particular, 
a 0  Lyon 11071 f i r s t  estimated the effect of 

8 nonlinear factors on the behavior of a 
taut s t r ing in a distant noise field. 4 
Recently, Lin 11031 performed co r re  - 

0 20 00 50 OoQ sponding cakulations for  a rectangular 
plate. The effect of nonlinearity on the 
mean-square s t r e s ses  is shown in 
Figure 24.  

FIGURE 25. 

Several works have been published on 
parametr ic  vibrations of elastic systems excited by random forces .  
Eringen and Samuels 1 8 8 1  considered the stability of a beam compressed 
by fluctuating forces ,  using the concept of "mean-square 'I stability. 
Slightlylater Samuels /124/ investigated the stability of a closed circular  
cylindrical shell compressed by a fluctuating normal load. In Figure 25 
the instability region in the parametric plane is shown hatched. Related 
problems of statistical dynamics were considered sti l l  ea r l ie r  by R.  L. 
Stratonovich and Yu. M. Romanovskii 1541. 

3. METHODS OF KINETIC EQUATIONS 

Let the motion of a mechanical system be described by the differential 
equations 

X.= f~ (X1 ,X2 , . . . rXg .~ l ,Qe . . . . ,Q , )  @ = 1 , Z . . . . s ) ,  (3.1) 

where x.(t) a r e  dynamic variables and 9. ( t )  a r e  generalized forces .  
generalized forces  and the initial conditions a re  determined, then (3.1) 
defines uniquely the behavior of the system. 

Henceforth we assume that the generalized forces  a re  random functions 
of time. We shall call (3. I), as  customary, s t o c h a s t i c equations. The 
problem a r i se s  of finding the joint probability density for  the dynamic 
variables P ( x ~ , x ~ , . . . , x ~ I ~ )  when the initial distributionp(x,,x,, ..., x,(O)is given. 
The evolution with time of this probability density is described by some 
differential o r  integral -differential equation 

If the 

P(X1. X2,...,XsIf)=LIP(X1, XI, . . ' , X , l t ) l ,  (3.2) 

which we shall call k i n e t i c .  

century. 
Kinetic equations were introduced into science in the middle of the las t  

Boltzmann's kinetic equation is the ear l ies t ,  although not the 
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simplest example. Later ,  Rayleigh. Fokker, Planck, Smoluchowski, and 
Einstein applied kinetic equations to the theory of Brownian motion. 
Nowadays, these equations a r e  used effectively in many fields, such as  
physics 1651,  theoretical biology 1 2 1 ,  radioengineering 1551 ,  theory of 
automatic controls 1 50/ ,  etc. 

development of the theory of Markov processes .  A simple M a r k o v 
p r o c e s s is a process without aftereffect, in which the probability distribu- 
tion a t  time fl depends only on the distribution a t  instant f 2  < t, but not on the 
previous history of the system. 

with one variable x ( t ) .  
be shown that if the l imits  of the expressions 

The successful application of kinetic equations is primarily due to the 

A s  an elementary example w e  now consider a simple Markov process  
We use the notation x = x ( t )  and x, = x ( t  + T). It can 

exist, the probability density p (x) is given by the kinetic equation 

( 3 . 3 )  

The functions x k ( x )  a re  called the i n t e n s i t i e s  of t h e  M a r k o v  
p r o  c e s s , 
characterizes the dispersion, etc. The intensity coefficients a r e  related 
to correlation functions for the derivative x ( t )  by 

Of them xl(x)  characterizes the mean process  flow, x z ( x )  

K;( t , ,  f2,. ’ ‘ ,  fk) = Xk ( t )  6 (t, - f,). . ( f l - -Q)  - I - . .  . (3 .5)  

(dots denote te rms  characterizing weaker effects). 

t i n u o u s  and (3 .4)  becomes 
If for xk  ( x )  all the k > 2  a r e  zero,  the Markov process  is called c o n - 

d 1 d2 
h (4= - x 1x1 ( 4  P (x)l + -iy &T 1% (X)P ( 4 1  (3 .6)  

and is called the one-dimensional F o k k e r  - P l a n c k  e q u a t i o n .  It 
descr ibes ,  for example, the random wandering of a point along the x-axis. 
Equation (3 .6)  can be generalized to include m u  1 t i d  i m e n s i o n  a 1 c o n  - 
t i n u o u s  M a r k o v  p r o c e s s e s  

where 

Equation (3 .7)  and i t s  conjugate equation are usually called F o k k e r - 
P l a n c k - K o l m o g o r o v  e q u a t i o n s .  
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The solution of the problem reduces to the integration of an equation 
of the parabolic type for specified initial conditions (the probability 
distribution at f = 0 )  and boundary conditions which require that the function 
p (xl. x 2 .  . . . . x s  )comes attenuated at  large values of x- . It is also possible to  
formulate limiting problems, related to finding the probability of attaining 
the l imits ,  the probability of overshoots, etc. Thus, finding the a v e r a g e  
t i m e  r e q u i r e d  t o  r e a c h  t h e  b o u n d a r y  S of a closed region V 
from a s ta te  which at t ime t=O is defined by xyx;, .  . - ,x t  (x,"c V) ,  reduces to 
the integration of L. s .  P o n t r y a g i n ' s  e q u a t i o n  

(3 .9)  

with the boundary condition that T vanish on the boundary S of the region. 
We denote the solution of the limiting problem by T (4, x;, . . .,x:). If the 
initial- s ta te  has  the distribution ~ ( 4 -  xi ;-.. 4). in region V, then the average 
time T required to reach the boundary w i l l  be 

What physical properties must a system possess  in order  that we may 
describe i ts  behavior by equations such a s  (3.7); or, what a r e  the 
stochastic equations (3.1 ) to which the kinetic equations (3.7) correspond? 
These questions a re  not at all unnecessary,  since Markov processes  a r e  
mathematical abstractions which cannot always replace rea l  (smoothed - 
out) processes  (Figure 26). 
is a Markov process ,  the variation of the generalized velocities w i l l  be a 
delta-correlated process ("white" noise). 
f rom (3.5). 
system possessing finite inertia cannot be represented as  a Markovprocess.  

If the variation of the generalized coordinates 

This can, in particular, be seen 
Consequently, variations in generalized coordinates of a 

FIGURE 26. 

If the system has a finite intertia and the generalized forces a re  "white" 

In fact, in the equations 
noises, a joint evolution of generalized coordinates and generalized 
velocities w i l l  correspond to the Markov process .  

(3.11) 
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the right-hand sides of which satisfy the conditions 

all  higher correlation functions a r e  zero. Introducing s = 2n dynamic 
variables x.=v.(a Q n), x,= 4. ( n < u  < Bn), w e  obtain from (3.8) 

6. (2s n) ,  
'La = 

(%,we + j = )  In < 6 2n). 

Equation (3.7) takes on the form 

In general  it can be shown 1551 that to a dynamic system 
I 

Ai= gm ( X ' J t . '  . ' , X , )  + 2 h.B ( x 3 , x * ; .  ' , X . < ) t P  ( t ) ,  
Q-1 

where E,(t) a re  independent "white" noises of unit intensity 

(3.13) 

(3.14) 

there corresponds a stochastic equation (3.7) when 

(3.15) 

"White" noise can serve  a s  a satisfactory approximation in certain 
cases ,  particularly if damping is sufficiently small, since the spectral  
densities then change only insigmficantly within the l imits  of the passband 
of the system and can be regarded as  constant. 
is s t i l l  an excessive abstraction, since it corresponds to processes  
possessing infinite energy. 

spectral  densities, the theory of Markov processes  can also be applied. 
In fact, a steady-state random process  with a fractionally rational spectral  
density can always be treated as the result of the passing of "white" noise 

However, "white" noise 

If the loads a r e  steady-state random functions with fractional rational 



through a l inear  system with constant parameters .  
system by equations which describe this passing and setting up the Fokker- 
Planck-Kolmogorov equation fo r  the expanded system, we can find an 
effective solution for a number of problems. 
examples f rom the theory of automatic controls 1 6 2 ,  631. 

wide. Problems only a r i se  in obtaining the solutions. Steady-state solu- 
tions corresponding to a t ime -independent probability distribution can be 
found easily. 
Gibbs distributions. 
posed on a dynamic system in order  that i ts  steady-state behavior be 
governed by the above distributions. 

Supplementing the 

We can point to a number of 

Thus, the range of application of the theory of Markov processes  is very 

The simplest  of them a r e  the Maxwell-Boltzmann and the 
We recal l  here  the rest r ic t ions which must be i m -  

dV 
d V  

1. In (3.11) let n = 1 andf=  -, where Vis the potential energy of the 

system. Then, to  the fluctuation equation 

. dV 
dv p v + 2 E W +  - = q ( t )  

there corresponds the kinetic equation (3.13) 

p(V,V)=--v-+- y + v -  +- -  .: :( . d a  "> P d v  

the steady-state solution of which is 

p ( v , v ) = C e x p  [ - ($'+ v)]. 

i. e . ,  a Maxwell-Boltzmann distribution. 
av 
av, 

2.  Let a> 1, fa= -- E , = z =  const and, in addition 

re@ = C L 8 ,  

c d2p + -- 
2p= a VZ' (3.16) 

(3.17) 

(3.18) 

where c =const [and sap is theKronecker delta]. Equation( 3.18) s ta tes  that c.9 

is an isotropic tensor. Equation (3.13) then becomes 

This equation has the steady-state solution 

(3.19) 

(3.20) 

which again is a Maxwell-Ebltzmann distribution. 

stochastic equations (3.11) and which lead to a Maxwell-Boltzmann 
These two cases  exhaust the problems which a r e  described by the 
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distribution. This w a s  noted by several  authors, in particular Ornstein 
11 171, who discussed the "Brownian Motion Systems where Several 
Temperatures Obtain" (see also the book by Chandrasekhar /65/). 

distribution 
We note that the distribution in generalized coordinates is a Gibbs 

4r  P = C1exp ( -  v ) .  (3.21 ) 

The kinetic equation, whose steady-state solution is the above distribu- 
tion, can be also obtained from the following considerations. We assume 
that the system is inertialess. Physically this corresponds to  the case 
when inertia forces  can be neglected in comparison with frictional forces. 
An example is the motion of a Brownian particle in a very viscous fluid 
(at very low Reynolds numbers). In the limiting case under consideration 
we can t rea t  the evolution of the system as a Markov process  in a con- 
figuration space. The stochastic equations then become 

the corresponding Fokker -Planck-Kolmogorov equation takes the form 

(3.22) 

It is easy to show that distribution (3.21) satisfies (3.22). 
Let us  now clarify the meaning of the stated limitations for the problems 

of statistical dynamics of plates and shells. 
existence of a potential V is not res t r ic t ive,  the assumption that the damping 
coefficients a r e  equal is contradicted by generally known experimental 
data. 
on the properties of the load. 
stant thickness. 
vibrations. The generalized forces  a r e  determined from (2.3). Making 
use of the second of equations (3.12) we find 

While the assumption of the 

On the other hand, condition (3.18) imposes very rigid rest r ic t ions 
A s  an example, we consider a plate of con- 

Let 'p. ( x l .  x?) be the orthonormal modes of the natural 

It is easy to show that cag = c ; ~ ? ,  when 
--. ___ 

4 ( X 1 ,  x2, t )  4 (6, E ? ,  t + 7 )  = c?J (XI - 5,) 8 (xz - t 2 )  6 (.I. 

This equation s ta tes  that the load must be delta-correlated not only in 

(3.24) 

time, but also in space. Hence, the intensity of loading must be the same 
everywhere. 
An example is the collisions of molecules with a thin plate placed in a 
liquid of uniform temperature.  Obviously, purely molecular pressure  
fluctuations a r e  of no interest in engineering problems. 
acting on r ea l  s t ructures  a r e  gusts due to atmospheric turbulence, 
pulsations in the boundary layer, sound p res su re  due to engine noise, 

This is typical of problems in the theory of Brownian motion. 

Fluctuating loads 
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pressure  of sea waves, etc. These loads a re  characterized by a space-  
correlation scale which is comparable with the s ize  of the s t ructure  or, 
a t  least, comparable with the character is t ic  length of the elastic disturb- 
ances of the middle surface. 
acoustic field is, as can be seen from (2.10). of the order  of a sound-wave 
length. 

Thus, the correlation scale  in a distant 

At a frequency of w = 100 cps, h %  3.3 m; at w = 1000 cps, 1% 0.33 m. 
Assume, for example 

~ 

q (XI, x,, f) 9 (tI, E,. t $- 7 )  = c,6 ( 7 )  

(load fully correlated in space). Then, f rom (3.23) 

For a rectangular plate supported in a horizontal plane, we have 

const , -_- .~ 
m.n,mpnp 

where m, and n, a r e  positive odd integers, which correspond to the 
vibrational modes y,(x,, x2). 
then f Z B  = 0 .  

A systematic review of studies of Markov processes  must include 
references to the fundamental works by Smoluchowski and Einstein on the 
theory of Brownian motion (amongst the"c1assics I '  of Brownian motion, 
Langevin represented, so to  speak, the "correlation" school). 
works can be found in 1661. 
Ornstein, Yu. A. Krutkov, Wang, Kramers ,  and others 136, 98, 117. 135, 
1361. 
Equations such as  (3.13) can, for  particular cases ,  be found in 11171; 
see also The Handbook of Engineering Mechanics, edited by Flugge / 901. 

The study by A.  A .  Andronov, A. A. Vitt, and L. S .  Pontryagin 111, 
published in 1933, is of fundamental importance. 
Markov processes ,  in the form in which it had shortly before been de-  
veloped by A. N.  Kolmogorov, is applied in this work to the study of 
mechanical systems in a quite general form. 
behavior of a mechanical system having many degrees of freedom, 
subjected to the simultaneous action of deterministic forces  and random 
Brownian-type impacts, and solved several  problems on steady-state 
probability distributions and on the transition t ime from one s ta te  into 
another. This book was the f i rs t  to give equation (3.9) for the mathematical 
expectation of the transition time, which was la te r  called the Pontrysgin 
equation. Study / I /  was a l so  the f i r s t  to deal with the relationship between 
stability and probability distribution; it was shown in it that stable varieties 
correspond to maxima of probability density. 
considered f i r s t -  and second-order systems, including also freely 
vibrating systems. 

by I. I. Vorovich 1201 in 1957. 
shell consist both of slowly varying and of fluctuating forces (Brownian- 

If one of the numbers n,, n x ,  mp, rip is odd, 

These 
We mention also the la ter  works by Uhlenbeck, 

Several studies were also published after the war  196, 113, 1311. 

The theory of continuous 

The authors considered the 

A s  examples the authors 

The theory of Markov processes  was first applied to the theory of shells 
He suggested that the forces acting on a 
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type impacts), and determined the probability distribution from an equation 
such as  (3.22), using subsequently i ts  steady-state solution (3.21), i. e . ,  
the Gibbs distribution. 
Vorovich as  the probability of a system outside some region of the con- 
figuration space in the steady state. 
the shell is taken into account by the total-probability expression. In a 
recently published note 1211 I. I. Vorovich again uses  the Gibbs distribution 
(3.21), attempting to obtain relationships of the quasisteady method by 
the transition c + O .  
review published in this collection. 

to the statistical dynamics of shells was made by V. M. Goncharenko. 
an ear l ie r  paper 1221, V. M. Goncharenko remained within the framework 

of this work, only replacing the Gibbs 
distribution (3.21) by a microcanonical 
distribution ( ~ 4 0 ) .  
Goncharenko already considers the evolution 
of a system a s  a Markov process  in the 
phase space, without assuming the tensor ca9 
to  be isotropic (although he does not s ta te  
the conditions imposed on the load in con- 
junction with the isotropy assumption). 
Finally, in / 2 6 /  he defines the problem of 
determining the probability of "popping" a s  
a problem of determining the probability 

The probability of "popping" is defined by I. I. 

The effect of random parameters  of 

These studies a r e  described in I. I. Vorovich's 

A se r i e s  of studies on the application of the theory of Markov processes  
In 

In 124, 251 V. M. b3" 
0 v, vz v3 v 

FIGURE 21. 

of the f i rs t  crossing of the potential ba r r i e r .  
We now consider paper 1261 in more detail. It describes a system with 

one degree of freedom whose probability distribution is given by (3.17). 
Using resul ts  due to Kramers  198 I ,  the author gives the following approxi- 
mation for the probability of "popping" at  the t ime A t  

X exp ( - % A b ' )  (3.25) 

Here w, is the generalized coordinate which corresponds to the undisturbed 
(stable) equilibrium position, v2 corresponds to  the unstable position; 
AV= V ( u , )  - V ( v , )  is the height of the potential ba r r i e r  (Figure 2 7 ) .  
assumed that at t = 0 the system is situated in the vicinity of point vl and 
that A t  (< T~ ( T ~  is the relaxation time). 
the resul ts  obtained from (3.25) with those obtained by assuming that the 
variation in the generalized Coordinate is a Markov process.  
ity ra t io  

It is 

Later ,  V. M. Goncharenko compared 

The probabil- 

Po (" /At)  
P ( * / A t )  k =  

(the numerator defines the probability according to the second assumption) 
for one particular case is presented in Table 2 .  Here i denotes the damping 
constant of the natural vibrations. 
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TABLE 2 

98 
95 
89 

65 
63 
61 

0.02 

200 
140 
180 

E: I noo I 

480 
470 
450 

A s  can be seen from the table, the assumption that the variation in the 
generalized coordinate is a Markov process  resul ts  in a quite appreciable 
e r r o r  in determining the probabilities. It is t rue that the resul ts  pertain 
to the case of A t < < s , .  It is frequently thought that such large e r r o r s  w i l l  
not result if  for At>>.r ,  the variation of the generalized coordinate i s  
assumed to be a Markov process .  
average time required to reach the potential bar r ie r ,  the average number 
of se r ies  of such crossings, etc. However, for  large values of A t  these 
character is t ics  a re  of no interest from the viewpoint of reliability. 
fact, when nt is large,  the s t ructure  fails due to accumulation of residual 
deformations caused by repeated cyclical loads, and also due to fatigue. 
From the viewpoint of these phenomena the interesting character is t ics  a r e  
the average number of crossings of a given [potential] level, the distribu- 
tion of extremum values, etc. 

[ p o t e n t i a l ]  l e v e l  p e r  u n i t  t i m e  the joint probabili tydensityfor 
the generalized coordinates and velocities must be known. For  a Markov 
process ,  the average number of crossings of a given level per  unit time 
is infinite. If the level is crossed at any given instant, then an unlimited 
number of crossings a r e  possible in an infinitesimal neighborhood of this 
instant. 
idealization; we must therefore consider a Markov process in phase space. 
This, in i ts  turn, becomes too simplified for finding the d i s t r i b u t i o n  
o f  e x  t r e m  a .  In fact, in order  to find the distribution of extrema, we 
must know the joint probability density for the generalized coordinates, 
velocities, and accelerations. Fo r  loads such a s  "white" noise this 
probability density cannot be determined; this means that we must con- 
s ider  loads of f i n i t e  e n e r g y .  

Of interest from this viewpoint is the work by M. F. Dimentberg / 3 0 1 .  
Assuming that the load is an exponentially correlated process ,  and 
applying the theory of Markov processes ,  the author found the steady-state 
distribution of coordinates, velocities, and accelerations, whence he was 
able to obtain the steady-state distribution of extrema. 
limit transition to "white" noise, assuming that damping is sufficiently 
small. 
this transition is made. 
approximating loads by "white" noises is needed. 
is given by M. F. Dimentberg in /31/, included in this collection. 

Lyon /106-107/, and also of Smith and his collaborators 1127-1291. 
a r e  closely related to the problem of acoustic fatigue, the theory of Markov 

This may be t rue with respect to the 

In 

Ino rde r  to find the a v e r a g e  n u m b e r  o f  c r o s s i n g s  of  a g i v e n  

A Markov process  in Configuration space is thus an excessive 

He also made a 

It was found that the result depends largely on the manner in which 
This proves again that a more careful way of 

A further development 

We mention among foreign works dealing with this problem those of 
They 
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processes  being used to evaluate the effect of membrane s t r e s ses  on 
the strength of vibrating plates. 

of Markov processes to the related fields of statistical dynamics. 
ideas on this rapidly developing trend a r e  given in 146, 55, 65, 1 2 6 / .  

We also mention the extensive l i terature  on the application of the theory 
Some 

4. COMPARISON O F  METHODS, TRENDS IN FUTURE 
INVESTIGATIONS 

Having familiarized ourselves with the three groups of methods used 
in the statistical dynamics of plates and shells and with the resul ts  which 
these methods yield, we can finally compare them. Quasisteady methods 
a r e  the principal and natural means for  solving those problems in which 
the input parameters  a r e  random quantities and (or) deterministic functions 
of time which depend on a f i n i t e  number of random quantities. The 
fewer a r e  the random quantities which characterize the system and load, 
the simpler becomes the solution given by quasisteady methods. With 
increasing number of random parameters,  i t  may become advisable to 
use  the methods of the theory of random processes.  

The field of application of correlation methods and the methods of 
kinetic equations a r e  those problems in which the input parameters  a r e  
n o n  d e g e n  e r  a t e r a n d o m  p r o  c e s s e s . Correlation methods a r e  
very effective in solving linear problems, particularly in the case of 
normal distribution processes.  The methods of nonlinear mechanics can 
be used to solve problems with small nonlinearity. 
kinetical equations a r e  particularly effective in problems concerning the 
theory of Brownian motion, since with their aid exact probability distribu- 
tions can be obtained in a number of cases .  Unfortunately, these distribu- 
tions (Maxwell-Boltzmann, Gibbs, etc.) a r e  only of limited usefulness in 
statistical dynamics of plates and shells. 

The methods of 
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FlGURE 28. FlGURE 29. 

Results obtained by correlation methods and by the methods of kinetical 

The comparison for the dynamic sys tem 
equations were compared repeately. 

v + P G f + w " l  + g ) w  = ect,, (4.1) 
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where 5 ( t )  is the white noise, g (v) is an odd continuous function of the 
genralized coordinate v ,  was made by Lyon /107/ and Crandall / 8 0 / .  
Lyon considered the function g=Pv3, while Crandall considered the general  
case. They applied, on one hand, the method of statist ical  linearization 
(assuming that the output is a Gaussian process);  on the other hand, they 
set up the Fokker-Planck equation and obtained i t s  solution using an 
equation such as (3.17). 
comparison of the second and fourth moments of the generalized co- 
ordinate, found by these two methods. It is seen that the method of 
statist ical  linearization gives good agreement with the exact resul ts .  
s imilar  resul t  can be obtained for the data given by E. M. Hazen / 6 3 /  
who considered the passing of the process  q ( t )  = m + 5 ( t )  with the spectral  
density 

Figures  28 and 29, taken from / 108 / ,  give a 

A 
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5 

through a system with a piecewise-linear characterist ic.  
compared in Table 3. 

The resu l t s  a r e  
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0.0208 
0.0195 
0.00635 

0.08268 
0.0591 
0.02539 

0.6666 
0.5443 
0.4594 

0.0208 
0.0193 
0,0066 

0.0833 
0.0670 
0.0267 

0.6770 
0.5530 
0.4600 

It should be noted that the above comparisons pertained to nonlinear 
sys tems which have a single equilibrium position. 
two or more  stable equilibrium positions (for example, a shell  loaded by 
forces  whose magnitudes are between the lower and upper cri t ical  values), 
the accuracy of the method of statist ical  linearization ( a t  l eas t  in the version 
used above) will no longer be  satisfactory. 

l inear  systems, correlation methods and methods based on kinetic equa- 
tions can be  fully competitive. 
linearization can be generalized so that i t  will yield satisfactory solutions 
even when the nonlinearity is large. 
are  opened up by applying the theory of Markov processes  to systems with 
piecewise-linear character is t ics  150 ,  6 3 1 .  
can be thus solved can be appreciably expanded i f  the approximate 

For a system having 

It would sti l l  seem that in many fields of statist ical  dynamics of non- 

For example, the method of statist ical  

On the other hand, wide prospects 

The range of problems which 
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solutions of the Fokker- Planck-Kolomogorov equations a r e  obtained by 
direct  variational methods or by the methods of nonlinear mechanics. 
i t  is possible that the coefficients of Fokker-Planck-Kolomogorov equa- 
tions can be approximated by quadratic formulas. It is easy to see that 
this is relateti to the method of statistical linearization in the correlation 
theory. Difficulties due to the variety of excited vibrational modes can, 
in our opinion, also be overcome. 

widely held opinion that the theory of Markov processes  is more com- 
plicated than, le t  u s  say, the correlation theory. I cannot agree with this. 
It was shown above that the formalism of the theory of Markov processes  
is generally not more  complex than the correlation theory. The la t ter  is 
only better known to engineers due to i t s  many applications in statistical 
dynamics. Successful attempts have been made 1551  to present certain 
fields of statistical dynamics by using both methods equally. 

development of the statistical dynamics of shells and plates. 
frequently said that the most important problem is the collection of 
statistical data pertaining to the parameters  of the structure and to the 
external loads. In fact, without these data all theoretical considerations 
a r e  unrealistic. However, he re  we face a vicious circle.  Without 
statistical data one cannot u se  the theoretical solutions; a t  the same time, 
without knowing the theory it is impossible to select  the statistical in- 
formation correctly and purposefully. For this reason the main problem 
is in our opinion the e x t e n s i v e  p o p u l a r i z a t i o n  of s t a t i s t i c a l  
m e t  h o  d s . 
potential of the statistical dynamics be familiar not only to specialists in 
the f ie ld  of the theory of shells and plates, but also to experimenting 
design engineers, etc. 
collect statistical information properly. 

The following problem is the d e v e l o p m e n t  o f  t h e o r e t i c a l  
i n v c s t i g a t i o n s  i n  t h e  s t a t i s t i c a l  d y n a m i c s  o f  p l a t e s  
a n d  s h e l  1 s . This, however, may be dangerous in one respect.  There 
exists a vast l i terature  on the application of the theory of probability and 
mathematical statist ics to various fields of technology and physics. Many 
solved problems from other par ts  of statistical dynamics can be easily 
rephrased in te rms  of the theory of plates and shells. In the first  de- 
velopment stages of the theory, works based on simple analogies with 
previously solved problems a r e  useful since they aid in the popularization 
of statistical methods. 
be made to solve certain difficulties in the statistical dynamics of plates 
and shells. W e  indicate the following possible directions of future study: 

1. T a k i n g  i n t o  a c c o u n t  t h e  v a r i e t y  o f  e x c i t e d  v i b r a -  
t i o n a 1 m o d e s (particularly in nonlinear problems). 

Most problems of statistical dynamics considered before pertained to 
systems with one or several  degrees of freedom. Expanding in t e r m s  of 
eigenfunctions and cutting off the s e r i e s  at some term, we reduce the 
plate or the shell, which is a system with an infinite number of degrees 
of freedom, to a system with a finite number of degrees of freedom. This 
number can be sufficiently large, particularly if  the load has a wide 
t ime spectrum. 

Thus, 

I would like to point out still  another aspect of the problem. It is a 

We shall now discuss the formulation of problems arising in the future 
It is 

It i s  most important that the methods, results,  and future 

Only under this condition will i t  be possible to 

However, in the future a concentrated effort should 
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2.  T a k i n g  i n t o  a c c o u n t  t h e  l a w s  o f  s p a c e - t i m e  c o r -  

A s  was shown in this survey, the relationships governing the distribu- 
r e l a t i o n  f o r  l o a d s .  

tion of r ea l  loads can be quite complicated. Analysis of the effect of 
these laws on the behavior of plates and shells does not, in general, 
present fundamental difficuities, especially for l inear  systems. Never- 
theless, this problem has practically not yet been studied. 

r e l a t e d  t o  t h e  r e l i a b i l i t y  t h e o r y .  

of the reliability and service life of the structure. 
which does not properly belong to statistical dynamics, although it is allied 
to it. 
resu l t s  which can be further discussed f rom the point of view of reliability. 
Most problems cannot be solved by our present knowledge of theory of 
overshoots of random functions. Thus, up to now we do not know how to 
determine the joint probability densities of extrema following one another 
in wide-band random processes .  

d i s t r i b u t e d  s y s t e m s .  

replaced by models with concentrated parameters .  It would be interesting 
to apply directly the methods of the theory of probability and mathematical 
s ta t is t ics  to distributed systems.  
easily for linear systems if, for example, Green's function is known. 
Certain applications can be found in /89/ .  Fo r  dynamical problems an 
original approach was developed by Campet de Fer ie t  1331;  it is, however, 
still  unclear to what extent this approach wil l  be effective. 

In addition to purely theoretical goals we a r e  also confronted by the 
very important problem of adapting the methods of the theory of probability 
and mathematical s ta t is t ics  to practical engineering calculations. Work is 
being performed in this field; i t s  success  will depend entirely on the 
successul combination of the efforts of theoreticians, designers, and 
experimental engineers. 

to the mechanics of a solid body undergoing deformation is beyond doubt. 
Its significance was pointed out in the report  of the academic secre ta ry  
of the Division of Technical Sciences of the Academy of Sciences of the 
USSR, Academician A.  A. Blagonravov, a t  a Congress of the Division on 
2 1  November 1961 131: "In various branches of technology, the study of 
the vibrations and strength of a s t ructure  subjected to random forces  has 
assumed importance. I re fe r  to vibrations of a i rcraf t  s t ructures  passing 
through atmospheric turbulences and, in general, through media with 
random nonhomogeneities, vibrations of s t ructures  due to sound pressure  
(the so-called problem of "acoustic fatigue"), the strength of ships under 
wave action, the strength of s t ructures  subjected to seismic disturbances, 
etc. The study of these problems requires  investigation of the statistical 
character is t ics  of external influences and of the behavior of elastic and 
inelastic bodies subjected to random effects, and also the development of 
methods for estimating the service l ife and reliability of engineering 
s t ructures  on the basis  of comparatively short and uncomplicated pilot 
tests." Future investigations shouldbe devoted to solving these problems. 

3. E l a b o r a t i o n  o f  p r o b l e m s  o f  s t a t i s t i c a l  d y n a m i c s  

A s  was pointed out, the final resu l t  of a study should be an estimate 
Here we enter a field 

However, a study in the field of statistical dynamics should yield 

4. T h e  a p p l i c a t i o n  o f  p r o b a b i l i t y  m e t h o d s  d i r e c t l y  t o  

In all the works mentioned, systems with distributed parameters  were 

The problem is solved comparatively 

The practical value of studies on the application of probability methods 
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CERTAIN PROBLEMS OF THE USE OF STATISTICAL 
METHODS IN THE THEORY OF STABILITY OF 
PLATES A N D  SHELLS 

1.1. V o r o v i c h  
(Rostov-on-Don) 

I. During the past few years  interest  has been shown on the use of 
statistical methods in problems of stability of elastic systems. A con- 
siderable number of works has appeared and different points of view have 
been expressed. Certain resu l t s  a r e  expected from these methods. In 
this paper an attempt is made to survey the knowledge accumulated in this 
field and to consider certain prospects. We note beforehand that we shall 
not consider problems of the statistical theory of strength, the theory of 
accumulation of fatigue effects, e tc . ,  which a r e  solved by studying the 
effect of random factors  on an elastic system. 

field of the theory of elasticity, the author thought i t  advisable to include 
in this survey a general  description of statistical methods used in many 
problems of radiophysics and the theory of controls, which mathematically 
a r e  s imilar  to problems of the stability of shells. 

Statistical methods were first applied by M. Maier 11 / and N. F. Khotsia- 
lov 1 2 1  to problems of s t ructural  mechanics in order  to select safety 
factors. These methods were then developed extensively by N. S. Streletskii 
13-71 and A. R. Rzhanitsyn 18-131, who used them a s  their working tools. 
We note a number of foreign works on the same subject 114-171. 

x,, x 2 , . . ' .  x ,  symbolize the principal data of the problem, i. e . ,  the loads, 
the geometry of the elastic system, and i t s  mechanical properties. 
shall assume that they a r e  random quantities having a known distribution 
V! (xl, x q , .  . ., xn) .  Assume that the criterion for satisfactory service of the 
installation is 

Since statistical methods a r e  comparatively new to most workers in the 

The general  statement of the problem is a s  follows: Let quantities 

We 

'? (x , .  . ' ' , x , )  5 0. ( 1) 

The se t  of points (1) of the space xl,..., xn is denoted by 51. 
this case  the quantity J 

Obviously, in 

may se rve  a s  a measure of the reliability of the installation. 

selecting the function 'p and working out methods for evaluating the integral (2) .  
The major  difficulty he re  is finding Y by extensive experimentation, 
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A l l  the works mentioned a r e  devoted to solving these problems in one 
form o r  another. 

of shell stability a re ,  in addition to general considerations pertaining to 
the structural  mechanics of beam systems and to the strength of machine 
parts, etc.,  a s  follows: 

A thin shell may have several  equilibrium shapes under the same load. 
In such cases,  even if  we could completely overcome the mathematical 
difficulties involved in solving boundary-value problems of the nonlinear 
theory of shells, we could not without using probability methods decide 
which equilibrium shape would most likely be obtained experimentally. 
In addition, this is t rue  also with respect to idealized schemes, where no 
deviations occur in the shape of the middle surface of the shell, and where 
the support and loading conditions a r e  ideal. 
difference from the pattern characterist ic for beams. 
e s sa ry  to introduce the so-called upper and lower cri t ical  loads. The 
upper cri t ical  load is the upper limiting value of the load a t  which, 
according to Lyapunov, the undisturbed state is stable. 
118, 1 9 1  that this upper bound is found by Eu le r ' s  linearization method. 

The lower cri t ical  load is the upper bound of the load at which the only 
equilibrium shape desirable in service is obtained. 

For example, a cylindrical shell under axial compression has two stable 
equilibrium shapes in the range between the upper and lower cri t icalloads.  
From the equations proper we cannot determine the probability of obtaining 
experimentally one shape or the other. 
the use  of statistical methods. 

In addition, initial imperfections in the shape of the middle surface have 
a considerable influence on the magnitude of the cri t ical  load of a shell. 
This effect was investigated thoroughly (for more  details see 1 2 0 ,  21, 2 2 1 ) .  
However, the shape and magnitude of initial imperfections a r e  definitely 
random factors.  V. I. Feodos'ev 1 2 3 1  and A. S. Vol 'mir 1201  suggested the 
use  of statistical methods in strength calculations of shells. 
was also raised by T'sin Hu-Sen and Khu Khai-chan 1241. 

by the use of statistical methods: 

the service conditions of the shell and imperfections in construction. 

W e  r e fe r  he re  primarily to the precision required for the middle surface 
of the shell. 

sults and for recommending experimental setups. 

opinion, must  be remembered when developing the statistical theory of 
stability of elastic systems. 

1. The statistical theory of stability of elastic systems should as far 
a s  possible take into account all random factors affecting the shell. Only 
under this condition wi l l  the mutual compensation of the harmful effects 
of random excitations on the stability of the elastic system be exposed, 
and the optimum utilization of statistical methods be achieved. 

u s  to differentiate between the various stable equilibrium shapes possible 

The reasons why statistical methods a r e  nowadays applied to problems 

Here we have a substantial 
I t  becomes nec 

It  can be shown 

Solution of this problem requires  

This question 

We shall f i r s t  l i s t  all the problems whose solution can be made easier  

1. Specification of permissible shell loads, taking fully into account 

2 .  Specification of tolerances for the main parameters  of the shell. 

3 .  Developing an efficient system for analyzing the experimental r e -  

W e  shall now attempt to establish certain requirements which, in our 

2. The statistical theory of stability of elastic systems should enable 
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for  a system at  a given load. 
several  stable equilibrium shapes, each of these should have a different 
probability of being obtained experimentally. 
be satisfied by taking into account the effect of random factors  on the 
displacements of the shell. 
we cannot r e s t r i c t  ourselves to  the methods used in problems of structural 
mechanics, but must find ways to  apply the theory of random processes.  

3. 
feasible a t  present. 

We should note the difficulties which a r i s e  in the development of the 
statistical theory of stability of elastic systems. These a r e  pr imari ly  
the very meager experimental data on the statistical propert ies  of factors  
responsible for the random character of the deformations in a system. 
Despite the la rge  number of experiments performed on shells, we cannot 
obtain from them the required statistical information. Thus, for example, 
in only a few cases  was i t  possible to determine the shape of the middle 
surface of a shell with the required accuracy and obtain useful resul ts  by 
statistical analysis. 
shell thickness, elastic properties, etc. The situation is even worse a s  
regards  statistical data on the external forces acting on the shell under 
actual service conditions. 

The second difficulty is due to the substantial nonlinearity of the 
phenomenon. 
not a s  yet been sufficiently investigated. There a r e  many instances in 
which the existing methods do not provide adequate solutions. 

The third difficulty consists in the fact that the statistical theory of 
stability of elastic systems deals with random processes  which have not 
been sufficiently investigated mathematically. A s  a rule, these a r e  not 
Markov processes  and additional work is required before the available 
mathematical methods can be used. 

Strictly speaking, we should consider here  distributions in infinite- 
dimensional spaces, since elastic systems have an infinite number of 
degrees of freedom. 

cently researchers  in the theory of shells showed little interest  in the 
theory of probability, while researchers  in the theory of probability were 
not interested in problems of the theory of shells. 

The main features of the theory should in our opinion include the 
following: 

1) development of methods for describing statistically the random 
factors which determine the random character of the deformation of the 
shell, and for setting up experiments for their determination; 

2) development of methods for  describing statistically the random 
factors  which describe the deformation of the shell and for setting up 
experiments for their determination; 

factors  which describe the deformation of the shell, and the statistical 
character is t ics  of the factors  which determine the random character  of the 
deformation of the shell. 

of purely applied problems of stability of elastic systems. 

In other words, if an elastic system has 

This requirement can only 

Hence, in the statistical theory of shell stability 

The theory should resul t  in computational algorithms which a r e  

There a r e  no statistical data on the dispersion of the 

The effect of random excitations on a nonlinear system has 

In addition to this there  exists the subjective difficulty that until r e -  

3) relationships between the statistical character is t ics  of the random 

The solution of these problems wil l  serve a s  a basis  for the consideration 
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11. We shall now analyze the data available on the above-mentioned 
We begin with the factors which determine the features  of the theory. 

random character of the deformation of the shell. We divided them into 
the following groups which can, with sufficient accuracy, be considered 
independent (a t  least, in the initial stage of developing the theory): 

1) scat ter  of the mechanical and geometric parameters  of the shell; 
2) scat ter  of the support conditions; 
3) scat ter  of the external loads, 
Very little statistical data a r e  available on these random factors. 
However, for the first group such data can be readily obtained without 

greatly complicating the setting-up of experiments on the stability of shells. 
The parameters  of each shell should only be carefully measured and i t s  
mechanical characteristics determined before the experiment. Profile- 
measuring apparatus can be extensively used for geometric measurements. 
It is desirable to investigate this problem insofar as it re la tes  the scat ter  
of the geometric and mechanical character is t ics  of shells to the process  
by which they were made. 

law e (al, us, . . ., a,) for a specified number of parameters  which describe the 
scat ter  of elements of this group. A difficulty may a r i se  in introducing the 
distribution since some of these parameters  a r e  functional. 
they should be approximated over a substantial par t  of their distribution by 
a se t  with a finite number of numerical parameters .  A parameter  such a s  
the initial deflection w,,(x. y)of a shell is typical in this respect. Assuming 
that this parameter i s  a random function, we select an ent i re  system of 
functions Q~ such that for the most substantial set  of realizations of w, we 

obtain sufficiently exact relationships w,, ( x ,  y )  = 2 uk 'p* (x, y). 

statistical properties of wo can now be described by the distribution of a b .  

The statistical properties of the shell thickness and other functional 
parameters  can be described similarly. This method for describing the 
properties of this group of factors was used in / l o l l ,  and is used in all 
subsequent works. 

a different manner. We can, for example, specify functions w,, (Pb) a t  m 
points PA.; 
distribution of 8 (w, (P ' ) ) .  

depends, primarily, on the method used for solving the problem a s  a whole. 

more  complicated. 
the shell and should be specified in each case separately. 

cases, each of which has i t s  own scat ter ingcharacter is t ics  which should be 
obtained from the relevant experiments. 

of some types of loading.. 
and of the sound pressure due to jet engines, which a r e  of considerable 
importance in shells for a i rcraf t  s t ructures .  

shall only consider those character is t ics  of turbulent flow which a r e  

The probability properties of this group can be specified by a distribution 

In this case 

M 

Obviously, the 
k -  I 

It is also possible to describe the properties of this group of factors  in 

an approximate statistical description can then be given by the 

The selection of the method for describing this group of parameters  

Determination of the statistical character is t ics  of external loads is 
They depend essentially on the service conditions of 

It is advisable to separate  the service conditions into computational 

However, specific data a r e  already available on the statistical properties 
These include the effects of turbulence apparatus 

Many studies have been devoted to atmospheric turbulence. Here we 
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important for the problems disccused. 
isotropic homogeneous turbulence can be found in works by A. M. Obukhov 
and A. M.Yaglom 1 2 5 1 ,  A.M. Obukhov 1261, and also in books by G. 
Batchelor 1271, Landau and Lifshits 1281, and in the recently published 
book by Bai-Shi-I. 

geneous steady- state process  with respect  to  spatial variables, having 
character is t ics  independent of direction. 
pulsation by 

General theoretical information on 

According to this theory, the velocity vector is assumed to be a homo- 

We denote the vector of velocity 

and introduce the correlation tensor 

For  an incompressible fluid it can be that (126-281) 

where F ( r )  ar?d G ( r )  a r e  interrelated by 

The most important statistical properties of a homogeneous isotropic 
velocity field in an incompressible fluid a r e  thus described by a single 
function whose determination i s  the greatest  difficulty of the theory. Since 
we shall consider experimental data on the statistical properties of 
pulsations, the following relationship wil l  replace (5) :  

where Rr and R, a r e  the longitudinal and t ransverse correlation functions 
of the velocity. 
quantities which can be easily determined by experiment.. 
Howarth 1291 proposed the following relationships: 

Equation ( 7  ) is convenient because it contains correlation 
Karman and 

where 15, the so-called turbulence scale, and a ,  the dispersion of one of 
the velocity components, a r e  determined experimentally. 

Experimental values of L and a a r e  given in a number of works, i. a . ,  
H. W. Liepman 1301, Y.  C. Fung 1311, M.Kramer 1321, H. P res s ,  M. T. 
Meadows, and J.Hadlock 1331, F. W. Diederich 1341, P. McCready 1 3 5 1 ,  
G. Clementson 1361, and M. Strasberg 1371. 
with the effect of a turbulent atmosphere on elastic objects, but they also 
present important data on the character of turbulence. 
perimental mater ia l  is also contained in the National Report of the USSR 
on the "Meteorologiya" Association for 1957 138 I .  

Some of these works deal 

Extensive ex- 

50 



I 

Monographs by M. I.Yudin 1391, T 's in  Hu-sen 1401, M. Pelegrin 
1411, R. L. Bisplinghoff, H. Ashley and R .  L.Halsman 1421 and Ya. Ts. Ryn 
1431 also contain some data on atmospheric turbulence a s  applied to the 
study of flutter and buffeting and also in connection with the effect of 
turbulence on certain control systems. 
monograph by M. LYudin, who already in 1946 (apparently, f i r s t )  used 
statistical methods to estimate the effect of atmospheric turbulence on 
aircraft. 
byN. Z .  Pinus 1441 and Yu. V. Kurinova and S. P. Khachatryan 1451. 
la te r  works, the study by Yu. P. Dobrolenskii 1461 i.s of considerable 
interest. In it, CI and L a r e  determined by new, improved methods. We 
mention alsoYu. M. Romanovskii's dissertation 1471, the f i r s t  chapter of which 
contains data on atmospheric turbulence. 

We draw attention to the 

Some experimental data on atmospheric turbulence a r e  given 
Among 

The correlation functions (8) have the following spectral densities 

Relationships (8) and (8') can be used to investigate the effect of at- 
mospheric turbulence on elastic systems. 

Another kind of random effect on elastic systems - sound p res su re  - 
is a t  present being extensively studied both experimentally and theoretical- 
ly. A survey of the l i terature  on this problem was given by L. Goodman 
and J .  Rattayya 148 I .  The noise of an aircraf t  originates from many sources. 
A description and analysis of the relative intensity of these sources  was 
given by Hubbart / 4 9 / .  It i s  nowadays accepted that the principal source 
of noise is the jet engine. A survey of studies of jet-engine noise was 
performed by Richards 1501 .  
the noise effect is considered from the viewpoint of probability. 
been established by several  experiments that the spectrum of jet-engine 
noise i s  continuous and that the spectral density is almost constant in that 
frequency range which is of importance in elastic systems. W e  re fer  to 
the works byWolfe 1511, Kennard 1521, andcallaghan, Howes, andColes 1 5 3 1 .  

It seems now that this is an established fact. It is extremely important, 
since it considerably simplifies from the mathematical aspect the problem 
of the effect of engine noise on elastic systems. The uniform distribution 
of the spectral density enables us  to consider engine noise a s  a so-called 
"white noise, I '  so that the Kolmogorov- Fokker-Planck equation can be 
used and in many cases  a complete solution obtained (for more details 
see  below). 

The "white noise" idealization of engine noise was used by Miles 
154, 551 .  Hubbard and Hess i 5 6 /  considered an aircraft-skin panel 
subjected to the noise of a jet engine also idealized a s  white noise. 
same was done by Hess, Fralich, and Hubbard 1571  in the study of fatigue 
strength, and in many other works devoted to this problem. 
works contain experimental data on the intensity of jet-engine noise. 

Data a r e  thus available on the statistical properties of two of such 
important c lasses  of loading a s  atmospheric turbulence and engine noise. 

N o  experimental data a r e  known to the author on scat ter  of the manner 
of shell supports; we therefore only note that this group of factors  can be 
described statistically in the same way a s  the f i r s t  group. (This  also applies 
to the shell deformations.) 

We shall only consider those works in which 
It has 

The 

Al l  these 
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III. We shall now consider the possibilities of establishing relationships 
between the st. ch. (statistical characteristics) of the three above-mentioned 
groups and those of the shell deformations. 

It follows from the preceding that the shell should be regarded a s  an 
elastic nonlinear system acted upon by random forces. Such problems 
were considered in physics and astronomy, various assumptions being 
made about the nature of therandomforces,  and have now become im- 
portafit in the theory of controls and in radiophysics. 
formulation of these problems in the theory of shells has much in common 
with the formulation of s imilar  problems in theoretical physics, the theory 
of controls, and radiophysics. We shall therefore discuss briefly the 
methods used in solving these problems in the f ie lds  mentioned. 

M. Smoluchowski 158- 601 investigating the constrained motion of 
Brownian particles was the first to consider the effect of random forces  
on an elastic system. 
distribution he assumed that the particle inertia is small, so that his 
resu l t s  a r e  valid only when the system has been observed for some time. 

Later, Fokker 1611 and Planck 1 6 2 1  found a differential equation, 
independent of Smoluchowski' s assumption, describing the distribution of 
Brownian par t ic les  acted upon by arbi t rary forces 

The mathematical 

In deriving the fundamental equation defining the 

Here f ( t ,  x ,  T, y )  is the probability that the random coordinate will have 
the value y a t  t ime I, i f  a t  t ime t it  had the value n. 

Independently of Fokker and Planck, A.  N. Kolomogorov 1631 arr ived 
a t  ( 9 ) ,  providing a rigorous mathematical derivation which made clear  
the conditions under which this equation is applicable. 
obtained a second important equation, which must be satisfied by f with 
respect  to the arguments t and x .  
K F P  equation. 

that the K F P  equation can be used also in the qualitative theory of 
differential equations, in which case many aspects of this theory take on 
entirely new meanings. 

theory of random processes,  and a l so  developed the correlation and 
spectral theory of steady-state processes .  
this theory was given by A. M. Yaglom 1661. Al l  these works formed the 
basis  for the large-scale  application of the methods of the theory of 
random processes  in different fields of mechanics, physics, astronomy, 
and technology. Many examples of their use in mechanics, physics, and 
astronomy were given by S. Chandrasekhar 167 1. 

A number of interesting problems were considered by Yu. A. Krutkov, 
who investigated random effects on many linear and nonlinear systems 
168-731. In particular, I should mention 1741, in which oscillations of 
a s t r ing and a rod subjected to Brownian forces  a r e  considered. 
tensive bibliography on the subject of Brownian motion is given in 1751. 

The theory of steady-state processes  is most extensively used in 
automatic controls, both correlation and spectral theories being applied 

In addition, he 

We shall henceforth call ( 9 )  the 

It was shown by A. A. Andronov, L. S. Pontryagin, and A. A. Vitt 1641 

A. Y a. Khinchin' s work 165 1, published in 1934, initiated the correlation 

A complete presentation of 

An ex- 
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to  the same degree. 
and E. P. Popov and I. P. Pal'tov 1771. 
in the theory of controls is contained in, e.g., 141, 78, 791. Solutions of 
nonlinear problems in the theory of controls a r e  extensively based on 
methods of statistical linearization, developed by I. E. Kazakov 180-821 
and Booton 183,841 and described in detail in 176, 771. 

vanskii 185, 861 in the theory of controls in the study of f r ee  oscillations. 
Nonlinear problems can also be solved by the method of expansions in 
t e rms  of small  parameters  187, 88/ .  
l e s se r  extent in the theory of controls. 
to the author, for example, by Boll shakov 1891, P. S. Landa 1901, P. S. 
Landa and S. P. Strelkov 1911, Crandall 1921, and Barre t t  1931. 

A s  opposed to this, the K F P  equation is used extensively in radio- 
physics. More will be said on this la te r  on. Of course, the choice of 
the method depends mainly on the problem considered and on the statistical 
character is t ics  of the external forces. 

During the past few years  several attempts were made to generalize the K F P  
equation to include cases  when the random effects a r e  not white noise. The f i r s t  
attemptwas apparentlymadebyv. S. Pugachev 194, 951. J. L. Doob 1961 showed 
that the K F P  equation can be established when therandom forces  a r e  a l inear  
integral-differentialoperatorof white noise. P. I. Kuznetsov, R.  L. Stratono- 
vich, and V. I. Tikhonov /97/and R .  L. Stratonovich 1981 usedanother method 
to investigate systems with continuous random processes .  We shall show 
another way of taking into account the continuous par t  of random forces. 

mentioned can also be used in the statistical theory of stability of plates 
and shells. The method of statistical linearization in our opinion offers 
fewer prospects, since i t  is apparently suited only to  weakly linear systems. 
This can be seen from the fact that by using this method it is impossible 
to obtain a polyconic distribution at the output if the input is a Gaussian 
process.  However, this occurrence is quite possible in a nonlinear 
system, and in the statistical theory of stability of shells this is used a s  
a basis for solving the problem of discrimination (requirement 2). 

This shortcoming of the method of statistical linearization might be 
overcome, if  it becomes possible to include this method a s  a f i r s t  approx- 
imation into some scheme which in the limit yields the exact solution. 
The only work on this sujbect known to the author is that by G. I. 
Pyatnitskii / 9 9 / .  

methods. Thus, in the case of shells, allowance must be made, not only 
for random external forces  but also for the scat ter  of the shell parameters .  
Analogous effects a r e  l e s s  important in radiophysics and in the theory of 
controls. Furthermore,  the excitation of devices used in radiophysics 
has frequently the character of white noise, while the effects on a shell 
will mostly not have this character. 

problems of the stability of shells. Chronologically, the f i r s t  paper on 
this subject was read by this author in June 1957 a t  the All-Union Con- 
ference on the Theory and Applications of Thin Shells a t  Tartu / l o o / ,  
being subsequently published in 1959 /lOl/. 
classification of random factors acting on a shell. 

This is illustrated in the works of V. S. Pugachev 1761, 
Guidance on the use  of these methods 

The method of statistical linearization was employed by A. A. Pervoz- 

The K F P  method was used to  a much 
Here only a few works a r e  known 

Because of the mathematical similarity of the problems, all the methods 

Certain circumstances must be taken into account when using the above 

IV. We shall now consider the attempts made to analyze statistically 

It  contains the above 
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h approximative description of the distribution of functional parameters  
by a finite number of numerical parameters  will be given here. 
The Bubnov-Galerkin method is used for  interrelating them. This has  
already been discussed in detail. 
entire ensemble of random parameters  acting on the shell, the use  of the 
total-probability theorem is suggested. 

The vector I?, of the external forces  acting on the shell, is represented 
in  the form of three components 

Finally, to take fully into account the 

Here, R, ( p ,  t )  is a fluctuation te rm inducing an acceleration of the type 
of Brownian-motion acceleration, R, ( p ,  t )  is a continuous random process; 
we assume that with sufficient accuracy, 

where the 11:1 ( t )  a r e  fixed functions of time and ?7h @ ) a r e  vector functions 
which form a basis  in the "energy space'' 11021. 

random component of the load into the two par t s  R, and R,. 
load f(t) encountered i n  practice can generally be represented a s  some 
ser ies  of nonrandom functions 

We shall now consider in more  detail the meaning of separating the 
Any random 

The statistical description of f ( f )  will be specified i f  the distribution of 
the infinite system of parameters  ak is given. 

cannot go into details of this problem. 
of a finite number of t e rms  n to describe f (i) is permissible only when the 
distribution of the coefficients 
centrated in the vicinity of zero, this concentration increasing with n, and i f  
according to the law governing this distribution, high values of these 
coefficients have very small  probabilities. 

However, it may also happen that the probability of la rge  values of a, 
does not change, o r  changes very little, with increasing ti. In this case,  
( 1 2 )  becomes practically useless, since we then have a diverging ser ies .  

The convergence of (12 )  is defined in a particular manner, and we 
We only note that the use in ( 1 2 )  

a,+?,. . -is, for a sufficientlylarge It, con- 

We shall then attempt to represent  f ( t ) i n  the form 

f ( t )  = f 1 ( t ) + f r ( f ) ;  
w m 

f i ( f )  = x a l k v k ( t ) ;  f ? ( t )  = z a Z k Q k ( f ) #  (13 )  
k - 0  k =O 

where the distribution of a16 is independent of k ("white noise"), and the 
distribution of aZk becomes concentrated around zero  a s  k increases .  
this case a finite number of t e rms  in the expansion of f 2 ( t )  will give a 
satisfactory approximation. 

acts  on a system described by ordinary equations. 

In 

This separation is particularly advantageous if  the random process  f ( t )  
In this case the 
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distribution of the solutions in respect  of f, will be governed by KFP 
equations and can be found comparatively simply in many cases.  
fact will be used la ter .  It should, however, be remembered that we shall 
be interested in a finite number of t e r m s  in ( 1 2 ) ,  namely in those t e r m s  
to which our system responds. It is natural that f,(t)will contain those a, 
which have identical distributions i f  O < k , < N ,  i. e . ,  any functions in which 
harmonics ( in  time), important in our system, have an identical scat ter  
intensity can be regarded a s  "white noise. 'I 

external load the par t  R?, which is difficult to approximate but for which 
we shall find a solution in closed form; the effect of the remaining pa r t  R, 
is now easier to take into account, since i t  is better approximated by (11) .  
We arr ived a t  this separation also by considering the correlation functions 
of the load. However, we shall not discuss this in more detail here.  

The main idea behind this separation is made clear  by the following 
analogy. Consider the deflections of a hinged beam subjected to a load 
including concentrated forces. If we solve this problem by the Fourier 
method, we obtain poorly converging series, especially for the s t r e s ses .  
It is therefore advisable to separate the load into two par ts .  
will contain the concentrated forces; for i t  a solution will be found in closed 
form. 
converging Fourier ser ies ;  the corresponding solution is obtained a s  
s imilar  rapidly-converging ser ies .  

symbolic form: 

This 

Separation of the external load into R, and F, thus removes from the 

The f i r s t  p a r t  

The remaining continuous par t  of the load is expanded in rapidly- 

Let u s  now write the equations of motion for  the shell in the following 

where A denotes the nonlinear par t  of the elastic forces  acting on the 
shell. 

solution of the problem, setting 
We shall now use  the Bubnov-Galerkin method for the approximate 

- " -  
7~ = 2 X, (P) 9&. 

k =  I 

In this case, ( 1 4 )  can be approximated by the system 

qk + Zhq,  f A h  (9,: . .. 4,) = R*I ( f )  + RM ( t )  + R & B ( ~ ) .  

where 

It  follows from ( 1 7 )  that Rbr is "white noise" and Ru is a continuous random 
process; according to ( 2 )  we have 
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We now assume that RM does not depend statistically on the remaining 
random factors. 
fixed values, and obtain the distribution of qb for this case. If only 
sufficiently l a rge  t ime intervals a r e  considered, then the required con- 
ditional distribution can be found, for example, by Smoluchowski' s 
equation / 10 3 / 

We further assume that the parameters  ob and l i b ,  assume 

By using this equation we assume that the constituents of libl(r)(the 
"white noise") a r e  independent of one another and have the same intensity. 
This assumption limits, onone hand, the range of problems which can be 
thus solved, but, on the other, it enables the study of a problem to be 
brought to a conclusion without numerical integration of (19 ) . 
general case, the Laplacian in the right-hand side of ( 1 9 )  is replaced by 
an a rb i t ra ry  elliptic operator. This generally complicates the solution of 
definite problems, so that in pract ice  the corresponding boundary problem 
has to be solved numerically. Having done this for (19) ,  we find the 
conditional distribution o f f  (qk, f, n k .  a',). 

theorem 

In the 

To find the unconditional distribution fo we use  the total-probability 

f0 (4 , ,  1) = f (qk ,  t ,  ab, dak dak/, ( 2 0 )  s 
with the aid of which all the random factors  acting on the shell can be taken 
into account. 

This approach to  the statistical theory of stability of shells makes 
allowance for all  the requirements stated above. 

The computational algorithms which a r i s e  in the process  reduce in the 
worst  case  to the numerical solution of a heat-transfer-type equation over 
the entire space of variation of the coordinates q k ,  followed by numerical 
quadrature. 

V. V. Bolotin 11041 suggested another approach to the use  of statistical 
methods in stability problems of elastic systems. 
dealt with in his  survey submitted to  this conference 11051, and will not 
be discussed here. 

V. M. Goncharenko 1106- 111 1 continued investigation of the behavior 
of shells, subjected to random loads, on the basis  of a concept given in 
1100, 101/. 
supplemented. 
K F P  equation. 
with a given matr ix  of spectral  planes. 
f assumes the form 

The use  of computers makes all these operations feasible. 

This is extensively 

However, in some pa r t s  this concept has been developed and 
Thus, Smoluchowski' s equation has been replaced by the 
In addition, it is assumed that R l z ( f )  is a "white noise" 

For  this reason the equation for 
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Of course, replacing (19)  by (21 ) greatly complicates the mathematical 

The phenomenon can now be studied in the entire range 
analysis of the problem, since ( 2 1 )  contains twice a s  many independent 
spatial variables. 
O,<t<m. and not only for sufficiently large values of t ,  a s  was the case  
with ( 1 9 ) .  
creased to such an extent that the solution has to be obtained by approxi- 
mative qualitative methods. 

In particular, V. M. Goncharenko considered the probability P that a 
shell overcomes the potential ba r r i e r  in a t ime f which is considerably 
less than the relaxation t ime of the system / log* ,  1111. 
based on the works by Christiansen and Kramers  1112, 1131. 
considered in detail a shallow cylindrical panel hinged to fixed r ibs  and 
subjected to a constant pressure.  

the approximate solution of the problem if the external forces  a r e  not 
"white noise, ' I  is contained in / l l O / .  
detail the response of a shell to random excitations of the form 

However, the mathematical complexity of the problem has in- 

This study was 
The author 

A suggestion deserving attention that Doob's method 1961 be used for 

V. M. Goncharenko considered in 

k l  

where ak and 'pk a r e  random constants with known distributions (random 
excitation with narrow spectrum). 
a shell to a random longitudinal force such a s  ( 2 2 ) .  
a very interesting nonstatistical effect consisting in an increase of the 
lower cr i t ical  load under the action of rapidly oscillating longitudinal 
foces / I l l / .  

critical load of a shell is discussed in / 107 1. A closed circular  cylindrical shell 
subjected to a longitudinal deterministic load is considered in detail. It 
is assumed that the main par t  of the distribution of the initial deflections 
fo, is concentrated in the region f,> 0 (the initial deflections a r e  mostly 
directed toward the center). 
responding deterministic problem ( 2 1  ) and obtains the law governing the 
distribution of the critical load if  the distribution of f,, is known. In 
particular, i t  is shown that if fo has a normal distribution, the differential 
distribution of the critical loads has two maxima. 

is the inverse of the above. Knowing the scat ter  of the upper critical 
forces, he t r ied to find the scat ter  in the shape of the middle surface. 
Calculations were performed for a cylindrical shell, based on the solution 
of a deterministic problem given in 11151, and on experiments described 
in 11161. 

V. Until now we have considered problems of the stability of shells 
which a r e  due to statistical loading, i. e . ,  when the shell is in one of i t s  
equilibrium states, when not subjected to the random load. Of course, 
statistical methods a r e  not l e s s  interesting in the dynamic problems of 
stability of plates and shells. 
problem a r e  given below. 

He a l so  investigated the response of 
He also discovered 

The effect of the scat ter  in the shape of the middle-surface on the upper 

The author uses  the solution of the cor-  

B. P. Makarov / 11 4 1  considered a problem which, to a certain extent, 

Some considerations re fer r ing  to this 

T h i s  work conta ins  an error. 
sidered as a Markov process. As c a n  be  seen f rom t h e  preceding ,  this  is not.so. 

T h e  author c l a i m s  that  t he  genera l ized  coord ina tes  in / loo.  101,' a r e  con- 
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Without attempting to make a very general  statement th ree  dynamic 
problems should be noted, which in our opinion a r e  important and where 
the use  of statistical methods is of considerable interest: 

1) induced vibrations of plates and shells due to periodic forces; 
2) parametr ic  resonance; 
3) free oscillations of plates and shells (flutter). 
The basic assumptions made in 1100, 1011 remain valid also in this 

case: all the random factors  should be separated into three groups. It 
is also advisable to descr ibe statistically the functional parameters  by 
specifying the distribution of a finite number of random quantities. A l l  
the random factors  can be accounted for  together by using the total- 
probability theorem. 
of the deformations of the shell and the initial random factors  is also best 
found by the Bubnov-Galerkin method. We then consider the probability 
of obtaining one of the periodic regimes in a nonlinear system subjected 
to  random forces. This problem was to a large extent studied before in 
connection with problems of radioengineering and the theory of controls. 
Fo r  this reason we shall only describe the methods involved briefly. 

The most  suitable way for solving these problems is based on the use  
of averaging methods. The f i r s t  works in this direction were apparently 
those by L.I .Bershtein /l17-121/a based on ideas of A. A.Andronov; the 
effect of fluctuations on the operation of a vacuum-tube generator was 
investigated; the la t te r  is, a s  known, a self-oscillating system. Using 
averaging methods the author obtained differential equations for the 
envelopes, averaging in a certain manner also the random external forces. 

After this, the statistical properties of the abbreviated system were 
studied on the bas i s  of a method due to A. A. Andronov, A. A. Vitt, and 
L. S. Pontryagin 1641. Self-oscillating systems of another type, excited 
by random factors, were s imilar ly  investigated by M. E. Zhabotinskii 11221. 
P. I. Kuznetsov, R.  L. Stratonovich, and V. I. Tikhonov also considered 
random effects on a vacuum-tube generator. The generalized K F P  equation 
was used in this study 1971. V. I. Tikhonov and I. N. Amiantov 11231 studied 
fluctuations in self-oscillating systems under the action of slow excitations, 
using the averaging method. 

were the f i r s t  t o  consider in 11241 the problem of the parametr ic  effect 
of a random force on a nonlinear system. 
and based their subsequent analysis on the K F P  equation, establishing 
important conditions for the statistical stability of such systems. These 
authors la te r  considered, in a s imilar  manner, the case  where the system, 
in  addition to  a random force, is also subjected to the parametr ic  action 
of a regular  harmonic force /125/. 

I. B. Chelpanov in 11261 derived some cr i te r ia  for the stability under 
parametr ic  resonance of the solutions of the linear equation. S. M. Rytov 
/ I 2 7 1  used the fitting method for analyzing fluctuations in self-oscillating 
systems; this method was further developed by R. Kh. Sadekov 1128, 1291. 
R.  L. Stratonovich and P. S. Landa /130/ have calculated the probability of 
excitation and break-off of the self-oscillations in a generator with r i g i d  
excitation, using the K F P  equation. 

The ideas  appearing in these works were la te r  developed in 11311, 
where the probability of transition from one equilibrium state  to another 
was considered for a system of general form. 

The relationship between the statistical character is t ics  

A s  far  a s  this author knows, R. L. Stratonovich and Yu. M. Romanovskii 

They used the averaging method 
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The method of averaging can be used in the statistical theory of 
vibrations not only in conjunction with the K F P  equation, but also together 
with subsequent correlational analysis 198 1. In addition, self-oscillations 
can be statistically investigated by means of statistical linearization. This 
has already been discussed 185, 86/. 

Hence, we can expect that the averaging method, with subsequent 
application of either the K F P  equation (or i t s  generalizations / 94, 95, 97 4 
or the method of correlation functions, will be used extensively also in 
the statistical theory of stability of elastic systems. 

The use  of curtail (averaged) 
statistical equations greatly extends the range of problems where external 
random effects can be idealized a s  "white noise. I '  A s  a resul t  of this the 
mathematical analysis of many problems becomes much simpler. 
details on this were given by R.L.Stratonovich 1981 and V. I. Tikhonov/l32/.  
The lack of a mathematical basis for this approach appears to this author 
to be only temporary. A rigorous analysis of the averaging method was 
given by I. I. Gikhman 11331 for some different effects of random forces. 

W e  shall now illustrate this approach by considering the problem of 
forced nonlinear vibrations of shells. 
an external periodic force, which, for simplicity, will be assumed to  be 
normal to the middle surface. W e  shall, a s  before, assume that the 
random factors determining the scat ter  of the geometric and elastic 
properties of the shell and i t s  support conditions, a r e  described by a 
finite number of random parameters  u l , ~ ,  . . .,up, having a known distribution 
2 (a).  

The following should also be noted. 

More 

Let a shallow shell be subjected to 

The external force acting on the shell is 

-, 
z( t )  = r , [ P k ( t ) s i n k r ~ + Q k ( t ) c ~ s k r t ] + i ( f ) ,  ( 2 3 )  

k-0 

where pb and & a r e  slowly-varying functions of time, while i ( t ) i s  a com- 
ponent of the external forces, which induces Brownian-motion type 
accelerations, or  simply "white noise. 'I 

a load (23) ,  and analyze them by the Bubnov-Galerkin method with respect  
to the spatial coordinates, we obtain 

If we write down the equations of motion of a shallow shell subjected to 

- 
;ii + r*qj = (q,  4. a )  + 2 sin krt +- ~ ; k  COS krt]  + E, * ( 2 4 )  

k=O 

where the A i  a r e  the elastic and frictional forces  in the shell, while PiR Q i k .  

and ii correspond respectively to Pk, Q b ,  and E in (23) .  

Pi and Q i .  
We shall now describe in more detail the slowly varying random functions 

We assume that 

N N 

where the VVc ( t )  a r e  nonrandom functions of time, while plre and q,k,, a r e  
random quantities whose distribution 9, (pihs, qfkJ is known. 
case we can assume that the joint distribution 9 (a, pfhm, qfRJ is known. 

In the general 

59 



Finally, we assume that the spectral  matr ix  f, of process  E,(f) is known. 
Our problem consists in determining the statistical character is t ics  q 

It will be solved approximately, assuming that a, pikm, qikD, 
a r e  statistically independent. . We first find the distribution 

and q f rom (24) .  
qa, &, m-d 
of &(q,  q ) ,  assuming that a,  pika, qua, qa, and qa assume fixed values. 
this we t r y  a solution of (24)  in the form 

For 

.I 

qi (f) = 2 (an sin krt + bikcos krt) .  
k-0 

Inserting ( 2 6 )  into ( 2 4 )  we obtain 

Equating the Fourier coefficients of the right- and left-hand sides of ( 2 7 )  

for each i over an interval of t whose length is --$ we obtain 2x 

f+i;?- 

$ 1 ( a i r  sin krt +& cos krt + 2 i / k  cos krt .kr - 2bibsin krt .kr) eikridt = 
k 0  

t+ $ /+.lr 

= A i +  k:O 2 ( ~ / a s i n k r t + Q i k c o s l r f t ]  eikrf d . f + s  ' E/(t)eikr'dt. (28)  
I 

We simplify (28)  by assuming that it satisfies the conditions for averaging 
by the Krylov-Bogolyubov method. 
and Qik to be sufficiently smooth functions of their arguments, and r to be 
sufficiently large. 
containing "white noise, I t  which will be dealt with separately. 

Fo r  example, we consider air, 6 i k ,  A i ,  Pik, 

In this simplification we do not so fa r  change t e rms  

We then obtain from (28  ): 

I+ 5 l+E 

i;l, + 2kraik = +s Ai cos kru du+ Qta ( t )  + +J Ei (u)  cos kru du. ( 30 ) 

We shall now consider the t e rms  in the right-hand s ides  of ( 2 9 )  and (30)  
which formerly contained "white noise. These t e rms  will, of course, no 
longer contain "white noise"; however, in this problem they can be replaced 
by "white noise" without appreciable e r ro r .  We introduce the notation 

f I 

*+$ 
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and consider the correlation functions of the processes  0 t h  and 

2 X  It is easy to see  that all these functions vanish when It, - t21 > - ; 

Bfk * 

(32)  

hence, 

they a r e  concentrated in a band of the t,, tz plane in which they are periodic 
functions of We can calculate their average value in the square 

of the periods - X -, and construct a "white noise" whose correlation 

functions a r e  equal to the mean values of the corresponding correlation 
functions z,h and p i k .  This procedure requires  cumbersome calculations; 
we shall therefore use a simpler, less rigorous method which, however, 
yields the same results.  

and t,. 
2x 2 x  

Using formally the mean-value theorem in (31) ,  we obtain 

aik = 2E1 ( t )  sfn kru;  pia = 25 ( t )  cos kru. 

We now determine the spectral  matr ix  of al l ,  P I ,  . We have 

( 3 3 )  

K , k , j r =  M. 0. aik(t,)a/i ( t z ) ~ 4 r f i j s i n k r t , s i n f r t , 6 ( t , - ~ t , ) ;  

L , a , ; f  = M. 0. arb ( t , )  P,,(t2) = 4rfiisin krt,cos lrt,S (t2- tz);  ( 3 4 )  

M.  , k , , t  . - - M. a. pih ( t , )  P,,(tz) = hfijcos krt,  cos lrt$ (t, - t J .  

We use  ( 3 4 )  to find the mean values of K, L, and M in the square of the 

periods r'< -: 
2x 2 r  

We now replace a i k  and p l b  in the right-hand sides of ( 2 9 )  and (30)  by 
"white noise" Brcwhose correlation functions a r e  given by (35)  and ( 3 6 ) ,  

A s  a result, ( 2 9 )  and (30)  take the form 

I+ $ 
( 3 7 )  - 2krbih= 7 s Ai sfn kru du + Pir(t) + ( I l k ;  

1 
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In ( 3 7 )  -( 39)  we have discarded t e rms  containing second derivatives, in 
accordance with the general  simplifications introduced with the Krylov- 
Bogolyubov method. 
were retained, since they a r e  la rger  in the initial time interval than those 
in ( 3 7 )  and ( 3 8 ) .  

(38 ) can be solved for ai@ and hfk. 

In ( 3 9 ) ,  the t e rms  containing second derivatives 

Assuming Ai to be a l inear  function of (I, each pair of equations ( 3 7 )  and 
We then obtain 

o i k  = O i k  ( & k ,  h i , ,  p i k s .  Q i k a .  a)  + l t k .  

( 4 0 )  

(41 ) 

b r k = ' l i i C  (cLi&. b i k .  /';ha, Q i k ,  a )  + ' ! " l a :  

+ zhbto = 'Iiiilo ( U i k ,  b i i z ,  . Q i k o .  Q I v  

where X j k  and pik a r e  l inear  combinations of 
of ( 3 5 )  and ( 3 6 ) ,  also "white noise." Equations ( 4 0 )  and ( 4 1 )  describe the 
statistical properties of U~L. and b,k with the e r r o r  peculiar to the averaging 
method in the theory of differential equations, 
author in a number of examples. 

f rom the K F P  equation 

and p I L ,  being by virtue 

This was observed by the 

The conditional distribution of ~ " ( u , ~ ,  t i i k ,  bio, & , ,  (&k>, f )  can now be found 

where L is an elliptic operator whose coefficients a r e  expressed in t e rms  
of K, i, and A. 

In this case the unconditional dis t r i -  
bution of iv is found by applying the total-probability theorem 

We now assume that wo is known. 

(ala, bik, bro, t )  = 

= JW"(%, binq b i o ,  P i k , ,  Q i k o r  a, t )  Q ( P i k G ,  Q f k s ,  a) d h k o  d Q , k o d a .  ( 4 3 )  

The principal mathematical difficulty of this method is thus the solution 
of ( 4 2 ) .  

Apparently, asymptotic integration of ( 4 2 )  offers some prospects when 
the "white noise" intensity is low. In some cases  such an asymptotic r e -  
presentation is possible. In addition, piecewise linear approximations of 
the system a s  developed by E.M. Hazen / 1 3 4 /  a r e  possible. 

load on a round, rigidly supported plate [of thickness HI. 
of motion a r e  

VI. A s  example we shall now consider the effect of a random transverse 
The equations 

( 4 4 )  
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Solving the problem by the Bubnov-Galerkin method, we se t  

se) = x (t)  (az- r*)*. 

We then obtain 

54 . ' O H E  *= -sslnpt. " 21 320 D 
3a4p x +  ___ 7pu4 3P 

X + T X + - - -  

Introducing the new variables 

we obtain f rom ( 4 6 )  

y" + 2hy' + y + ay' = /-'sin r f ,  

where 

9(1  -p?) 
56 

(45  1 

We assume that 

r - ' ( t )  = R ( t )  + E ( t i ,  ( 4 9 )  

where R is the slowly-varying random part  and C ,  the rapidly-varying par t  of 
the force P, which we shall replace by "white noise. " 

Writing 

In averaging the random te rms  in the right-hand sides of (51) and ( 5 2 )  
we assume that 

( 5 3 )  2K 
-jT << $<,, Q 7 .  

where d,,, is the correlation t ime of the random function E(t) and 1 is the 

63 



t ime required for the processes  to pass  through the system. We obtain 
af ter  averaging 

We now assume that the random function P ( t )  has been realized. In this 
case the conditional distribution of & is found from 

1 
2 where q is determined by the dispersion - - E  of the "white noise." 

is found from the total-probability theorem, a s  shown above. 

assume that P is a random constant with a distribution Q ( P ) .  

the equations 

If wo is determined from (55), then the unconditional distribution of w 

There is a case in which this scheme can be carr ied to the end. We 

The steady-state probability distribution for t = 00 can be found from 

(56) 
U = ~ , ( U ,  6)f--(R+E); I % ( ~ , 6 ) = 0 .  

2 

We now express 6 in the second equation (56) in t e rms  of u and substitute 
the resul t  in the first equation: 

The steady-state probability distribution for a is then obtained from 

which yields 

Pa 3 
wo = Ale- , @ (a) = fal [s, b (s)] ds+ 2. 

0 

(59) 

where AI is found from the normalization condition. 
distribution is again found from the total-probability theorem. 
pression is, to a certain extent, analogous to the Gibbs distribution. 
ro le  of the potential energy of the system is here  played by the function 
@(a), which can be called the "potential energy" of the amplitude of steady- 
state vibrations. 

It s eems  to us that the method of averaging, together with the K F P  
equation and the total probability theorem, can serve a s  basis  for de- 
veloping a statist ical  theory of flutter. 

The unconditional 
This ex- 

The 
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Similar work has  been done by Yu. M. Romanovskii and S. P. Strelkov 
11351. 
atmosphere. 
flexural-torsional vibrations. The mean- square character is t ics  of the 
s ta te  of s t r e s s  were obtained a s  functions of the velocity. 
ovskii 11361 also considered parametric excitation of an aircraf t  wing 
in turbulent flow. 

parametr ic  resonance in elastic systems. 
the practical point of view. 

U s e  of statistical methods throws new light on the methods and 
content of the theory of stabilityof elastic systems, in which increasing 
interest  has been shown recently. 
Vol'mir 11371,  read  a t  this conference, is devoted to these problems. 

The theory of stability of elastic systems contains, in our opinion, the 
following: 

1) qualitative methods for determining the number of equilibrium shapes 
(or the number of motion regimes of a specific type) of a system; 

2) methods to estimate quantitatively the probability of each of these 
shapes ( o r  regimes).  

Statistical methods provide fundamental solutions of these two problems. 
In principle there  is no difference between problems of equilibrium stability 
and stability of oscillations, conservative and nonconservative systems, etc. 

It is t rue  that in using statistical methods we encounter certain math- 
ematical difficulties. This is, however, t rue also when solving problems 
of stability of elastic systems by other methods. 

methods in the theory of stability of elastic systems a s  has  been devoted 
to  that of all other methods, these difficulties would have been overcome 
long ago. 

VIII. In concluding this survey I shall attempt to formulate problems 
in the theory of stability of elastic systems, whose solution is at  present 
of interest. 

Statistical character is t ics  of the f i rs t  group of random factors  
( sca t te r  in the shape of the middle surface of the shell, i t s  thickness, 
elastic properties, e tc . ) .  By means of large-scale  experimentation data 
should be obtained on the relationships between the probability properties 
of this group of factors  and the features of the production process.  

Statistical character is t ics  of the second group of random factors 
(support conditions). For this it is desirable to  obtain the scat ter  
character is t ics  of the res t ra in ts  to which shells a r e  subjected in actual 
s t ructures  . 

Statistical character is t ics  of the loads acting on the shell. 
i t  is desirable to separate  the service conditions of the shell into com- 
putational cases ,  for each of which instructions should be given on the 
selection of numerical values of the appropriate statistical characteristics. 

The importance of investigating experimentally the statistical effects 
of turbulent flow and sound waves must be emphasized. These problems 
a r e  generally known, but we mention them again due to their exceptional 
importance to the problems considered. 

They investigated the response of an aircraf t  wing in a turbulent 
The wing was assumed to be an elastic system performing 

Yu. M.Roman- 

These methods should enable us  to establish a statistical theory of 
This would be important f rom 

VII. 

For  example, the survey by A.  S. 

If only a s  much effort had been devoted to the development of statistical 

1. 

2. 

3. For  this 
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4. Further  development of methods for determining the relationships 
between the character is t ics  of the initial data and those of the deformations 
of the shell. 
Kolmogorov- Fokker-Planck equation and its generalization, discussed before. 

The asymptotic method of integration appears  to offer some prospects. 
Direct methods and methods for numerical solution should a l so  be con- 
sidered, as should methods of piecewise linearization. 

5. 
allowance for random effects on shells of different shapes and different 
support conditions, varying the assumptions as regards  the random factors. 

the averaging method. 

Approximative methods have to be found for solving the 

Continuing the analysis of various particular cases  of making 

6. Continued study of dynamical problems, pr imari ly  on the bas i s  of 

7 .  Development of the statistical theory of flutter. 
8. Development of the statistical theory of parametr ic  resonance in 

9. Some purely mathematical problems related to the u s e  of statistical 

Most important is the problem of developing a general  theory of stability 

plates and shells. 

methods in problems of stability of elastic systems.  

of l inear  systems with periodic coefficients subjected to steady-state 
processes  of statistical nature. In the case  of nonlinear systems it is of 
interest  to  establish a method of linearization in problems of statistical 
stability. 

Very important is the investigation of averaging methods for solving 
problems of statistical stability, continuing the work done by I. I. 
Gikhman 11331. 

approximations obtained by the Bubnov- Galerkin method. 
to provide est imates  for the build-up t ime of processes  in nonlinear 
systems and to study the influence of various factors  on this time. 

It is a lso  of interest  to investigate the convergence of statistical 
It is important 
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INTEGRAL -DIFFERENTIAL AND INTEGRAL 
EQUATIONS OF STATICS AND DYNAMICS 
OF THIN ELASTIC SHELLS 

N . A  Kill c h e v s k i i  
(Kiev) 

This communication is a natural extension of a report  read in L'vov in 
1961 a t  the Conference on the Theory of Plates  and Shells / 21 /=  which dealt 
with methods for reducing three-dimensional problems of the theory of 
elasticity to two-dimensional problems of the theory of shells, without 
resorting to additional kinematic hypotheses. 

nonclassical methods lead to complicated boundary-value problems. 
the other hand, the boundary-value problems of the classical theory of 
shells a r e  also quite complex. These difficulties are ,  apparently, a 
constant challenge to find new, efficient methods to solve boundary-value 
problems of the theory of shells. 

dary-value problems in the theory of shells to be known, I wish to con- 
sider methods based on replacing the differential equations in these 
problems of the theory of shells by, in a certain sense equivalent systems 
of integral and integral- differential equations, This approach to the 
solution of statical and dynamical problems in the theory of shells is 
quite recent, although the first works along these l ines on the theory of 
shells appeared already in 1939-1940 114, 1 5 / .  f 

This survey contains a classification of studies in this field of the 
applied theory of elasticity and a brief description of the methods used. 
The studies were classified according to the starting premises  used to 
establish the integral and integral- differential equations of the theory of 
shells. 
velopment of this method and of the fields for its application. The standard 
symbols of tensor analysis and the notations of the theory of shells a r e  used. 

boundary-value problems of the theory of shells, based on integral-dif- 
ferential and integral equations. 
integral-differential equations of the theory of shells from the reciprocity 
theorem of the three-dimensional theory of elasticity without resorting to 
the Kirchhoff-Love hypotheses. 
classical  equations of the theory of shells, obtained by simplifying the 
Kirchhoff-Love hypotheses. 

Equations of the theory of shells with boundary conditions obtained by 
On 

Assuming the history of the development of methods for solvingboun- 

The survey ends with a note on the prospects for  the future de- 

There exist two basically different approaches to the formulation of 

The first consists in directly obtaining 

The second is based in principal on the 

Mixed methods are also sometimes encountered. 

' S e e  also Vlasov. V. Z. Obshchaya  reoriya obolochek  (Genera l  T h e o r y  of Shells).-Gostekhizdat. 1949. 
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The appendix to this survey contains a bibliography, which is, however, 
not exhaustive. 

1. E q u a t i o n s  d e r i v e d  f r o m  t h e  r e c i p r o c i t y  t h e o r e m  o f  
t h e  t h r e e -  d i m e n s i o n a l  t h e o r y  of  e l a s t i c i t y .  

These equations were obtained by this author in 1141. 
cussing details, we note the main stages in establishing the integro- 
differential equations of the statics and dynamics of shells. 
consider the equations of statics. Henceforth, a system of displacements, 
s t resses ,  strains, and external forces pertaining to the boundary-value 
problem studied will be called p r i n  c i p  a 1  s y s t e m  . 
displacements, internal and external forces, and s t ra ins  introduced 
according to the broadened method of Somil'yan will be called a u x i l i a r y  
s y s t e m .  

to the coordinate line X I  in the positive direction and distributed with a 
linear density q(o (u )  along the normal to the undeformed middle surface 
of the shell, of displacements, strains, and s t r e s ses  brought about by 
these forces, and also of surface forces in equilibrium with the load q(r , (u) .  
The auxiliary system is based on the solution of the problem of a con- 
centrated force acting in an unbounded elastic medium. F r o m  the re -  
ciprocity theorem we obtain 

Without dis- 

We first 

The system of 

Let the auxiliary system consist of forces, directed along the tangent 

(i, 1-1, 2. 3; nosummationoverf ) .  

Here the point M ( d )  is the foot of the normal to the middle surface 
over which the load q(i , (u)  is distributed; 
auxiliary surface forces; XI andF'are components of the surface and body 
forces  of the principal system; ut a r e  covariant components of the principal 
displacement vector; and q i ) ]  a r e  components of the auxiliary displace- 

ments. The integrals 

of the shell, while integrals 

S&) a r e  components of the 

a r e  taken over the boundary and contour surfaces  

a r e  taken over its volume. sss Ll 
V )  

By means of ( 1  ) we can now apply a new method for reducing three- 
dimensional problems of the theory of elasticity to two- dimensional 
problems of the theory of shells. 
the boundary-value problem of the theory of shells is here  reduced to 
solving a system of integral- differential equations. This approach to the 
method is evident from (1  ). For example, we can find the coefficients 
of the expansion of the components ut in t e rms  of any system of functions 
'pi (a) ,  orthogonal in the interval I- h, + A ) .  Other applications of (1 ) a r e  
also possible. We shall consider one which is closest to the methods of 
reduction considered in 1211. 
can be approximated by the polynomial 

However, in contrast to  other methods, 

We assume that the displacements a i ( M ,  a) 

ut (M. a) = ujo) + auj') + . . . + aNu!N), ( 2  1 

when the coefficients [ u p ]  a r e  functions of the point M ( x i )  on the middle 

77 



surface. 
functions q:,, ( u )  which satisfy the condition 

It is always possible to find a system of piecewise continuous 

4.6 

q:l, (u )  a/ da = Ski, s -h 

( 3 )  

where ski is the Kronecker delta. 
obtain 

Substituting these functions in (1 ), we 

( i ,  j = 1 .  2 3 R = O ,  1 , 2  ,..., N). 

This is a new method of reducing three-dimensional statical problems 
of an elastic body to two-dimensional problems of the theory of shells. 
Grouping together in ( 4 )  the t e rms  @ ( X I )  known from the conditions of 
the problem, we obtain* 

(i, r = l . 2 . 3 ;  j = 1 , 2  k=O, 1, 2 ,..., N). 

Here s s i s  an integral taken over that par t  of the contour surface for  
(1 )  

n n  

which the components of the s t r e s s  vector a r e  specified, and J J is an 
(11) 

integral taken over that par t  of the contour surface for which the displace- 

ment components of the principal system a r e  specified. Integrals con- 

tain the covariant components 01 the unknown displacements a t  theboundary 
surface of the shell. 
the shell we must  find the components of the unknown displacements a t  
the boundary surfaces  of the shell and for par t  ( I )  of the contour surface, 
as well as the components of the force system for par t  (11) of the con- 
tour surface. 

tensors  on the middle surface of the shell, we obtain from ( 5 )  

SS ( f) 

To determine approximately the displacements of 

Using the approximation (2) and considering the components of the 

(i, r=1. 2, 3: j=1 2; k. p=O. I ,  2 ,... , W .  

Integral ls is taken over the middle surface, while and a r e  
(S) 11) 111) 

Henceforth,  t h e  sign E w i l l  be omit ted.  
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contour integrals. In ( 6 )  we used the notation 

p r -  hp (m- 1 I1 - (k1+ k,l h + k14h21 RI:/‘+ (- 11’11 + (k ,  + k,) h + k,k&*] T$’‘], ( 7  ) 

where R{f))r and TS)‘ a r e  the components of the vectors S$r a t  the boundary 
surfaces  z = h,  appropriately translated, according to Levi-Civita, to 
the middle surface, and kj a r e  the principal curvatures of the middle 
surface of the shell. 
equations considered in 1211. However, there  is an essential difference 
between the la t ter  and ( 6 ) ,  which do not contain derivatives of the vector 
components of the forces acting on the shell. Consequently, these 
equations remain applicable also when concentrated forces  act  on the 
boundary surfaces of the shell. 

E q u a t i o n s  of  t h e  d y n a m i c s  o f  s h e l l s .  To obtain equations 
of motion from the equilibrium equations we have to include the intertia forces 

- - P  -y in the volume forces in (1 ). Expressing the inertia forces in 

t e rms  of covariant components and performing the same  transformations 
a s  before, we obtain 

Equations ( 7 )  a r e  integral analogs of the differential 

02Ur 

df- 

where 
(i. r - I ,  2, 3; + I ,  2 k , p = O ,  1 ,  2 , .  . . , N), 

Equations (8 ) form a system of integral-differentia1 equations of the 
dynamics of shells in the unknown functions ui‘)(x’, t ) .  
steady- state process, we set 

In the case of a 

U!”’ ( X I ,  t)  = u!g (xf) + 2 u;”? (X’)COI ( w t  + E*); ( 1 0 4  

( 1 Ob) 

(4 

( X I ,  t )  = Q!!’ ( x i )  + ZopIt)(xj) cos (ut + E ~ ) ;  
( 0 )  

( i ,  r = l , 2 . 3 ;  k, p = 1 , 2  ,..., N ) .  

W e  assume that the frequencies a r e  discrete. Substituting ( l o a )  and 
( l o b )  in ( 8 ) ,  we obtain 

uc’ ( X I )  = (2) f X;’’‘D$& ds - sS{$#$’ds - s sK[${u#)dS;  (1 1 a ) 

u!:’ (x ’ )  = 0:;) (x ’ )  + Xf ) r~ l$ l r  ds - S{&&)ds- ss [XI${- w2V$y] uE’dS; ( 1 lb) 

(1) fs; 
(11) S 

s (11) S (1) (S) 

(i, r=1,2. 3; i = 1 ,  2 k .  p=O, 1, 2 ,..., N). 

79 



Equations ( l l a )  a r e  identical with ( 6 ) ,  while equations ( l l b )  contain 
the parameter  W .  When the homogeneous system has a nontrivial solution, 
system ( l l b )  has no solutions. These r e s o n  a n  c e cases  will be con- 
sidered separately. 

In the case  of nonsteady vibrational processes  we apply the Laplace- 
Carson transformation with respect  to the variable f in (8 ).  This leads 
to  the following system of integral-differential equations in the t ransforms 
of the unknown functions: 

The first three  t e r m s  in the right-hand sides of ( 1 2 )  contain the 
i n  i t  i a 1 c o n  d i t i  o n  s which must  be satisfied by the unknown functions. 
After the t ransforms of uik) have been found from (12), their inverse  
t ransforms a r e  generally obtained by the Riemann-Mellin formula. 

quadratures and replacing the derivatives of the unknown functions by 
ra t ios  of finite differences, the solution of the system of integral- differential 
equations is approximated by the solution of a system of linear algebraic 
equations (resolvents) . 
ing systems of differential equations in the theory of shells by systems of 
algebraic equations, using the relaxation method, we find that the algebraic 
equations obtained by our method a r e  more exact than those obtained by 
the relaxation method. This is due to the smoothing effect of integration. 
On the other hand, systems of algebraic equations which a r e  approxima- 
tions of systems ofintegral-differential equations a r e  more  complex than 
systems obtained from differential equations by the relaxation method, 
since the matr ices  of the la t ter  contain many zero  elements. To reduce 
this shortcoming, we se t  up equations with kernels having an extremum 
value near  the point M ( x l ) ,  which decreases  rapidly with increasing 
distance from this point. According to K. Lantsosh we shall call them 
focusing kernels, and the auxiliary load corresponding to them will be 
called the focusing load. To obtain focusing kernels for the equations 
considered above we can, for example, produce the normal over which 
the auxiliary load q(i) ( a )  is distributed beyond the shell and distribute over 
it a load statically in equilibrium with qfi) (a). This method was applied by 
this author in 1141. 
but they must be considered separately. 

equations with dominant te rms .  
solution. Development of these methods is beyond the scope of this paper. 

N o n l i n e a r  i n t e g r a l - d i f f e r e n t i a l  e q u a t i o n s  o f  d y n a m i c s  
o f  s h e l l  s a r e  derived from a theorem replacing the reciprocity theorem 
in the nonlinear theory of elasticity. Without presenting here  this theorem, 

Methods of solution. The general  method is well known. Performing 

Comparing this procedure with that of approximat- 

Other methods to obtain focusing kernels a r e  possible, 

By means of focusing kernels we can form systems of resolving algebraic 
This greatly facilitates the numerical 
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which was proved by this author, we shall now consider the nonlinear 
integral-differential equations of the dynamics of shells obtained from i t  
for the case of geometric nonlinearity. We assume that finite deforma- 
tions occur in the shell due to the applied load and under specified con- 
ditions at  i t s  contour surface, due to its flexibility. For this reason the 
f i n i t e  d e f o r m a t i o n s  d e t e r m i n e  t h e  p r i n c i p a l ,  b u t  n o t  t h e  
a u x i l i a r y  s t a t e  of t h e  s h e l l .  The auxiliary state is, a s  before, 
determined by the displacements and s t r e s ses  in the linearly-deformed 
medium subjected to the aforementioned loads. 

Using Karman’ s hypotheses, known from the theory of flexible plates, 
we obtain after some transformations and elimination of nonlinear t e rms  
of higher degree: 

Her e 

A and p a r e  Lam6 constants. 

of the theory of shells. This system is intermediate between equations (8  ) 
of the l inear  theory and the general system of equations for “strong 
flexure.” Equations (13 )  a r e  solved approximately, using the method of 
focusing loads, which should be discussed separately. 

including the boundary conditions, the solutions obtained do not always 
satisfy all the conditions of the boundary value problem. An investigation 
on this subject performed by this author is contained in a not yet published 
paper. 
solution of the statical or dynamical boundary-value problem of the theory 
of shells f rom the integral-differential equations considered above. 

d e f i n e d  d i s p l a c e m e n t s  o f  a p l a t e  w h o s e  m i d d l e  p l a n e  i s  
a “ m a p ”  o f  t h e  m i d d l e  s u r f a c e  o f  a s h e l l .  

elasticity has been reduced to the two-dimensional problem of the theory 
of shells, and that the auxiliary displacements a r e  induced in the plate by 
a concentrated unit force. 
correspondence is established between points respectively on its middle 

Equations (13 )  form a system of nonlinear integral-differential equations 

Although the integral- differential equations established contain t e rms  

Numerical algorithms were obtained which enable us  to find a 

2. E q u a t i o n s  of  t h e  t h e o r y  of  s h e l l s  w i t h  c l e a r l y  

It is assumed that the three-dimensional problem of the theory of 

The plate is so chosen that a one-to-one 
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plane and on the middle surface of the shell. We then apply the 
reciprocity theorem. Here the integral-differential equations of the 
theory of shells will contain explicitly, a s  known functions, quantities which 
describe the s ta tes  of s t r e s s  and s t ra in  of the plate. 

This method was suggested by us  in 116, 171, dealing with the equi- 
librium and vibrations of cylindrical shells, and was la ter  developed in 
118, 2 0 /  to include shells of arbi t rary shape. Integral-differential equa- 
tions were obtained which determine the displacements due to a concentrated 
unit force acting along the tangent to the coordinate curves x i  at  the middle 
surface. These equations are:  

U ~ / ) I  (M. N )  = F*(M)-X{) ( N )  v ( c ] k  (iv, M) - 
- J J F ' ( M ) w ) [ K &  ( Q .  M) w(Q, N )  + 

I SI 

+ H(,)(Q. M)T~) , (Q .  N ) j d S p + ~ F ' ( M ) ~ ( ~ [ ~ ~ / ) ( Q ,  N )  X 

X VI-),(Q, M ) + M : i ) ( Q .  N)+wi(Q, W--S:,)(Q, M)ni i i i (Q, N ) -  

- L / a )  (Q, M) w(l ) i  (Q. N)I  SO. (15)  

The function P ( M )  defines the met r ic  in the isothermal coordinate 
system at  the middle surface of the shell, the quantities G, t (M)  denote the 
components of the metr ic  tensor in an a rb i t ra ry  orthogonal system of 
coordinates a t  the middle plane of the plate, the quantities X$ ( N )  denote 
the contravariant components of the unit force acting on the middle surface 
of the shell in the direction of the coordinate curves x i ,  while UI(,)~ and +(.)i 
a r e  the angles of rotation of the feet of the normals to the middle surface, 
corresponding respectively to the principal and auxiliary systems of the 
displacements. 
preceding and from the physical meaning of the quantities contained in 
the analytical statement of the reciprocity theorem. 

124-30 /  in solving problems of the equilibrium of cylindrical shells; 
G. I. Tkachuk applied it to the problem of the equilibrium of an axisym- 
metr ical  shell /31, 321, while B. N. Fradlin and S. M. Shakhnovskii applied 
i t  in / 3 3 - 3 8 1  to problems of the equilibrium of shallow shells. 
indicates in particular, a method for obtaining integral equations con- 
taining forces and moments a s  unknown functions. Several new problems 
on the equilibrium of cylindrical shells with cut-outs were solved with the 
aid of this method by D. V. Vainberg and A. L. Sinyavskii 17, 91; D. V. 
Vainberg, V. A. Zaruts'kii, and B. Z.Itenberg considered in / a /  the equi- 
l ibrium of reinforced shells. The above method, in conjunction with 
methods of operational calculus, was applied to problems of dynamics 
of plates and shells by this author 1171, by G. E. Kazantseva /11-13/, 
and by B. N. Fradlin and S. M. Shakhnovskii 1391. 
that the problem of the uniqueness of solutions obtained for the integral 
equations of statics of shells, derived from a system of integral-differential 
equations through a certain selection of a system of auxiliary displacements, 
requires  separate  study. 

The meaning of the other notations is evident from the 

This method, developed in 11 6-18/, was used by N. I. Remizova in 

Paper /30/ 

In / 1 8 /  it was observed 

82 



3. D i r e c t  t r a n s f o r m a t i o n  of d i f f e r e n t i a l  e q u a t i o n s  o f  
b o u n d a r y - v a l u e  p r o b l e m s  i n  t h e  c l a s s i c a l  t h e o r y  of 
s h e l l s  t o  s y s t e m s  of i n t e g r a l - d i f f e r e n t i a l  a n d  i n t e g r a l  
e q u a t  i o n  s . 

We have already discussed methods of setting up integral-differential 
and integral equations which do not enable u s  to determine directly that 
they a r e  "inversions" of differential equations of boundary-value problems 
in the classical  theory of shells. For  example, the method considered in 
the f i r s t  section of this paper was  an independent means to reduce three- 
dimensional problems of the theory of elasticity to two-dimensional 
problems of the theory of shells; naturally i t  led to equations, approximat- 
ing those of the three-dimensional theory of elasticity, but not l i terally 
equivalent to the equations of the classical  theory of shells, which are 
based on the Kirchhoff-Lovehypotheses. Here we can talk only about 
generalized equivalence, since all these equations a r e  derived from the 
equations of the three-dimensional theory of elasticity by making additional 
assumptions. 

Several works have been published lately in which the boundary-value 
problems of the theory of shells were "inverted" directly, thus making i t  
possible to replace the classical  statement of these problems by the 
problem of solving fully equivalent systems of integral and integral- 
differential equations. 
results,  obtained in the theory of boundary-value problems with respect 
to the solution of systems of partial  differential equations up to and in- 
cluding the fourth order.  

shells. In several  cases  solutions were found by quadratures. These 
resul ts  can be found in works by A .  A. Berezovskii 1 1 - 3 1 ,  and S. P. 
Gavelya and A. M. Kuzenko 1101. 
A. F. Shestopal 1 2 1 ,  and also by A. A. Berezovskii 14-51, that this method 
can be extended to include solution of nonlinear problems of the theory of 
shallow shells, i n  particular, to problems of their stability. N. A. Birger 
considered in his book 161 a range of problems in the mechanics of shells, 
which a r e  reduced to boundary-value problems for systems of ordinary 
differential equations, replaced by equivalent systems of integral equations. 
The "inversion" of systems of differential equations i s  performed by 
comparatively simple means. N. A. Birger used this method in particular 
to solve problems of extension and flexure of round plates (disks), and of 
the symmetrical  deformation of axisymmetrical shells. 

obtained by the method considered in the second section of this paper, as 
well as by inversion method, contain an e r ro r ,  introduced with the 
Kirchhoff- Love hypotheses, which cannot be eliminated. This r emark  does 
not apply to the method considered in the f i rs t  section. 

4. T h e  s i g n i f i c a n c e  o f  t h e  m e t h o d  of i n t e g r a l  e q u a -  
t i o n s .  P r o s p e c t s  f o r  t h e  f u t u r e .  

The method of integral and integral- differential equations in the theory 
of shells makes it possible to develop efficient methods for the numerical 
solution of the corresponding boundary-value problems by using modern 
computers. 
comparatively simple integral equations can be found in the aforementioned 

The inversion is performed by applying the latest  

This method was used primarily in problems of equilibrium of shallow 

It was shown by A. A. Berezovskii and 

We note in conclusion that the integral and integral-differential equations 

Examples of practical methods of numerical solutions for 
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book by Birger .  
cannot be determined by solving simple problems. 
used for solving particularly difficult boundary-value problems of the 
theory of shells, where its advantage over previously used methods is 
clear. 
A. L. Sinyavskii 191. 

those problems which a r e  solvable by the method considered, but practical- 
ly  unsolvable by another. 

A s  already mentioned, the introduction of focusing kernels ass i s t s  
greatly in the numerical  solution of integral- differential equations in the 
theory of shells, and makes possible their qualitative evaluation. 

Establishment of integral-differential and integral equations is an 
efficient method for  obtaining approximate solutions of boundary-value 
problems in the theory of shells, using various interpolation and iteration 
processes .  

extending the method of integral and integral-differential equations to 
nonlinear and dynamical problems. 
published on this subject. 

dardized, and sufficiently accurate and reliable formulas obtained. 

Obviously, the competitiveness of the method considered 
This method should be 

Some problems of this class a r e  mentioned by D. V. Vainberg and 

In future, more effort should be devoted to exposing and describing 

Urgent problems in the above field of the theory of shells consist in 

Some works have already been 

Programs for  solving these equations by computers should be stan- 
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DEVELOPMENT OF THE METHOD OF COMPLEX 
TRANSFORMATION IN THE LINEAR THEORY OF 
SHELLS DURING THE LAST FIFTY YEARS 

V .  V .  N o v o z h i l o v  

(Leningrad 

The general l inear  theory of isotropic shells was developed to a quite 
advanced degree already a t  the end of the las t  century by Love, Lamb, 
Besset, and others. However, they mainly considered the vibrations of 
shells, very little attention being paid to strength calculations, since no 
urgent need for this existed then. 

and minimum weight a rose  only in the twentieth century. Among the first 
to use shells were the designers of reinforced-concrete domes; thus, the 
f i r s t  problem of the moment theory of shells to be solved satisfactorily was 
the axisymmetrical  deformation of shells of revolution. In this particular 
case the equations of the theory of shells form a system of two ordinary 
second-order differential equations whose integration is difficult because 
the coefficients a r e  variable. However, if we discard certain small  t e rms  
containing Poisson's ra t io  a s  a multiplier, these equations become sym- 
metr ic .  Introducing an auxiliary complex function, we can then reduce 
this system to one second-order equation. This fact, discovered by 
Meissner about 50 years  ago /I/, has played a decisive ro le  in developing 
methods for analyzing symmetrically deformed shells of revolution. 

conical, and toroidal shells. In addition, i t  was shown that satisfactory 
approximate solutions can be obtained for axisymmetrical  shells of any 
shape, using the method of asymptotic integration. Pioneering in this 
field were 0. Blumenthal 1 2 1 ,  I.Ya. Shtaerman 1 3 1 ,  and I. Geckeler 141. 
Depending on the problem and the shape of the shell, the asymptotic 
solutions assume the form of either exponential functions or Bessel 
functions. Thus, for example, when considering the joint between a dome 
of a rb i t ra ry  shape and its foundation, we use the exponential solution, 
while in considering the stresses in this dome in the neighborhood of a 
concentrated force acting a t  the vertex, we use the solution obtained in 
t e rms  of Bessel functions. 
asymptotic solution for a symmetrically loaded toroidal shell. 
Meissner derived the complex equations for the symmetric deformation of 
shells of revolution, the above approach to these problems has become 
fundamental. 

Further  technological development led to increasing use of shells; 
this made it necessary to solve problems fa r  more difficult than those 

The present significance of shells a s  s t ructural  elements of high strength 

Exact solutions of this second-order equation were obtained for spherical, 

These functions a r e  also contained in the 
Since 
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mentioned above. 
form a very cumbersome eighth-order system, i t  became necessary to 
simplify i t  by determining which t e rms  can be neglected, and by trans- 
forming the equations. 
methods for obtaining approximate solutions for this system. This was 
done primarily in three ways: 
equations of the theory of shells, the t e r m s  containing higher derivatives 
a r e  small. This enables approximate solutions to be obtained by asymp- 
totic integration. The most complete treatment of this problem, using 
exponential functions a s  the rapidly varying functions, can be found in the 
works of A .  L. Gol'denveizer 151. 

The second approach is based on the fact that tangential displacements 
play a secondary role in the expressions for the changes in curvature and 
torsion. The idea to simplify the equations of the theory of shells by d is -  
carding t e r m s  corresponding to these displacements is due to  Kh. M. 
Mushtari 161 .  
further t e r m s  and reduced the problem of the l inear theory of shells to 
solving a system of two symmetric partial  differential equations in two 
unknowns, namely the normal deflection and the s t r e s s  function. 
introduced by replacing the general equations of the theory of shells by this 
simplified system can in general be considerable; however, for many 
problems it is not large, so that V. 2. Vlasov's equations mer i t  their 
popularity. 

Meissner' s complex transformation for the equations of the symmetric 
deformation of axisymmetric shells, so  a s  to include all problems of the 
theory of shells 1 8 1 .  

is a method for solving equations of the theory of shells, while the other 
two a r e  methods for simplification and transformation of these equations, 
showing varying degrees of generality and exactness. V. Z .  Vlasov' s 
equations can be obtained by discarding t e r m s  in the equations of the 
theory of shells, given in complex form. Methods of asymptotic integra- 
tion can be considered for the equations of the theory of shells, appearing 
in r ea l  o r  complex form. Al l  three approaches a r e  thus compatible, and 
we can imagine an investigation in which, for example, V. Z .  Vlasov' s 
equations a r e  considered in their complex form, while they a r e  solved 
by asymptotic integration. 

development during the l a s t  fifty years,  and i t s  place in the modern l inear 
theory of shells. 

A s  already mentioned, complex transformation was f i r s t  applied to the 
problem of symmetric deformation af axisymmetric shells. Fur ther  
progress became possible only after compatibility equations had been 
derived for arbi t rary deformations of the middle surface of a shell. These 
relationships were given by A. L. Golldenveizer in 1939 191; 
their complete symmetry with respect to the equilibrium equations of a 
shell elemeqt, This symmetry w a s  te rmed statical- geometric analogy. 
The existence of this analogy is a necessary condition for the reducibility 
of the equ8tions of the theory of shells to complex form. However, this 
coqditian aloqe is insufficient. 

Since the differential equations of the theory of shells 

In addition, i t  was also necessary to consider 

The first is based on the fact that in the 

V. 2. Vlasev / 7 /  continued this simplification by neglecting 

The e r r o r  

Finally, the third approach, due to this author, consists in generalizing 

These three trends should not be contrasted with one another; the first 

We shall only discuss the method of complex transformation, i t s  

he also showed 

Complex transformations a r e  only possible 
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when the relationships between the forces  and moments, on one hand, and 
the s t ra ins  of the middle surface, on the other, a r e  fully defined. The 
most consistent form, based on Kirchhoff's hypotheses, of writing the 
given relationships in the theory of isotropic shells, was difficult to find, 
this being done only in 1945 by I. Balabukh 1101 and this author 181. In- 
dependently of one another, and by different considerations they arr ived 
a t  the same form of relationships between s t r e s ses  and s t ra ins  in iso- 
tropic shells, which differ slightly from those due to  A. Love 111 1, which 
he calls the f i r s t  approximation. 
tions of the theory of shells to the complex form (without discarding any t e rms  
in the equilibrium and compatibility equations) is possible only when using 
precisely these relationships between forces  and s t ra ins  of the middle 
surface, and then only when Poisson 's  ra t io  is equal to ze ro  and the shell 
thickness is constant. 

of shells of a rb i t ra ry  shape only for the particular case  that Poisson 's  
ra t io  i s  zero. 

If there  had been no further progress ,  this method would, evidently, 
be applicable only to this particular case. 
tions of the theory of shells were reduced to the complex form in this 
particular case, it was found that the equations of the complex system 
contain several  t e rms  distinguished one from another only by factors  of 
the order  of h / R .  Since Kirchhoff's hypotheses a r e  not quite exact, the 
t e rms  containing these small  factors  should have been discarded; this 
would have been equivalent to neglecting certain t e rms  in the equilibrium 
and compatibility equations of a shell element. However, when the above 
simplifications a r e  introduced into these equations, complex transformations 
become possible for any value of Poisson 's  ratio. 

This is the method used for deriving the general equations of the linear 
theory of shells in complex form; a number of small  t e rms  was once and 
for all discarded during their derivation. These t e rms  must be omitted, 
regardless  of whether a complex transformation i s  performed or not; taking 
them into account would require  corrections of the order  of hlRin the 
solution, which a r e  unimportant for thin shells. 

How consistent the elimination of small  t e rms  is when performing 
complex transformation can be seen from the following example. 
Gol'denveizer 151,  p. 230) presents  a character is t ic  equation for a c i rcular  
cylindrical shell in which, a s  he states, "all unimportant t e rms  have been 
eliminated, but not a single important te rm has been lost. 'I This char- 
acter is t ic  equation is identical with the one derived for an a rb i t ra ry  value 
of Poisson 's  ra t io  f rom the general equations of the theory of shells, given 
in complex form. 

equations can also be shown by applying them to an arb i t ra ry  deformation 
of a spherical shell and comparing the resu l t s  with those obtained from 
the equations of the theory of shells given in rea l  form (for any relation- 
ship between forces  and moments, on the one hand, and the s t ra ins  of the 
middle surface, on the other). 

We discussed this a t  length, because it is sometimes said that complex 
transformations a r e  accurate  only in the particular case  that Poisson's 
ra t io  is zero, being less exact in the general  case. This is, however, not 
t rue.  

It was found that reduction of the equa- 

Complex transformation was thus initially extended to any deformations 

However, a s  soon a s  the equa- 

A. L. 

The consistency of the simplifications introduced when deriving these 

Simplifications introduced in order  to make complex transformations 
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possible for any value of Poisson 's  ra t io  lead to e r r o r s  in the coefficients 
of the differential equations of the theory of shells, which a r e  only of the 
order  hlR. 
solving the equations. 

Thus, even when, for some reason we do not wish to perform complex 
transformation, but prefer  to use the equations of the theory of shells in 
rea l  form, i t  is advantageous to derive the la t ter  by separating the rea l  
from the imaginary par t s  in the complex equations of the theory of shells. 
We shall then obtain a rea l  system, from which a la rge  number of small  
terms,  complicating the equations without increasing their  exactitude, 
have been consistently eliminated. 

Having considered the role  of the complex transformation a s  a means 
for eliminating negligible t e rms  from the equations of the theory of shells, 
we shall now consider i t s  value in solving specific problems. When the 
equations of the theory of shells a r e  written in complex form, their order  
is reduced by a factor of two, and they become much l e s s  cumbersome. 
Thus, for example, for axisymmetric shells, the equations in complex 
form can be reduced to a system of two equations with two unknowns, 
these being the complex auxiliary functions. 
quadratures for symmetric and antisymmetric loads and reduces in these 
cases  to a single second-order differential equation. This resul t  is not 
new for symmetric loads, being substantially identical with Meissner 's  
result, discussed previously. For antisymmetric loads this resu l t  was 
not known; i t s  discovery is a mer i t  of the complex-transformationmethod 
1121. Of course, this resul t  can be also obtained directly from the 
equations in r ea l  form without complex transformation. However, this 
would take much longer. 

A specific problem of practical importance which has  been solved by 
complex transformation is the analysis of toroidal shells under symmetric 
and antisymmetric loads. 
s t r e s ses  into membrane loads and boundary effects. 
(exponential) asymptotic method cannot be used here  either. 
it very difficult to investigate toroidal shells. However, these difficulties 
have now been mainly overcome (by R .  Clark 1131, the present author and 
E. Zenova 1141, K. F. Chernykh (dissertation, 1955), V. S. Chernina 1151, 
S. A.  Tumarkin 1161, and many others). 

Complex transformations yield some resu l t s  also in the case of more  
general  deformations of axisymmetric shells. In particular, it was shown 
that an exact solution of the complex equations can be obtained for axi- 
symmetric shells having parallel c i rc les  a s  boundaries 1171. 
was obtained for an arbi t rar i ly  loaded catenary shell bounded by two 
parallel a r c s  1771. 

Complex equations for cylindrical shells of arbi t rary cross section 
can be reduced to a single ordinary fourth-order differential equation, 
which differs by only one te rm from the complex equation corresponding 
to those due to V. Z. Vlasov 171. Consideration of this te rm is pr imari ly  
important with long shells. 

of the general  theory of cylindrical shells resu l t s  in a biquadratic char- 
acter is t ic  equation whose consistency has already been discussed. 
however, we proceed from the equations of the theory of circular cylin- 
drical shells, given in rea l  form, we obtain a fourth-order characteristic 

This i s  a lso the order  of magnitude of e r r o r s  incurred in 

The given system has 

In this case it is impossible to separate  the 
The standard 

A l l  this makes 

A solution 

The application to circular cylindrical shells of the complex equations 

If, 
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equation of the most general  form, whose simplification requires  
additional consideration. 
Gol' denveizer / 5 / )  the same biquadratic equation which follows immediately 
from the basic complex equation of the theory of cylindrical shells. 
l as t  equation was used by this author and some others in solving specific 
problems . 

For example, R.  L. Malkina ( /18 /  and others) considered the deforma- 
tion of a cylinder of noncircular c r o s s  section. 
presented a paper by Yu. S. Dem'yanovich, devoted to the analysis of a 
cylindrical shell loaded by a concentrated force. 
has already been solved by V. M. Darevskii (proceeding from the equations 
of a c i rcular  cylindrical shell, given in rea l  form / 19 / ) ,  Yu. Dem'yanovich's 
paper is nevertheless of methodological interest .  
u se  of complex equations simplifies both the intermediate calculations and 
the final result .  
of the unary trigonometric s e r i e s  which represent  the solution; 
i t  is unnecessary to separate  the rea l  and imaginary par t s  in the symbolic 
form. This should be done only after the numerical values for the specific 
problem a r e  substituted in the coefficients of the ser ies .  

We then obtain finally ( a s  was shown by A. L. 

This 

To this conference was 

Although this problem 

It shows how much the 

Quite simple expressions a r e  obtained for the coefficients 
in addition, 

The resul ts  due to R.  L. Malkina have s imilar  advantages. 
It is frequently claimed that the use of complex equations of the theory 

of shells presents  no advantage in solving specific problems, since the 
boundary conditions cannot usually be formulated in t e r m s  of complex 
auxiliary functions (complex forces  or moments, or complex displace- 
ments), but must be expressed by their  real or imaginary parts.  
the principal way for solving problems of the theory of shells is sti l l  the 
method of separation of variables, by which equations with ordinary 
derivatives a r e  obtained. 
of the corresponding r e a l  equations; this facilitates their  exact or ap- 
proximate solution. 

shell. 
of particular solutions required nontrivial approaches. 
solutions could not be obtained from the membrane equations. 
asymptotic solution could not be found from exponential functions, 
much easier  to understand how these difficulties could be overcome by 
studying a single complex second-order equation than a system of two 
fourth-order equations which, in addition, contained a number of small 
t e r m s  (of the order  of h /R) .  

Although, a s  a rule, r e a l  and imaginary par t s  have to be separated 
when subjecting the solutions of specific problems to the boundary con- 
ditions, the most  general  solution is, nevertheless, in many cases  not 
only the shortest ,  but also the easiest  to obtain from complex equations. 

There exist also types of boundary conditions which permit complex 
formulation, i. e. ,  which a r e  written in t e r m s  of complex auxiliary 
functions. The solutions of the corresponding problems can, through 
complex transformations, be reduced to final expressions without having 
to separate  rea l  and imaginary par t s  at  any intermediate stage. 
example of such a boundary condition is a f ree  edge on a rigid support 
which permits  sliding along the normal to the edge. 
the aforementioned works by R .  L. Malkina and Yu. S. Dem'yanovich, there  

However, 

The order  of the complex equations is half that 

We return to the symmetric (or antisymmetric) problem for thetoroidal 
Here, both the solution of the homogeneous equations and the finding 

The particular 
The 

I t  was 

An 

In /17/, and also in 
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a r e  problems which a r e  solved by complex transformations under these 
boundary conditions. Another important type of problem which does not 
require  separation of rea l  and imaginary par t s  when subjecting the solution, 
found in complex form, to the boundary conditions, is that in which the 
joint between two shells of different shape but equal thickness is considered, 
In practice i t  is sometimes necessary to analyze composite shells formed 
of cylindrical, toroidal, spherical, e tc . ,  shells. Examples a r e  box- section 
bottoms or steam turbine casings. 
that the boundary conditions can in these cases  be formulated in t e rms  of 
complex auxiliary functions (for "smooth" joints, a s  well a s  for joints 
forming angles). 
deformations in steam turbine casings. 
of ship hulls forming cylinders whose generators consist of several  cir- 
cular a rcs .  

These boundary conditions do not include all the cases  which can be 
encountered in practice; neither a r e  they the principal types of boundary 
conditions. However, there  also exist and a r e  of significance, types of 
boundary conditions for which the advantages of complex transformation 
can be fully exploited. Even if  the boundary conditions require  separation 
of r ea l  and imaginary par t s  in the complex auxiliary functions, the method 
considered has still many advantages which have been already discussed 
and need not be repeated. 

a particular problem of the theory of shells and generalized 17 years  ago 
to include any problems of this theory, is still being developed. 
the las t  five years  important resu l t s  in this direction were obtained by 
K. F. Chernykh who, firstly, found that it is possible to set up in complex 
form the boundary conditions a t  the joint between two shells (already dis- 
cussed), secondly, derived in complex form the variational principle of 
the theory of shells 1201  and, thirdly, studied in detail a version of the 
complex equations, known a s  equations in complex displacements 1 2 0 1 .  
He showed that this version can be appreciably simplified, af ter  which it 
is in many cases  more convenient than the equations in complex forces  
or moments, predominantly used by this author. Equations in complex 
displacements were also used by Gol'denveizer in 1 2 2 1 .  
the complex transformation will evidently be developed fur ther .  On its 
basis  K. F. Chernykh gave a solution to Saint Venant's problem for curved 
pipes with round c ross  sections 1251 .  
still unpublished, works, that equations in complex displacements can be 
considered a s  a second approximation of V. 2. Vlasov's equations. 

appeared in the l a s t  few years  and deserve mention, a r e  those by the 
Rumanian scientists V. Visarion, C. Stanescu, and L. Librescu (124,  2 3 1 ,  
etc.), in which this method is extended to include some types of anisotropic 
and laminated shells. 

transformations in the linear theory of shells has ( a s  any other) 
not only mer i t s  but also shortcomings. 
(even within the scope of the l inear  theory) and cannot be extended ingeneral  
form to include shells of variable thickness and anisotropic shells. 
inapplicable to dynamic problems of shells and to problems of their stability. 

It was shown by K. F. Chernykh 1201  

This resul t  was used by V. K. Naumov / 2 1 /  to determine the 
It is used also to analyze s t ructures  

The method of complex transformation, created fifty years  ago to solve 

During 

This version of 

He also showed in one of his  latest, 

Other studies on complex transformations in the theory of shells, which 

In concluding this survey, I wish to note that the method of complex 

Firstly, it is not all-encompassing 

It is 
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No complex transformation exists in the nonlinear theory of shells ( this 
being t rue of both geometric and physical nonlinearity). 
advantages presented by this fo rm of equation a r e  not always so weighty 
as to give them preference to ordinary (real)  equations, 

the method of complex transformations has a sufficiently wide range of 
application. 

Secondly, the 

Although unable to solve each and every problem of the theory of shells, 

I ts  possibilities should be remembered. 
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NONLINEAR PROBLEMS OF STRESS CONCENTRATION 
NEAR HOLES IN PLATES 

G.N.  Savin 

(Kiev) 

§ 1. 

The appearance in the l a s t  few years  of new synthetic materials, and 
also the more  extensive use of s t ructures  consisting of thin plates and 
shells, make it necessary to  formulate the problems of the theory of 
elasticity more exactly. The problems then become, a s  a rule, generally 
nonlinear (both physically and geometrically), o r  either geometrically or 
physically nonlinear. 

innovation in this theory. 
established together with the science of elasticity. However, the sub- 
sequent development of this science was concerned pr imari ly  with the 
1 i n  e a r  theory of elasticity 1 3 2 1 ,  in which many resul ts  valuable and 
useful, both from the theoretical and from the engineering viewpoints 
were obtained. In particular, powerful and effective methods to solve 
entire c lasses  of problems were developed in the linear theory. Fore- 
most amongst these a r e  the solutions of the p 1 a n  e p r o b l  e m  o f t h e  
t h e o r y  of  e l a s t i c i t y , *  developed by Academician N.I.Muskhelish- 
vili 1 1 1  and his students; these a r e  methods of complex potentials in 
conjunction with conformal mapping and Cauchy-type integrals, which 
make it possible to reduce the principal problems of the two-dimensional 
theory of to b o u n d a r y - v a l u e  p r o b l e m s  of t h e  
t h e o r y  of  a n a l y t i c  f u n c t i o n s  of a c o m p l e x  v a r i a b l e .  

plane problem of the theory of elasticity, in particular in the problem of 
s t r e s s  c o n c e n t r a t i o n  n e a r  h o l e s .  However, due to the 
mathematical difficulties, the number of works devoted this problem is 
still extremely small. 
ar t ic le  contains only about twenty titles. 

The nonlinearity of many problems of the theory of elasticity is no 
The basis  for the n o  n l  i n e a r theory was 

These methods were also found to be most effective in the nonlinear 

The l i s t  of original works given at  the end of this 

* [The  Russian word p l o s k o i  has been  translated a s  p l a n e  when appear ing  together with the words 
p r o b l e m ,  s t r e s s ,  
it was translated as t w o - d i m e n s i o n a l .  These  two  t e r m s  a r e  synonymous ( a t  least  here) and the  
above use is, in this translator 's  op in ion ,  in acco rdance  with convent ion (see for e x a m p l e .  t i t les  of 
Refs. /2-4/). I 

* *  [The Russian word d e f o r m a t s i y a  which, a g a i n ,  has rwo re la ted  meanings,  thar is, d e f o r m a t i o n  
and s t I a i n, was aga in  t rans la ted ,  accord ingly ,  in  keep ing  with the particular conteh t  of t h e  given 
sentence.  

s t r a i n  and their  combina t ions ,  while when a p p e a r i n g w i t h  the  word t h e o r y  

As in t h e  case of p l o s k o i  t h e  choice  represents the  translator 's  j udgmen t  in the mat te r .  ] 

96 



§ 2. 

The f i r s t  works on the n o n 1  i n e a r  plane problem of the theory of 
elasticity and, in particular, on s t r e s s  concentration near  round holes, 
were by Adkins, Green, and Shield 1 2 1 ,  Adkins and Green 141, Adkins, 
Green, and Nicholas 131 ,  in which they established the basic system of 
equations of the nonlinear theory of elasticity for both compressible and 
incompressible materials, for p 1 a n  e s t r e s s as well a s  for p 1 a n  e 
s t r a i n ,  *: for the most general elasticity relationships 

where :ti a r e  contravariant components of the s t r e s s  tensor referred to a 
system of curvilinear coordinates in the deformed body; 
strain-energy density; 

W (I,, Is. I,) is the 
I, ( r  = I ,  2 ,  3) a r e  the invariants of the s t ra intensor  

IGuI = G; Igi/I = g: 

while glk and G'k a r e  respectively the contravariant components of the metric 
tensors of the undeformed and deformed state of the elastic body. 

Introducing the s t r e s s  function ti which satisfies the equilibrium con- 
ditions, the authors of 1 2 - 4 1  obtained a complete b a s i c 
equations of the p l a n e  n o n l i n e a r  p r o b l e m  o f  t h e  t h e o r y  o f  
e 1 a s t i  c i t y  , consisting of t w o  equations for the determination of the 
functions U and Din the case of p 1 a n  e s t r a i n ,  and of [three equations] 

I1 in the t h r e e functions U ,  f1,and h = - for the generalized plane state of 
ho 

s t r e s s ,  i. e. ., fo r  the case of a t h i n  p 1 a t  e ,  where h, and h a r e  the 
half-thicknesses of the plate b ef  o r  e and a f t  e r deformationrespectively.  

s t r e s s  ( i . e . ,  for a t h i n  p l a t e ) ,  expressed in te rms  of ( z ,  ?)coordinates, 
i s  after deformation 

s y s t e m  of 

The principal system of equations for the generalized plane state of 

' [See footnotes o n  previous page. J 
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where 

The principal system in ( z ;  3 coordinates for p 1 a n  e s t r a i  n has the 
s a m e  form. These systems can also be written in the coordinates ( T ,  <) b ef o r e 
deformation. 

It is easy to see that system ( 2 )  is so complicated that only approximate 
solutions can be obtained. 

I t  was pointed out in 1 2 - 4 1  that this can be done by the m e t h o d  o f  
t h e  s m a l l  p a r a m e t e r ,  which consists in that the u n k n o w n  
f u n  c t i  o n  s U. D, and A *  and also all known functions entering in these 
equations, a r e  represented in the form of expansions 

1/= H ,  E lull) + e fJ12) 4- E? UlJ) + . . . I  
D = E DL1) + ~2 U(2) + ~3 D(3l 

1 = 1 -+ &).('I + eZ,l.(ZJ + . . . 
( 3 )  

in powers of the small  parameter  E ,  where U = z - T, = rr+i.v is a complex 
function of displacements, Ho is a constant, equal to, in the case of 
p 1 a n  e s t r a i n ,  the shear modulus p of the material  a t  infinitesimal 
deformations, and equal to 2hp in the case of the generalized plane state, 
i .e . ,  for a t h i n  p l a t e .  

Introducing ( 3 )  and s imilar  expressions into the principal systems of 
equations, and equating to ze ro  the coefficients of equal powers of E, we 
obtain an i n f i n i t e system of equations for the unknown quantities U"', 
D(j) ,  and A(/) (j= 1. 2,  3), which a r e  the j - t h  approximation of the required 
solution. 

corresponds to the classical  l inear theory and leads to the known Kolosov- 
Muskhelishvili relationships for the f i rs t -order  complex potentials. The 
procedure for finding these potentials is known 111; they have been found 
for many shapes of holes and types of loading 191. 

ordinates (2.  4 af ter  deformation, a s  well a s  in  the coordinates (q, G ) ,  
b e f o r e deformation. 
system of coordinates. 

The f i r s t  approximation, i. e . ,  the equations for LA1', D(l), and A = 1, 

The principal system of equations can be expressed in complex co- 

The potentials can therefore be expressed in either 

a y p )  
d 2  

The equations for functions - andDcZ), expressed a s  second-order 

potentials in (2, 3 coordinates, a r e  14, 1 6 /  
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- -  
D(2) = k T'2' (z) - z $2'(z) - p(z) -f, (2, 2); 

where f (z. 'gandf,  ( z ,  i) a r e  known functions, expressed in t e r m s  of the 
complex potentials +( l )  (z) and qP)(a of the f i r s t  approximation, and k i s  
a known constant. 

of the body in the d e f o r  m e d state, a r e  
The s t r e s s  tensor components referred to ( 2 ,  5, the coordinates of points 

- 
2 - y1 + iy,; z = y ,  - iy,. 

The complex second-order potentials (yC2) ( z )  and +i2J ( z )  were investigated 
for the case of a f i n  i t e o r  i n  f i n i t e multiply-connected region, and 
the principal boundary-value problems of the nonlinear plane problem of 
the theory of elasticity were formulated by G. N .  Savin and Yu.  I. Koifman / 161. 

In contrast with the classical  l inear theory of elasticity, n e w ways to 
formulate boundary-value problems a r e  possible in the n o  n l  i n  e a r 
theory of elasticity in determining second-order potentials. 

Thus, the following three approaches a r e  possible for the f i r s t  principal 
problem: 

1) the external forces a r e  specified at  a known contour of the d e f o r m e d 
body; 

2) the external forces  a r e  specified a t  a known contour of the u n  - 
d ef  o r  m e d body; 

3) the boundary of the region is specified for the u n d e f o r m e d b o d y , 
while the e x t e r n  a 1  forces a r e  specified a t  an unknown contour of the 
d e f o r m e d body. 

The approach to the second principal problem is similar / 1 6 / .  The 
complex second-order potentials 
u n b o u  n d e d region, the s t r e s s e s  at  infinity being bounded, a r e  

( z )  and +(2) ( z )  for the case of an 

where Nl and N2 a r e  the principal s t r e s s e s  at  infinity, 8 is the angle 
between N, and Oy,, while El and E,  a r e  known constants whose expanded 
expressions a r e  given in 1161. 

the convergence of expansions ( 3 )  for U ,  D ,  and ;I even raised. 

nonlinear theory of elasticity, no limitations a r e  imposed on the 
strain-energy density W. 

l imits  - up to 50 70 elongation - satisfies the incompressibility condition), 

It should be noted that in none of the above works is the problem of 

In deriving the principal system of equations of the two-dimensional 

For  incompressible materials ( in particular rubber which within wide 
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the function W was selected in 12-4, 161, in the form 

where C,>O and C,>O a r e  the elastic constants of the material ,  which a r e  
determined experimentally. 
Moony 181 .  

N o  limitations a r e  imposed on W in 12-4, 1 6 1  when deriving general 
equations of the two-dimensional theory of elasticity and establishing an 
approximative method for their solution, although in the classical  1 i n  e a r 
theory, the function W is subjected to strictly specified conditions: 
order  that the ordinary boundary-value problems of the theory of elasticity 
have a u n i q u e  solution (Kirchhoff's theorem), the function W must be a 
p o s i t i v e - d e f i n i t e  h o m o g e n e o u s  q u a d r a t i c  f o r m .  In the 
nonlinear theory of elasticity, the question of what f u n  c t i o n s can se rve  
a s  the strain-energy density of an elastic material, has not yet been 
solved 1191; 

It follows from (1 ) that to the selected function W there will correspond 
values of ~ i j ,  i.e., i t  will have a s i n g 1  e elastic body that will correspond 
to this W. 

In the general  case, i. e . ,  in the nonlinear theory of elasticity, the 
function W (Il, la. 1,) c a n n  o t b e q u i t  e a r b  i t r a r y ;  this follows from 
the fact that in the case of i n  f i n i t e s i m a 1  deformations, when a 11 
b o d  i e s o b  e y H o o k e I s 1 a w , this function must be a positive-definite 
quadratic form. 

tain a survey of works on this problem; paper 1191 presents a formulation 
of the conditions n e c e s s a r y  for an i n c o m p r e s s i b l e  m a t e r i a l  

This function W(z) was f i r s t  proposed by 

in 

The papers of T. Doyle and G. Eirksen 1191, and Truesdell 1221, con- 

d W>O: 

(i = 1 .  2) 
where hi a r e  the principal strains.  
equation (8  ) states  that the shear  modulus p must be p o s i t i  v e . 
solution (accurate to a second approximation) of Kirsch's problem, i. e . ,  
of the problem of the s t r e s s  distribution n e a r a r o u  n d h o 1 e for the 
case of the plane deformation of an  incompressible material  in a uniaxial 
state of s t ress :  d m ) = p  =const a t  infinity. 
considered in / 4 /  among other problems concerning r o u n d  holes, 
the s t r e s s  concentration near a r o u n d  hole in a t h i n ,  elastic (both 
geometrically and physically nonlinear) p l  a t  e subjected to uniform 
tension p = const a t  infinity. 
used in 12-41,  s t r e s s  concentration near a round hole was considered by 
L.A. Tolokonnikov 1131, and I. N. Slezinger and S. D. Barskaya 1141. 

L . A .  Tolokonnikov 1131 obtained the c o m p a t i b i l i t y  c o n d i t i o n s  
for finite plane s t ra in  in an incompressible material, expressed in t e r m s  
of the invariant s t ra in  characteristic, taken a s  the r a t  e of d e f o r m a - 
t i  o n  Ri  . 
byrelationships between Riand the o c t a h e d r a l  t a n g e n t i a l  s t r e s s  T ~ .  

On this assumption, proceeding from the compatibility and equilibrium 
equations which a r e  satisfied by introducing the s t r e s s  function, 

In the l inear theory the second 

Adkins and Green / 2 /  were the f i r s t  to publish, in 1953, an approximate 

Slightly la ter ,  these authors also 

By a slightly different approach than that 

He also assumed that the physical deformation is described 
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L. A .  Tolokonnikov obtained the resolving equation in t e r m s  of s t r e s s e s  
for the problem of finite plane strain in an incompressible material .  This 
equation is also integrated with the aid of the method of the small  para- 
meter.  He also considered (in complex coordinates of the undeformed 
body) the s t r e s s  concentration near a r o u n d  hole (plane strain) whose 
contour was initially round, in u n i a x i a l  c o m p r e s s i o n  (tension), 
assuming that the law of deformation is 

7, = p t g R ;  R = 2 J’1.5 RI , 

Here the stress-concentration factor in compression k** is obtained a s  
t h i r d approximation: 

F o r  0 ~ 4  <0.2 ( p  >0) the stress-concentration factor i n  c r e a s e s with 
P the load, and d e c r e a s e s f o r - > 0.2. 
P 

physical nonlinearity of the material, whose effect increases  a s  the de- 
formation proceeds. It appears that the s e c o n d  a p p r o x i m a t i o n  
describes basically the geometric nonlinearity of the problem. 

1.N.Slezinger and S.D.Barskaya /14/ obtained for p l a n e  s t r a i n  
a resolving system of equations in te rms  of d i s p 1 a c e m  e n  t s . They 
assumed that the problem is l i n e a r  g e o m e t r i c a l l y  but n o t  
p h y  s i c a 1  1 y , since they used a law due to N. V. Zvolinskii and P. M. 
Riz 134, 3 5 1  governing the physical deformations, which s ta tes  that there  
exists a l i n e a r  relationship between the p r i n c i p a l  s t r e s s e s ,  
referred to the initial cross-sectional area,  and the p r  i n c i  a p l  
e l o n g a t i o n s .  

the method of the small  parameter  to obtain an approximate solution of 
the problem of s t r e s s  concentration near a r o u n  d (in the undeformed 
state) hole in p l a n  e s t r a i  n for the case of uniaxial s t r e s s e s  at  inifinity. 

components an and for the displacement components, a s  well a s  the 
expression below and Table 1, containing values of the stress-concentration 
factor in t e n s i o n .  

If 
It is assumed that this is due to the 

Using the resolving equation thus found, the authors of 1141 employed 

Expressions a r e  given (including second-order terms)  for the s t r e s s  

3 t 6  ( 2 - x )  a - .  k =  
I +0.5 (3-  X)LX 

A + 3  p a =  P; X =  - 
411 ).+p 

where p is the s t r e s s  a t  infinity, r e f e r r ed  to the initial cross-sectional 
area,  while 1 and p a r e  the Lam6 constants. 

It follows from Table 1 that for the given elasticity relationships the 
stress-concentration factor i n  c r e a s e s in comparison with the l inear 
theory according to which k“ = 3.  

problem of the theory of elasticity, obtained in 12-41, and the approximate 
The principal systems of equations of the nonlinear two-dimensional 
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methods for their solution, considered there  for the e 1 e m  e n t a r y cases  
of a r o u n d  hole or a r o u n d  w a s h e r ,  show that for o t h e r  s h a p e s  
of  h o l e s  or for noncircular bodies, the problem can only be solved by 
using the Kolosov-Muskhelishvili complex potentials in conjunction with 
conformal mapping and Cauchy-type integrals. 

TABLE 1 

- I  is t h e  Poisson ratio. 

In this way, Yu. I. Koifman 1151 obtained an approximate (accurate  to 
the second approximation) solution of the problem of s t r e s s  concentration 
near an elliptical (in particular, also near a round) hole in the cases  of 
plane s t ra in  andof ageneralizedstateof s t ress ,  i. e . ,  for a thin p la te ina  
homogeneous s ta te  of s t r e s s  at infinity. 

He determined the complex f i rs t -  and second-order potentials for 
different conditions at infinity, and found expressions for  the s t r e s ses  a i  

and a: a t  the contours of round and elliptical holes, whose shapes a r e  
given both for the d e f o r m e d  and the u n d e f o r m e d  body. 

Some of these resul ts  a r e  presented below: 

1. S t r e s s  c o n c e n t r a t i o n  n e a r  a r o u n d  h o l e  

a) Uniaxial tension or compression. 

1. 

The s t r e s s s  a i  at the contour of a hole a r e  for uniaxial tension o r  

Consider the s t r e s s  concentration at  the contour of a hole which 
is round in the d e f o r m e d  s t a t e .  

compression 

where 8 is the polar angle in the deformed body; N is the principal s t r e s s  
a t  infinity; T, k ,  and 6 a r e  elastic constants whose values a r e  given in 
14, 161; H,, is equal to the shear modulus p for plane strain, and to 2hp 
for a thin plate; 
The stress-concentration factor i s  

2h is the thickness of the plate a f t e r  d e f o r m a t i o n .  

In particular, for i n  c o m  p r e s s i b 1 e materials we obtain (1 2) and (1 3): 
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for plane strain:: 

(14 I .  q= - N [ I -2cos26+-  (1-2c0s28+2c0s46)  ' 
N 
4P 

for a [thin] plate, i. e . ,  for a generalized two-dimensional state of s t r e s s  

1-2COS20$ - _ _ .  - 2(21+11 -4cos28+4cos48] ) ;  ( 1 6 )  

c where 1 = 2; C, and C, are Moony constants. 
Cl 

Table 2 gives stress-concentration factors obtained from (15) and (17) 
N 1 
HO 19 

f o r  different values of -. When using (17)  it was assumed that i =  -- . 

T A B L E  2 

-0.3 

2.625 

2.514 

-0.2 

2.750 

2.676 

F r o m  ( 15)  and ( 17 ), and Table 2 ,  it is evident that introducing nonlinear 
corrections results in values of K' which differ considerably from those 
given by the linear theory. 

When comparing this with the results of the l inear theory it must be 
remembered that a final c i r c u 1 a r contour can be obtained either by 
extending a plane having an elliptical hole in the direction of the la t ter ' s  
minor axis,  or by compressing in the direction of the major axis. It is 
evident that the greater  the tensile force required to obtain a round con- 
tour (tension in direction of minor axis),  the higher will be the s t r e s s  
concentration a t  the contour. On the other hand, the greater  the com- 
pressive force (compression in direction of major axis),  the smaller  
becomes the s t r e s s  concentration a t  the contour of the hole. 

r o u n d  b e f o r e  d e f o r m a t i o n .  A s  a result of deformation this hole 
has become 
(elongated in the direction of the force when subjected to tension and 
perpendicular to the direction of the force, when under compression). 

deformation 

2 .  Consider the s t r e s s  concentration at the contour of a hole which was 

o v a l ,  i ts  shape depending on the conditions at  infinity 

The s t r e s s e s  s y  along the contour of an initially round hole are after 

4cos24+ 4 cos 48 ] } , (18  ) 

Equation (14) was first given in  /2/, 
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where 4 is the polar angle in the undeformed plane. 
is the same a s  in (12).  

Theremainingnotation 

Using (18) we obtain the stress-concentration factor 

~- 

3.150 

3.210 

For an i n c o m p r e s s i b l e  mater ia l  we find from (18) and (19 )  
for  plane s t ra in  

N 

4P 
1 -2cos28f  - ( l+  2cos28-2cos44) 

I- ~ 

3.075 2.925 

3.105 2.895 
.- 

for  a thin plate 

2.850 

2.790 

(20) 

(21) 

2.775 

2.685 

Table 3 gives stress-concentration factors obtained from ( 2 1 )  and (23)  
for  the same values of the elastic constants as  used in Table 2. 

Fj 3.315 

TABLE 3 

-0.2 1 -0.1 1 0.1 According to 
linear theory 

3 

3 

Comparing the numerical values given in Tables 2 and 3, we notice that 
they differ. We can assume this to  be due to c h a n g e  s in the shape of 
the hole a s  a result of deformation. Thus, under 2, when the tension 
increases, the initially circular hole becomes increasingly flatter in the 
direction perpendicular t o  the force (Nat inifinity); 

concentration a t  the contour point 4 = z will d e c r e a s  e .  On the other hand, 
2 

under compression the round hole becomes flatter in the direction of the 

force, so that the s t r e s s  concentration at  the contour point 8= 

i n c r e a s e .  

in this case the s t r e s s  

wi l l  
2 

b) All-sided tension or compression. 

In all-sided tension or compression the hole retains its initial r o u n d  
shape, only i t s  radius changing. This does not affect the s t r e s ses  near the hole. 
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In this case o;= 0;; hence the stress-concentration factor is 

-0.3 

1.85 

1.82 

Values of K obtained from ( 2 4 )  for an i n  c o m p r e s s i b 1 e material; 
both for plane s t ra in  and fo r  a thin plate a r e  given in Table 4 for 

-0.2 

1.90 

1.88 

N different values of -. 
Ho 

TABLE 4 7 Kp.s. 

-0.1 

1.95 

1.94 

0.1 

2.05 

2.06 
~ 

0.2 

2.10 

2.12 
~~ 

0.3 

2.15 

2.18 

According to 
linear theory 

2 

2 
I 

This table shows the influence of nonlinear corrections h tension and 
compression. 

c )  Pure  shear .  

1. Consider a plane weakened by a r o u n d  hole in the deformed 
state and subjected to pure shear.  
of the hole are 

The s t r e s ses  00 along the contour 

F r o m  (25 )  we obtain the stress-concentration factor 

1 4  ' ( 6 - k k b )  . HO J . K ' = 4  1+ 

F o r  an incompressible material  we find from ( 2 5 )  and ( 2 6 )  
in the case of plane strain 

for a thin plate 

o t = 4 N  
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Table 5 gives some values of KSpl from (30) and $.$.,from (28) for different 
N values of -. 
4 

TABLE 5 

0.1 0.2 

4.50 

4.69 

0.3 

4.15 I 5.04 

According to 
linear theory 

4 

4 

This table shows the considerable effect of nonlinear corrections to  the 

2. Consider pure shear  of a plane, weakened by a hole which before 

The s t r e s ses  0: along the contour of the hole a r e  

linear theory. 

deformation was a c i rc le  of a rb i t ra ry  radius. 

The stress-concentration factor is 

For an incompressible mater ia l  we obtain 
in the case  of plane s t ra in  

N 

P 

for a thin plate 

( 3 3 )  

( 3 4 )  

17+291 . 2 [ 27-1 -4 cos 48]) ; (35 )  
96(1+ I) H, 17-291 

K8' - 4  1 --__I . _  
' l -  [ 96 (1+I )  Ho 

41-1171 1 
Table 6 gives values of K;. s. from ( 3 4 )  and k$ from ( 3 6 )  for some values 
N of - 
Tables 5 and 6 show the effect on the stress-concentration factor of a 

change in the initial shape of the hole. 
An investigation of the s t r e s ses  near  the hole shows that in this case  

the stress distribution along the hole contour differs appreciably f rom that 
obtained under 1. 

the contour point 8 =O decreases, ($),,,,, being obtained at 9= 1; however, 

Ha. 

Thus, with increasing load the s t r e s s  concentration at  

2 
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here,  in contrast to 1, the maximum* s t r e s ses  a r e  compressive.  

0.1 

K;.,. 4.15 

4.19 

TABLE 6 

0.2 

4.30 

4.37 

0.3 

4.45 

4.56 

According to 
linear theory 

4 

4 

2. S t r e s s  c o n c e n t r a t i o n  n e a r  a n  e l l i p t i c a l  
h o l e  

a )  Extension in direction of major axis of elliptical hole. 

1. 

The data re fer  to  the case of plane s t ra in  of an incompressible material, 

In the deformed state the hole forms an ellipse with a a s  major and 
b a s  minor semiaxis. 

The stress-concentration factor is 

Ki. s.= 2 (1 +0.225-) N 
P 

(37) 

It is seen from (37) that taking into account the nonlinearity leads to  an 
i n  c r e a s  e in the stress-concentration factor in comparison with the 
l inear  theory ( KO = 2 )  when the tensionis increased, and to a d e c r e a s  e when 
the compression is increased. 

2. The hole was elliptical before deformation. 
In this case the stress-concentration factor is 

P 

N 
P 

For  the same values of - I  (38 ) gives a lower value for 6. S. than (37 ) . This 

may be due to  the fact that the contour of the hole becomes flatter in 

tension, the curvature decreasing at the contour point 8 =  E. 
pression, the hole becomes more circular ,  hence the stress-concentration 
factor increases .  

In com- 
2 

I n  absolute value. 
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b) Extension in direction of minor axis Of elliptical 

hole( nr = +). 
1. The stress-concentration factor is 

From the linear theory we obtain K =  5. It can be seen from (39) that 
N N 

when - =  0.3 ,  G.s.= 5.693,  and when - = -0.3,  KiVs’ 4.306.  
P P 

f rom the resul ts  of the l inear  theory is thus considerable. 
2. The stress -concentration factor is 

The deviation 

p s e 5  1-0.063 - . ( 4 0 )  ”> P. 
K .  ( 

N For  - = f 0 . 3  we obtain from (40) respectively, K‘p:$.= 4 .91  and Ges.= 5.09. 
P 

This differs  only insignificantly from the value K =  5 given by the l inear  
theory. 

c)  All-sided extension (compression) of a plane with 
an elliptical hole. 

1 .  The stress -concentration factor is 

&=4(  1 f0.688 -- . (41 1 Nj P 

2. The stress-concentration factor is 

N 

N 
B 

Values obtained from (41) and (42) for some values of - a r e  given in 

Table 7. 

TABLE I 

4.08 4.05 3.95 

0.3 

4.83 

3.93 _- 
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It can be seen from Table 7 that the deviation from the value K = 4 is 

These results lead to certain general conclusions. 
1. 

highest for problem 1. This should have been expected. 

In the nonlinear theory the s t r e s s  -concentration factor depends on 
both t y p e  and m a g n  i t u d e of the external load at infinity, a s  well as on 
the elastic properties of the material  and the type of elastic equilibrium, 
i. e . ,  whether a state of plane s t ra in  or a generalized state of s t r e s s  (thin 
plate) exists. 

2 .  When, for an incompressible material ,  the tension needed to deform 
the initial contour to a circle increases (in some interval), the s t r e s s  - 
concentration factor at  the (deformed) contour will increase; for increased 
compression this factor will decrease.  

given by the linear theory i s ,  in general, considerable. The largest  
deviation is observed in the case of pure shear .  

in the deformed state of the body, the s t r e s s  -concentration factor d e  - 
c r e a s  e s with increasing uniaxial tension, and increases with uniaxial 
compression. 
the specified shape during deformation. 

contour occurs in pure shear.  

respect to a plane, weakened by an elliptical hole, for all the problems 
considered above. 

3. The deviation of the stress-concentration factor from the value 

4.  For problem 1, i. e . ,  when the shape of the hole contour is specified 

This may be due to the distortion of the initial contour into 

A particularly noticeable change in the s t r e s s  distribution along the 

Table 8 gives expressions for the s t r e s s  -concentration factors in  

TAB1.E R 

T y p e  of load 

Tension 

Compression 

Tens ion  or com-  
pression 

'roblem 

1 

2 

1 

2 

kccording 
to l inear  

theory 

Tension or c o m -  
ression In d i rec t ion  

of major  axis 

2 

Tcnsion or coni- 
ression I n  d i rec t ior  

of minor  axis 

5 

All-sided tension 
or compression 

4 

3.  E f f e c t  o f  r e i n f o r c i n g  t h e  h o l e s  b y  
e l a s t i c  r i n g s  

This author and Yu. I. Koifman 1161 considered the effect of reinforcing 
the edge of a circular hole by an elastic annular plate consisting of another, 
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in general also physically nonlinear material, pressed o r  soldered into 
the hole, the state of s t r e s s  being homogeneous at infinity. 

contact o r  soldering (for plane s t ra in  of an incompressible material) of 
an infinite plane with a c i rcular  hole, into which a perfectly rigid annular 
ring (washer) is pressed-in o r  soldered. 
ment reduces the s t r e s s  concentration at the contour of the hole. 

hole in an infinite plate by a s o 1 d e  r e d  - i n  r i n g  made from a thin 
elastic bar of constant c ros s  section, whose elastic-equilibrium conditions 
a r e  determined from the theory of small  deformations of thin curvedbeams. 

It w a s  shown in 117 f that such a linearly elastic reinforcing ring c o n  - 
s i d  e r a b  1 y r e  d u c e s the s t r e s s  concentration at the contour of the hole. 

Expressions were given for  the s t r e s ses  a, and a8 at the surface of 

It was shown that this reinforce- 

Yu. I. Koifman /17/ also solved the problem of reinforcing a circular  

4. S t r e s s  c o n c e n t r a t i o n s  n e a r  f r e e  a s  
w e l l  a s  r e i n f o r c e d  h o l e s  

From the viewpoint of the nonlinear theory of elasticity t h e  m o s t 
g e n e r a 1 a p p r o a c h to s t r e s s  concentrations near holes is presented 
in 1 2 ,  3, 4 ,  15, 16, 171. By means of the powerful methods of the two- 
dimensional linear theory of elasticity and, in particular, of Kolosov- 
Muskhelishvili complex potentials in conjunction with conformal mapping 
and Cauchy-type integrals, it is possible to  obtain satisfactory solutions 
(up to the second approximation) of problems of s t r e s s  concentration near 
nonreinforced as well as reinforced c u r v i 1 i n e  a r holes. 

The holes may be reinforced by a wide p 1 a t  e I i k e or narrow t h i n  
e l a s t i c  r i n g s ,  a s  assumed in 1161 and 1171 for  a round hole. 

The problem of reinforcing holes by rings which either eliminate en- 
t irely o r  reduce to a minimum the s t r e s s  concentrations near the holes is 
of great scientific and engineering interest. 

§ 3 .  

The ordinary s t r e s s  distribution does not hold near holes, where the 
so-called s t r e s s  - c o n c e n t r a t i o n  z o n e s  appear. The s t r e s s e s  in 
these zones may be quite high, in particular near holes with sharp corners .  
The s t r e s ses  at these corners  can exceed the elastic limit of the material ,  
or ,  for plastic materials,  the yield point. 

Even at comparatively low s t r e s ses ,  the s t ress-s t ra in  diagram for  
many materials deviates from the straight line (Hooke's law); for  non- 
ferrous metals, certain plastics, e tc . ,  this deviation is quite appreciable. 
Fo r  the overwhelming majority of materials the stress -strain diagram in 
uniaxial loading has the shape shown in Figure 1. 

Let us assume that a plate, weakened by a small  curvilinear hole, is 
in an uniaxial s ta te  of s t r e s s ,  with u = p =  const at infinity. The s t r e s ses  
in  the plate at a sufficient distance from the hole a r e  equal to p ,  cor -  
responding to  point A in Figure 1, while in the s t r e s s  -concentration zone 
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*I near the hole the s t r e s ses  will correspond to point B 
o r  be even higher. 
already slightly, but perceptibly from a straight line 
of Hookels law. 

Hookels law influence the s t r e s s  -concentration factor 
and the extent of the stress-concentration zone near 
a hole, in particular when the hole has corners  with 
small  radii  of curvature. 

F o r  these points the curve deviates 

It is natural to  ask how these small  deviations from 

For this it is necessary to 
compare, for the same case,  the results of the 
classical  linear theory of elasticity with those ob- 
tained by taking into account the deviations from 

' E  Hookels law. 
We thus must know the s t r e s s  concentration near 

a curvilinear hole in a physically nonlinear (deviating 
slightly from the l inear) plane field. In other words, 
we have to solve problems in which the linear relation- 

ship between s t r e s ses  and s t ra ins  (Hooke's law) in the principal equations 
of the classical  theory of elasticity is replaced by a nonlinear relation- 
ship, which for small  deformations (e. g . ,  in the case of metals, for 
s t ra ins  l e s s  than 0.1 70) goes over into Hooke's law. 

1201, where he assumes the simplest nonlinear relationship between 
s t r e s ses  and strains,  suggested by G .  Cowderer in 121 f 

FIGURE 1. 

0 u 

One method for solving these problems is discussed by this author in 

Here  K and G ,  a r e  respectively the bulk modulus and the shear  modulus 
of physically nonlinear materials for the case of i n f i n  i t e s i m a 1 s t ra ins ,  
and 

g (G) = 1 + g, L ; 

where a, is a constant determined experimentally by axial extension 
(compression) of a specimen of the material  whose tensile (compressive) 
s t r e s s  -strain diagram has the shape shown in Figure 1. This diagram 
can, with sufficient accuracy, be approximated by the relationship 

where e and a are respectively the axial s t ra ins  and s t r e s s e s  in the c ros s  
section of the specimen. 

solutions of the two-dimensional problem (plane state of s t r e s s )  of 
If we assume a s t r e s s - s t r a in  relationship in the form of (43), the 



the theory of elasticity reduces 120, 21 f to finding the s t r e s s  functions 
F ( x ,  Y) from the equation 

F x x n  $ 2  Fxxyy 4- F y y y y  + A [ (2FL + FZyy $ 2  F:, - 
- 2 F x x F y y )  F x x x x + . . .  + 1 2 F , y  (Fxxx F x x y f  

f2Fxxy Fxyy f b r y y  Fyyy) 1 =O; (46) 

with the appropriate boundary conditions, where 

is a constant of the material  and 

A s  shown by experiments, for nonferrous materials (copper and i ts  
alloys, etc. ) the dimensionless constant g, in (44) is of the o rde r  of 

magnitude of the moduli r( and 0, expressed in &, i. e . ,  10s to  106; hence 

for these materials A = ‘F!? is of the order  of the reciprocals of K and 

k 

A 

G ,  L e . ,  lO’5to 10-6. ([ For I example, k g J  tensile tests 041000 z2 kg for pure 

copper yielded the following results:  

k K = 1 . 3 7 . 1 P  c - :  G=0.46.108 %; g, =0.18.1@ ; A=0.255. ( 4 9 )  cm kg2 . 

In (46) the parameter A, given by (47), is small; this suggests that we 
seek the solution of this equation in the form of the expansion 

where Ho is a constant: 

Substituting this expansion in (46) and equating to zero the coefficients of 
equal powers of E ,  we obtain the infinite system of nonlinear differential 
equations (511 and (52) in the functions F0) (x, y )  and F c k )  (x, y )  (k -1, 2 , 3 . .  -) 

where Aa is a nonlinear operator on the functions and their derivatives of 
the preceding apprbximations, i. e , ,  the functions Fro) ;  P); P P ) ; .  . ;F(b)  and 
their  derivatives. The operator A, is given in  /21/ and 120 f ,  while the 
operator A2 is given by Jindra 123 /, 
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The biharmonic function f ( 0 )  ( x .  y) can be found using all  the poyerful 
tools of the two-dimensional problem of the l inear theory of elasticity /$  /. 
It is determined by taking into account the forces specified at the contqur 
of the hole and the given conditions at infinity. 
functions F " )  (x,  y ) .  F2)  ( x ,  y). . . a r e  determined from the n 9 n b  0 m P g e 0 e o u s 
equations (52), for  z e r o  forces a t  t h e  c o n t o u r  o f  t h e  Role  a d  
z e r o  s t r e s ses  a t  i n f i n i t y .  

of (52). 
equation (52) for the appropriate boundary conditions and conditions at  
infinity can be easily found by using the pQwerfu1 tools of the classical  
( l inear) two-dimensional theory of elasticity, developed by the school of 
Academician N. I. Muskhelishvili 111. 

The problem of the s t r e s s  distribution near a r o u s d  hole in a t @ i n  
p 1. a t  e consisting of a physically nonlinear (as defined by (4'3)) material ,  
was first  solved (with an accuracy up to the second approximatioq) by 
J indra 1 2 3 1 ,  who gave expressions for the s t r e s s  components negr the 
hole and, in particular,  at i t s  contour. 

On the other hand, the 

The main difficulty in Eolving this problem is to find a particular solution 
On the other hand, the general solution of the homogeneous 

In this approximation the stress -concentration factor in 

The second te rm in ( 5 3 )  is a correction for the physical nonlinearity of the 
material .  Thus, for copper this correction amounts to about 1070 for 
p = 3 3 3 . 3 ,  which is large enough to be taken into account. 

in the above manner. 
near a round hole in a nonlinearly elastic plate subjected to tension on all 
sides.  The solution is given as a t h i r d  approximation, i. e . ,  the s t r e s s  
function has the form 

Later I. A. Tsurpal 124-291 considered several  new problem5 formulated 
Thus, in 1241 he discussed the s t r e s s  concentration 

F ( x ,  y) = H, [I.'("' ( X .  y )  + E F "  ( x ,  y )  + $2 F2 ( x ,  y ) ] .  

The s t r e s s  -concentration factor was found to be 

-211-1.5 ~ ~ z + 1 0 . 6 0 5  k*,D'J. 
.-=R 

(54)  

It is seen from (54) that K primarily depends nonlinearly on the elastic 
properties of the material  and on the external load p .  

In this particular problem he investigated the r a t e  of convergence of succes- 
sive approximations by comparing the values of the stress-concentration factor 
obtained in the first, second, and third approximation for a copper plate whose 
elastic constants aregiven(49) .  Results of this comparisonaregiveninTable 9.  

It can be seen from the table that, at l ea s t  for axisymmetric states of s t r e s s ,  
the seagnd approximation is sufficiently accurate for engineering calculations. 

Paper  1251 deals with the s t r e s s e s  in a hollow cylinder subjected to  a 
uniform exteroal and internal p re s su re  (plane strain), taking into account 
the physical nonlinearity of the pipe material ,  defined by (45). 

infinity, The stress-concentration factor (in the second approximation) is 
Paper 1261 deals WitJI aplate  having a round hole, subjected to pure shear a t  

K =  u = -4 sin 28 +hr* (17.38 sin 29 -6.2 sin 68). (55) ( ) r -R  
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It follows from (55) that for  insignificant deviations from Hooke's law 
the s t r e s s  -concentration factor does not remain constant, but depends 
considerably on the external load and on the elastic properties of the plate 
mater ia l  . 

Stress-concentrat ion factor  acco rd ing  t o  

l inear  theory nonl inear  theory 
~ 

first second third 
approximation approximat ion  approximat ion  

TABLE 9 

2.000 
2.000 
2.000 
2.000 

100 
200 
300 
450 

1.990 1.990 
1.988 1.988 
1.985 1.985 
1.841 1.899 

Paper  1281 deals with the determination of the elastic constants K ,  
G ,  and g, for  certain materials. 

In a paper read at this conference, I. A. Tsurpal considers the c o n t a c t  
problem of r e i n f o  r c i n  g a round hole by an elastic ring made of another 
material. The formulation of this problem is s imilar  to that solved by 
Yu. I. Koifman and this author in /16 /. 
effect of the physical nonlinearity on the s t r e s ses  in a plate with a hole 
reinforced by either an elastic ring made of another mater ia l  or by a 
perfectly rigid ring, or finally, when an elastic washer is soldered into 
the hole. Al l  these problems a r e  discussed for both all-sided and uniaxial 
s ta tes  of stress at infinity. 

show that, when using the elastic relationships (43), i. e . ,  a t  an accuracy 
of up to  and including the second approximation of the physically nonlinear 
theory, the s t r e s s - c o n c e n t r a t i o n  f a c t o r  is l o w e r  than 
according to the linear theory. 

A s  in the general  case  of the nonlinear two-dimensional problem con- 
sidered in § 2 of the present survey, nothing has been published on the 
convergence of the successive approximations in the case  of the physically 
nonlinear problems considered in § 3.  Neither has anything been published 
on the s t r e s ses  near  a n o n c i r c u l a r  hole, using the s t ress -s t ra in  
relationship (43). 
the p h y s i c a l  n o n l i n e a r i t y  of the material  on the stress concen- 
tration at the c o r n  e r s of a hole. 

It is known from / l o /  that the method presented in /16/ for  solving 
physically nonlinear problems, using (43), opens a way to  solve certain 
problems of e 1 a s  t o p 1 a s  t i c deformation in the stress -concentration zone. 

In / 2 9 /  I. A. Tsurpal considered the 

Investigations 124-271 of s t r e s s  concentrations near r o u n d  holes 

It would also be very interesting to study the effect of 

§ 4. 

If a flexible elastic plate whose material  obeys Hooke's law is weakened 
by a smal l  hole and subjected to uniform compression along the external 
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contour of the plate, the latter will be in a plane s ta te  of s t r e s s ,  until loss 
of stability, i. e . ,  buckling occurs.  In this case a s t r e s s  -concentration 
zone a r i s e s  near the hole, which can be determined by known methods. 

Of considerable theoretical and practical interest is the problem of 
s t r e s s  concentration near a hole in an elastic flexible plate when the latter 
b u c k l e s  and undergoes p o s t  c r i t  i c  a 1  deformations. 

The only relevant works a r e  those by Y a .  P. Kayuk 1301 and 131 1, whose 
report  i s  presented to this conference. Hence I shall  dwell only briefly 
on the results obtained by him. 

obeys Hookels law. Axisymmetric postcritical deformation of a thin 
annular plate, weakened by a small  circular hole and subjected to  uniform 
compression applied to  its external contour, is considered under the 
following conditions: 1) the external contour is hinged; 2)  the external 
contour is rigidly clamped. 
loads. To estimate the s t r e s s  concentration near the hole a s  well a s  for 
purposes of comparison, he also considered the postcritical deformation 
of a s imilar  c o n t i n u o u s  plate. 
to  the integration of Karman's nonlinear equations, using the method of the 
small  parameter.  

Table 10 gives the membrane s t r e s ses  T& at the free (inside) contour of 

Unfortunately, this author knows of no published material  on this subject. 

He himself will supply the details. 
It is assumed in 1301 and 1311 that the plate material  is elastic and 

The contour of the hole is free from external 

The solution of this problem was reduced 

The results a r e  presented in Tables 10 and 11. 

Hinged 
P l a t e  

p =  0.10 

the annular plate. 

AP 
E =  - 

Pcr. 

Hinged ( TL&)~--O.~O 

Rig id lyc lamped  (&)p-o 1 

Rigidly c l a m p e d  
p = 0.12 

0.00 

-2  

-2  

TABLE 10  

-1.92 -1.69 

-2.67 -2.90 

Table 11 gives the moments M L  at the f r ee  inside contour of an 
a n n  u 1 a r plate and along the corresponding curve on a c o n  t i n  u o u s 
plate. 

TABLE 11 

Continuous 
Annular  

A P  Here, ?=  
PCr+AP' 

5.41 7+6.29q3 13.66q-6.2Oq3 
19.677 +3. 96q3  14. 1qffi.11q3 I 

Tables 10 and 11 show that in the case of a plate with hinged e x t e r n a 1 
contour, the c o n c e n t r a t i o n  of the m e m b r a n e - s t r e s s  T& at t h e  



f ree  c o n t o u r decreases with increasing postcritical deformations, while 
the m o m e n t s M&, i n  c r e a s  e in comparison with those at the correspond- 
ing (imagined) contour p = 0.10 of a continuous plate. 

increase in the postcritical deformations resul ts  in 1 a r g e r m e m b r a n  e 
s t r e s ses  K$, and moments M& at the f ree  contour p = 0.12. 

In the case of a plate r i g i d 1 y c 1 a m p e d along i t s  external contour, an  
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P A P E R S  R E A D  A T  M E E T I N G S  O F  
S E C T I O N S  A N D  S U B S E C T I O N S  

ANALYSIS OF BENDING A N D  VIBRATIONS OF 
P L A T E  SYSTEMS 

N. P .  A b o v s k i i  
(Novosibirsk) 

The paper deals with practical methods for analyzing plate systems. 
Bending of plate systems is analyzed by the methods of the theory of 

structures,  basically by a combination of the principle of superposition 
with numerical methods. By removing o r  imposing certain constraints 
the plate system is divided into a number of independent elements of the 
same type, in the same way a s  the pr imary system is obtained in the 
theory of s t ructures  by the method of forces or the method of displacements. 
Each typical plate element is analyzed by the relaxation method / 1 / for the 
case of a contour subjected to unit forces or s t ra in  factors and to the given 
load. 
flections and a r e  fundamental for the subsequent calculations. They a r e  
used to se t  up the equations of deformation continuity (a lso by numerical 
methods) at several  points of connection. 

The equations obtained a r e  similar to the equations of the theory of 
rod systems, and the known methods of the theory of s t ructures  can there- 
fore be used for their solution. 

The method proposed reduces considerably the number of equations, 
a s  compared with the traditional relaxation method, retaining the principal 
advantages of the latter,  which a r e  i t s  universality and i t s  applicability to 
systems for which no exact solutions exist (such a s  a system of plates of 
variable thickness, o r  of plates with holes and different contour conditions) 

Due to the determination of the conditions at  the joints by the more precise  
method of numerical differentiation / 2 /  than by the relaxation method, the 
accuracy of the solution is satisfactory even when only a small  number of 
points is taken inside the contour. This accuracy can la ter  be increased 
by successive approximations, using the resul ts  of the preceding approxi- 
mation without the need to solve the equations of the relaxation method in 
explicit form 1 3 1 .  

The solutions a r e  represented in the form of tabulated plate d e -  

1. BENDING O F  CONTINUOUS PLATES 

Consider rectangular continuous plates hinged on rigid supports. The 
flexural rigidity of each plate is constant over i t s  span. 
described above, we obtain the equation of deformation continuity of two 
adjacent spans of the continuous plate, along the line ( r ~ - 3 ) ~ - ( r ~ - - 3 ) ~ ~  expressed 

Applying the method 
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through the intensity of the end moments 

Here A1 and A2 (Figure 1) represent the support sections with unknown 
end moments a t  the nonadjacent supports of plates I and 11, and B the 
section at  the common support, except sections n.  

1:- 4 J% . 
DI A0 

,- - - is  the reduced step of the grid for plate j ,  

iik,, bkq a re  dimensionless numerical factors  in tabulated values of the de- 
flections w ~ ~ , , , ,  wiq of the hinged plate under the action of the end moments 
/3/ and the given load /4/ respectively. 

FIGURE 1. 

The calculations show that for  a continuous plate with square spans it 
is sufficient to satisfy the connection conditions only a t  the middle point 
of the support. In this case equation (1 ) reduces to the following 

In the case of a continuaus plate in the form of s t r ips  with square spans, 
equation ( 2 )  reduces to a three-moment equation 1 3 1 .  
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2. BENDING OF PLATES SUPPORTED ON ELASTIC 
BEAMS 

Consider a square plate loaded by a uniformly distributed load 9 
Sides AB and CD a r e  hinged on rigid supports, and sides AC (Figure 2) .  

and BD on elastic beams of equal rigidity. We shall use as  fundamental 
system a plate with f ree  edges AC and BD, i. e . ,  we remove the elastic 
beams from the plate. 

FIGURE 2. 

We shall satisfy the connection conditions of the plate and the elastic 
beams at points 1 and 2 (more  accurately along portions of length 1 with 
center at points 1 and 2 respectively). 
interaction forces between the plate and the elastic beams at these points. 
To form the equations we make use of the table given in 141, allowing for  
the symmetry of deformation. 

The unknowns here  will be the 

A3 A= - (1.0308 + 1.19 T) X,+ - (1.3148 + 1.79 r) X, = 3.7037-* 
D D 
x3 a s  - (0.6574 + 0.895 y ) X, + - ( 1.0308 f 1.2947) X, = D D D 

21 
El 

Here 1 = -1  El is thebeamrigidity,  D i s the  flexural rigidity of theplate. 

The comparison with the exact solution /5/ for the deflections at  points 
1 and 5 shows a discrepancy of 3 .96  and 0.70570 for 7 = 0.25, and of 2.86 
and 3 . 3 9 %  for the bending moments at the plate center. An accuracy of 
the same order  is obtained for other values of 7 as  well. It is thus seen 
that it is sufficient to satisfy the connection conditions at  three points 
of the edge. 

The plate is similarly calculated in the case of symmetrical  loading 
by unit forces  along portions of length k with center a t  points 1 and 2. 

Consider now a symmetrical  three-span plate with the middle span 
loaded by a uniformly distributed load (F igure  3, a). 
to each other and to the elastic beams (two-sided constraints). 
system can serve  a s  a scheme for  calculating ceilings, when the component 
plates do not form a monolithic floor. 

The plates a r e  hinged 
The given 
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I I1 1 1 1  I 1  .. . I I." I .I .. . , . .. .~ 

By means of suitable cuts (Figure 3, b) we transform the system con- 
sidered into a number of separate  plates, with edges f ree  o r  supported 
on elastic beams. Tabulated values of the deflections a r e  available for 
each of the plates obtained: tables / 4 /  for the extreme plates, and the 
above-obtained data for the middle plate. 

1 - L  a 4' '1 r* 11- I1 

I I I X 

FIGURE 3. 

By satisfying the connection conditions at three points of each edge a s  
above we obtain the system of equations 

0.6261 X, f 0.6701 X, = 0.8833 qX; 
0.3506 X ,  + 0.5215 X, = 0.6510 4)'. ( 4 )  

whence 

XI = 0.2689 9'1; X, = I .0670 qk. 

D 
The values of the deflections of the plate surface, multiplied by+,  a r e  

given below: 
W, = 0.4609, wa = 0.3447. w3 = 0.7998, W, = 0.9691, 

w5 = 1.3407, w6 = 1.0991, W, = 0.1267, ~ t p l g  = 0.02335, 
= 0.00299, w , ~  = - 0.07368, w1, = 0.1955, W,2 = 0.0599, 

wl, = 0.00857, w1, 5 - 0.01 118. 
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The bending moments at  the center of the middle plate a r e  found by the 
formulas of numerical differentiation: 

M ,  = 0.694 qk‘, My = 0.895 qk’. 

The simultaneous calculation of the three-span system leads to a certain 
redistribution of the s t r e s ses  a s  compared with the calculation of each 
plate separately. 
the adjacent plates on the middle one i s  equivalent to an increase of the 

1 rigidity of the elastic beams by a factor l a rge r  than two. 
7 

(very flexible beams) the e r r o r  in the values of the bending moments at 
the center of the middle plate increases to 40 70 for M,, and to 100 70 for My. 

In the example given the allowance for the influence of 

At the l imit  --0 

The e r r o r  decreases  with the increased of the beam rigidity, and at  _f_ > 10 
1 

the hinged plates can be considered a s  independent from each other, since 
their supporting beams become practically rigid. 

in a certain range to a very considerable error ;  
does not favor an increase of the safety factor, since the decrease of the 
moments of one direction is linked with the increase of the moments of 
the other direction. 

The analyzing method proposed in this paper can be used for analyzing 
continuous plates with elastic supports a s  well. This problem will not be 
treated here,  in view of the absence of tables relative to the action of the 
moments on the contour. There is, however, no basic difficulty in forming 
such tables. 

It is thus seen that neglecting the influence of the adjacent plates leads 
what is more, this e r r o r  

3. FREE VIBRATIONS OF PLATE FRAMESYSTEMS 
WITH RIGID SUPPORTS 

We shall consider the free  vibrations of plate systems made of plates 
continuous in one direction, supported on rigid supports. 

The differential equation of f ree  vibrations of a thin plate 

where ( E ,  1, f) is the deflection of the point with coordinates 

is 

( 5 )  

5 .  f rom the 
A- 

U U 
equilibrium positions; :, q a r e  the dimensionless coordinates: E = -. T = x; 
a is thelength of the rectangular plate along the x axis; (I) is the frequency of 
natural vibrations: 

where q = i h  is the weight of the plate per unit surface. 
The solution of ( 5  ) will be sought as usual in the form 

G = ( A  cos ot + B sin w t )  w ( E ,  7). (7) 
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The deflection amplitudes will be determined from the equation 

V 2 V k  (E, d - Pm (E ,  9) = 0 ,  (8  1 

which will be solved by the Levy method for the case of loading of a hinged 
plate by amplitude end moments -MA (E) and %E (E) distributed according to 
some law along the parallel supports T = 0 and = P: 

where 
k:. = nW- p, kk  - kIn = 2&, 

a .  k t n = n 2 r 2 + p ,  p =  -. 
b 

I j !%=2 ~ R A  ( E )  sin nzEdE; M:= 2 ( E )  sin r,*EdE. 
0 

M:. Mkare the integral values of the end moments. 

edge of two adjacent plates i and i +  I is 
The condition of continuity of the deformation on the common supporting 

Substituting ( 9 )  yields 

6.  Do . where b; = 2 - is the reduced length of the plate 
Di bo 

span along the y axis; 

I ' ( 12 )  

a r e  functional coefficients. 

be called the four-moment equation of the theory of vibrations of plate 
structures. 
each nodal line of the plate structure, equation (11 ) reduces to a three- 
moment equation: 

Condition (11 ) connects four integral values of the end moments and can 

In the particular case  when only two plates a r e  connected a t  

M;A,ibi 4- M:+I (Bn, ib;+ 8.. < + I / > ~ I )  + M:+z Am, I + I  ~ I + I =  0. ( 1 3 )  

Equations (11 ) and (1 3 )  coincide in s t ructure  with the s imilar  equations 
of the theory of vibrations of rod systems, and reduce to the la t te r  for 
a - w .  
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The sequence and method of determining the natural frequencies of 

The frequency of a given se r i e s  is determined by equating the determinant 
the plate system considered remain the same a s  in the similar rod systems. 

of system (1 1 ) or (1 3 ) to zero at given n. 
of ser ies .  
tions along the E axis. 

to be represented in the form 

There a r e  an infinite number 
Each se r i e s  is characterized by a constant form of the vibra- 

In the case of a plate continuous in two directions the solution of (8 ) is 

where 
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BENDING OF THICK PIPES 

B . L .  A b r a m y a n  
(Yerevan) 

1. We consider the s t ressed state of a thick pipe under the action of 

The problem will be solved with the aid of Papkovich's functions 11, 2 1 .  
a bending load ( s e e  figure). 

x t  

FIGURE. 

In cylindrical coordinates r .  T, z the displacement components a r e  
expressed through Papkovich' s four harmonic functions by the formulas 

where 

W 
4(1  - v )  dr 

-s 
I 

t i r  = cos 'p + @, sin 'p - 

1 dYJ. 
4(1  - v )  dz ' 

u;= @, - - __ 

is the Poisson ratio.  
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Before proceeding to the analysis of the problem formulated, assume 
that a homogeneous elastic body of revolution is deformed symmetrically 
relative to plane XOZ, and le t  the plane y 0 be the only plane of symmetry 
(figure). Measuring the angle 'p in the xl plane from the x-axis we find then 
that the displacements ur  and uz a re  even functions of 'p, and the displace- 
ment up is an odd function. 

series: 
These displacements will be represented in the form of the following 

This same representation is used in  Solyanik-Krassa's papers  13,  4 /  

It is easily seen that in this case T,? and T~~ will be odd functions of y, 

Note also that in order  to ensure such a s t ressed s ta te  in a homogeneous 

in connection with several  problems of the theory of elasticity. 

and the remaining s t r e s s  components, even functions. 

body of revolution the tangential component of the surface forces  must be 
given a s  an odd function of 'p, and the remaining components a s  even func- 
tions. Such a formulation of the problem makes i t  possible to represent  
Papkovich' s harmonic functions Oi ( r ,  'p, L) as expansions by trigonometric 
functions of 'p. 

R.epresent the functions a, in the following form 151:  

Relationships (1.4) will be satisfied in this case. 
The functions (pB in  expressions (1.5) must satisfy the equations 

where 

(1.5) 

(1.7) 
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I I I  

Using formulas (1.5) and (1.4), we obtain the following expression for  
the expansion coefficients a k ,  ' u k ,  and wk: 

d -& (rplk + Zvak + ' fo r ) ,  (k  = 0. I . . . . ) .  
1 

4 ( 1  - V )  
Wk (r,  z )  = y%- 

Using the expansions for the s t r e s s  components, we obtain the following 
expressions for the coefficients of these expansions: 

(1.10) 

The three-dimensional problem of the determination of the functions 
' (bi(r ,  'p, z )  has thus been reduced to the two-dimensional problem of determin- 
ing the functions cplr ( the boundary conditions for the functions qi,, a r e  formed 
with the aid of the coefficients of the expansions by the coordinate p of the 
displacements and s t r e s ses  given on the body surface). 

We now proceed to the treatment of the problem of the bending of 
an infinite pipe by forces applied to its external la teral  surface symmetrical-  
ly relative to the x z  plane. 

2. 

The boundary conditions for this problem a r e  

G r ( R ,  Q. Z )  =f(?, 21, Trz  ( R ,  ?, 2 )  = %r(R, 'f, 2 )  -0, 
( 2 . 1  1 

CY (S, p, 2 )  = T ~ z  (S, 'p, 2 )  = T9r ( S ,  9, 2) = 0. 

where the function f (y, 2 )  is continuous along separate  sections and of 
bounded variation in the intervals considered. 
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In particular, the s t r e s s  a r ( R ,  v, z )  can be represented in the form of a 
distributed load acting on the portions of the la teral  surface of the pipe 
(figure) in the following way: 

--P ( 0 < ? < ' p o ;  0 < Z z , < E ) ,  

f(P, 2) = - p *  ( z - T J 0 4 ? < x ;  l , - € * < z t l l l + E , ) r  (2 .2)  
0 (on the remaining par t  of the 

la teral  surface). 
i 

W e  shall also use the following symmetry conditions relative to the x y  
plane: 

u,(r, v, 0)  = =rz ( r ,  7 ,  0 )  = T v t ( r r  Y ,  0 )  = 0. (2.3) 

'Pok ( r .  2 )  = [ f k  (A) fk (Ar) $. FK ( A )  Kk (Ar)] COS A2 dA, I 
where l i(x) and K i ( x )  a r e  Bessel functions of the f i rs t  and second kind of 
an imaginary argument 1 6 1 .  

displacements and satisfying the boundary conditions (2.1 ) and (2.3) we 
obtain the following system of six equations with six unknowns for the 
determination of the integration coefficients: 

By substituting these expressions in the formulas for the s t r e s ses  and 

AkUf) (R)  f Bkbr'(R) f C,Cjl"(R) f DkdL1)(K) f h.E&ef'(R) + 



(2.7) 
(cont'd) 

The solution of system (2.5)  and the determination of the integration 

The displacements and s t r e s s e s  a r e  determined from relationships 
coefficients end the solution of the problem. 

expressed through Fourier s e r i e s  by the coordinate 'p and Fourier integrals 
by the coordinate z .  
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3. Consider now a finite pipe of length 21 subjected to the action of the 
same bending load as  in the above case of an infinite pipe. 
conditions will therefore be once more ( 2 . 1 )  and ( 2 . 3 ) .  

The boundary 

Let the following conditions be fulfilled at  the end z = I  : 

u d r ,  p. 1 )  = fi (r, 71, T r z  ( r ,  T, 1 )  =fi (r .  TI. 772 (r,  7 ,  1 )  = f 3  (rr ?), ( 3.1 1 

where f, i s a  boundedand continuous function, and f2 and f3 a r e  boundedand 
continuous by par ts  within the ranges of variation of the variables 
r andy .  

We shall represent  the functions v,, ( r ,  z )  for this problem in the form: 
c4 * 

y,k( r ,  z )=  2 ~ i i i  ( 4  cos z + 2 vyi!,, (2) Wbti O . m r ) ,  
m=O m = l  

* s 

‘p0, ( r ,  z)= 2 ( r )  cos I,, z + 2 y+,~,,,(z) wk (Am r )  + y&z(r, z), ( 3 . 2  1 
m-0 m - l  

where 
m -1 m r l  

( 3 . 3 )  

.Ii ( x )  and Y l ( x )  a r e  Bessel functions of a rea l  argument of the f i r s t  and second 
kinds respectively. 

linear equations of the type ( 2 . 5 )  in this problem a s  well. 

of the problem will reduce to infinite systems of l inear  equations. 

The determination of the integration constants can be reduced to solving 

If conditions ( 3 . 1 )  a r e  replaced by more general conditions, the solution 
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GENERAL EQUATIONS OF NONSYMMETRICAL 
SANDWICH SHELLS WITH A LIGHT FILLER 

K . G .  A b r a m y a n  

(Leningrad 

Consider a thin nonsymmetrical sandwich shell of arbi t rary shape 
loaded with a normal pressure.  
pressible but light, i. e . ,  that it is subjected to t ransverse shear only. 
The normal element of the fi l ler  does not bend after the deformation and 
remains recti l inear.  
bearing layers .  

It is assumed that the filler is uncom- 

The Kirchhoff-Love hypothesis is t rue for the 
The problem will be solved by the variational method. 

In the s ta te  of equilibrium 

where 6n is the variation of the shell potential; anb is the variation of the 
potential energy of the faces; 6nf is the variation of the potential energy 
of the filler; SQ is the variation of the work of the external forces.  

The potential of the shell  considered will be  
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where Tl i ,  TZi ,  Si a r e  forces per  unit thickness in the faces; MU, M2ir Hi a r e  
moments in the faces; N,, N, are shearing forces  per unit thickness in the 
filler; A,, A ,  a r e  Lame' parameters;  %, a2 a r e  curvilinear coordinates; 
u- u + u  I 2 .  'u- 'u 1 + 2 a r e  the half-sums of the tangential displacements; 

2 '  2 
w, u i ,  vi a r e  displacements of the faces; R,, R, a r e  radi i  of the principal 
curvatures of the shell; 
a -  4-u2  3 p=-  *I-- O1 a r e  relative differences between the tangential 

displacements of the lower and upper faces; c is the thickness of the 

filler layer; tc = - f l + t l  is the reduced thickness of the faces; 

thickness of the upper face; 

of the faces by the following expressions: 

c + t c  c + t, 

f ,  is the 
2 

t, is the thickness of the lower face. 
The displacements and angles of shear of the filler a r e  related to those 

c + t, t c  1 dw t - i t ,  1 d w .  
c (.+ ---I+'- c + t ,  A,da, 4 A, -- an,' 

u f = u + z - - -  

In the symbols adopted, the tangential displacements of the 
will be 

Equation ( 2 )  can be represented after integration by par t s  and 
of the t e rms  in the form: 

( 3 )  

( 4 )  

faces 

( 5 )  

regrouping 

- 

N18a + N#+ __ -- + -- dAINz ) d w  ]) A,A,da,dz, -+ 
c A,:, ( '::,". daz 
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The equilibrium equations become particularly simple i f  they a r e  formed 
for  several sum and difference combinations of the forces and moments 
of the faces. 

Actually, these wil l  be the equilibrium equations of some equivalent 
shell in which forces and moments act in sum and difference combinations 
in the sections, a s  well a s  shearing s t r e s ses  in the filler. These com- 
binations can be obtained by substituting in ( 6 )  the values of ui and vi by 
formulas ( 5  ) . 

The potential of the equivalent shell differs from the potential of a one- 
piece shell by the presence of t e rms  characterizing the filler energy. It 
follows that the system of equations of the sandwich shell will contain two 
more equations than the system corresponding to the one-piece shell 
(corresponding to the variation of the parameters  a and p )  and additional 
t e rms  in the third equation (corresponding to the variation of the normai 
displacement due to the shear in the filler). 

Using the formulation proposed, we shall transform system ( 6 ) ,  by 
introducing the following symbols : 

By the method of variation of the displacements u, v, w, a, 9 we obtain the 
following system of equilibrium equations of nonsymmetrical sandwich 

4. 
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5 d A  dA dA,m, 
m, -l +m,, -‘ + - -t -- dA,% 

da, da, (la, da, 

Equations (8 )  can be transformed into equations in displacements. 
formulas connecting the forces with the displacements a r e  

The 
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1 dA, dut H = ( l - p ) D  I A.:, (:%-A,% dc- 
1 du 1 dA, .j+ ----)+L( 1 dA,dw 

A, da, da, R, A2 ds, A,A, da, 

+ -  1 ( - 1 dv 1 d A C v ) ]  + 

R, A, da, A,A, da, 

m , = ~ ~ { [ - ( - + l  1 da dA'p)+,L--(-+-. 1 d3 1 dA -za)] j 

AI .da, A, da, da? A, dA, 

1 du 1 dA 
+ v  +----v+ 

[ A ,  da, A,A, da, 
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where 

The transformation of the equations in forces  into equations in displace- 
ments is in the general case  a very cumbersome and unexpedient operation, 
The procedure to be used will be illustrated on the example of a c i rcular  
cylindrical shell. 

In this case: 

~ , = w ;  ~ , = r = c o n s t ;  A , = A , - ~ ;  a,=E=-; X a , = a = S .  

r r 

The substitution of the values of the forces  and moments by ( 9 )  to (13)  
into the equilibrium equations yields 

1 + p  Pw d w  u+-- - - + p -  + ) 2 dEd0 dt 



where 

Equations (15) a r e  transformed by introducing the displacement functions 

where 

If the bending and chain s t r e s ses  a r e  commensurable, equations (17 ) 
simplify and reduce to 
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3. 

r2k + (v2v2 - g v ' )  F = 0. 

This system is reduced by eliminating the functions 0 and F to the following 
equation: 

where 

Equation ( 1 9 )  can be used for determining the critical load of a circular 
cylindrical shell subjected to the action of an all-round hydrostatic pressure.  

If the load and deflection a r e  represented by the following expressions: 

( 2 1  1 xi- 

I w = A sin A t  sin ne, 1 = -, 

the following formula is obtained for  the critical load of a nonsymmetrical 
shell 

D ( n2 + A2)2 
p = -  . +  

The underlined te rms  in (19)  and ( 2 2 )  a r e  to be neglected i f  the flexural 

The following equation is obtained from (15) a s  a particular case 
rigidity of the faces is neglected. 

corresponding to the symmetrical deformation of a circular symmetrical 
cylindrical shell-": 

* Equation (23) was obtained by M.Ya. Sharaev. 
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In the case of hydrostatic pressure,  and i f  the flexural rigidity of the faces 
is neglected, equation ( 2 3 )  reduces to the well-known equation 

A t  k-, oc this equation is transformed into the Timoshenko-Papkovich 
equation. 
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II 111111 

ON THE BENDING OF A CANTILEVER PLATE 
WEAKENED BY A HOLE OF ARBITRARY SHAPE 

A . M .  A v e r i n  

(Saratov) 

The paper deals with the problem of the concentration of s t resses  in a 

The problem is solved by Muskhelishvili's method 111, making use of 
bent thin isotropic plate having a hole of arbitrary shape. 

the similitude established by Lekhnitskii 121. 
f i rs t  and second fundamental problems, in the same way as  done in 
Burmistrov' s paper / 3 1 .  

satisfying on the contour of circle 7 the condition 

A solution is also given to the 

The problem reduces to finding two functions of a complex variable 

, " '  
Here D = e'' is a point on y;  Q (i) = fi Y (E) = ' m a r e  defined by 

a' (C) (U' (C) 
m 

OD 

ITi' (C) = YAC) + Wo (0, V0(C) = 2 a i r k .  
k-1 

The functions Ql (i) and VI (L) a r e  defined by the s t ressed state in the con- 

Let a hole be cut a t  the center of a cantilever plate of width 2b, and let 
tinuous plate. 

the hole contour be defined by the equations / 3 /  

Let the plate be bent by a uniformly distributed load of intensity p as  

The functions defining the stressed state in a continuous plate a r e  
indicated in the drawing. 

Let the function 1 3 1  

142 



map conformally the exterior of the c i r c l e  'I into the exterior of an infinite 
plate with a hole ( 3 ) .  

I? 
FIGURE. 

By integrating (1)  a s  indicated in / 3 /  we obtain 

The u s e  of the condition of single-valuedness of the displacements / 3 /  
for  constant C, yields the expression 

" n 

C , = x S ~ ? b + l  +LiRXSkSk-l+L,RS2.  (7) 
.k=l k=? 

The coefficients uk = ak + i p ~  in ( 6 )  a r e  found from the system 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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" I  h - 1  
+ X s i n X k S k  s i n ( k + m + l ) B - - i S ~ s i n ( k + m - i ) B  

m-1 k=l 

1 ASi sin (). -- 2) B + 

where 
" 

k - ?  

n n " I 
i L = 1 + 2 k?S2+2 C O S  0 k ( k  - 1) SkSk-1 - 

k-1 

-2 kSr COS ( k  + 1) 4 + 2 cos (m- 1) 8 +x A [I. - ( k  - l ) ]  SASA+. ; 
k=l k-3 i.- k 

w. L --?E. L 4Pb 
2p L - - ,  3 -  8 0  4 -  

8 0  ' '- 8D L , =  -; 
8 0  

The extreme values of the bending moment on the contours of several  
holes for the two problems a re  given in the table. 

It is interesting to note that the constant C, determined by ( 7 )  is, in 
the f i rs t  problem (empty hole), equal to zero for all the holes having two 
and more axes of symmetry and different from zero for all holes with a 
single axis of symmetry. 
solutely rigid core) the constant C, is equal to zero independently of the 
hole shape. 

In the second problem (hole filled by an ab- 



Hole shape 

Circle 

Ellipse 

N ear-square 

N ear-tri- 
angular 

8" 

200 
340 

0 
180 

0 
180 

0 

TABLE 

Problem 1 (z=-~S) 
M3max 

in fractions of pR 

-4.14 
-4.14 

-5.28 
-5.28 

-5.26 
-5.26 

-6.85 

8' 

90 - 
90 
- 

75 
05 

90 

4 m i n  
n fractionsofpR 

-0.41 
- 

-0.36 
- 

- 0.61 
- 0.61 

-0.34 

Problem 2 ( % = I )  

195 -1.94 
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ON REFINED REISSNER- T Y P E  THEORIES OF PLATES 

L .  Ya. A i n o l a  

(Tal l i d  

Numerous studies have lately been devoted to the subject of refined plate 
theories  /1 -16 / .  
Re i s sne r ' s  theory /1-3/. 
theory by replacing the l inear  distribution of s t r e s s e s  ant through the plate 
thickness by a distribution represented by an a rb i t r a ry  function 0 (z) .  

In this note the function *$ (z )  is considered a s  an unknown function, to be 
determined during the solution of the problem. Using the variational 
principle, a system of integral-differential equations is derived, consisting 
of Reissner- type plate equations and an additional equation for determining 
the function 9 (z) .  

The f i r s t  and most  well-known of these theories is 
Gol'denveizer / 9 /  has  generalized R e i s s n e r ' s  

1. PLATE EQUATIONS 

Consider a plate of uniform thickness h loaded by normal  forces  L P  2 
1 
2 along the surfaces  x3 = z = k -- h .  

The equilibrium equations and the boundary conditions of the plate will 
be derived from Castigliano's variational principle of the l inear  theory of 
elasticity 

The varied s t r e s s e s  sik in (1.1 ) must  satisfy the equilibrium conditions 
These la t ter  have the following fo rm and the statical  boundary conditions. 

on the plate surfaces  z = k - - h :  
1 
2 

Following Gol'denveizer 191, we shall approximate the s t r e s s e s  in the 
fo rm 

o"? = - M'P (XT)  +" ( z ) ,  jS3 = P ( x T )  9' ( z ) ,  

GJ3 = P q  (Z), (1.3) 
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where the function J, (2) is odd and satisfies the boundary conditions 

while the magnitudes Ma?, 1/̂  satisfy the conditions 

V - vP Map = 0, 

v0v* + P = 0. 

The p r imes  denote derivatives with respect  to z .  
Note that the following equalities a r e  satisfied: 

(1.7) 

It follows that Ma?, v' can be considered a s  moments and shearing 
s t r e s s e s  of the plate. Equations (1 .5)  and ( 1 . 6 )  a r e  respectively the 
equations of plate equilibrium in moments and in shearing s t r e s s e s .  

to the integrand of (1.5) and ( 1 . 6 ) ,  multiplied by the Lagrange multipliers 
p, ( x i ) ,  ai(xr), yields: 

The substitution of s t r e s s e s  ( 1 . 3 )  in the functional (1.1) and the addition 

where u , ~  i s  the me t r i c  tensor of the plate. 

l ibrium equations ( 1 . 5 ) ,  ( 1 . 6 )  and the following additional equations: 
The variation of (1.8 ) by the functions M-6, V, vs, w ,  3 yields the equi- 

where 

I ,  h 

n 

.- 

( 1 . 1 0 )  

(1.11) 

(1 .12)  
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and 

( 1 . 1 3 )  

The following homogeneous boundary conditions a r e  obtained f rom (1.8):  
1) statical  conditions 

Mapn.ns = 0. MaPn,fp = O ,  V*na = 0: (1.14) 

2) geometrical  conditions 

'pan. =0, 'put, = 0, w = 0. ( 1 . 1 5 )  

n., f, a r e  components of the unit normal vector and the unit tangential 
vector of the contour. 

Equations (1.5), ( 1 . 6 ) ,  ( 1 . 9 )  to (1.11) fo rm a system of integral-  
differential equations which is complete relative to the unknown magnitudes. 
At constant values of the coefficients A , B  equations (1 .5 ) ,  ( 1 . 6 ) ,  ( 1 . 9 ) ,  
( 1 . 1 0 )  coincide with the well-known Reissner-type plate equations derived 
by Gol' denveizer 9 1 .  

is easily obtained from equa- 
tions ( 1 . 5 ) ,  ( 1 . 6 ) ,  ( 1 . 9 ) ,  and (1.10): 

The following system relative to V a  and 

This equation reduces on the strength of ( 1 . 6 )  to  

E 2 - v  
1 - v? 1 - - v  ~ A'w = AP - - Bv2P. (1 .17)  

The solution of the system ( 1 . 6 ) ,  (1 .16)  can be represented in the form 

(1.18) v, = Val + V.2, 

where V.1 is a par t icular  solution of the system of the fo rm 

( 1 . 1 9 )  

and Va is the general  solution of the corresponding homogeneous system. 
If we write 

v02 = c!vp@ ( 1 . 2 0 )  
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(c! is the discriminant tensor), the homogeneous equation reduces to 

Bv2@ - A @  = 0. (1.21) 

The solution of the plate problem has thus been reduced to integrating 
the system of integral-differential equations ( l . l l) ,  (1.17), and (1 .21 ) .  

2 .  ELIMINATING EQUATION ( 1.1 1 ) 

Depending upon the relative magnitude of the parameters 

the following solutions a r e  obtained for equation (1.1 1 ) with boundary 
conditions (1.4): 

a) i f s> l r l ,  then 

1 
= Q- [(a sha sin + e ch a cos fl) sha Z cos PZ + 

where 

and 

b) if  s < l r l ,  then 

where 

22 z = - -  
h ’  

where 

The coefficients A and B calculated by (1.12)  will have the following 
values for the cases considered: 
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for case a) 

A = (a' + ?')2h-3Q--?[2 (a? - 8') ( 1  + ch 22 cos 28) + 418 sh 22 sin 23 + 
+ a-lp-1 (ch 2a + cos 2p) (P3 sh 2a - a3 sin 2p)], 

B = - ( U ~ + P ~ ) ~ ~ - ~ Q - ~  4 [-2(1 +ch2acos2/3)+ 1 

-I- a-lp-l (a' + B2)-1  (p3 sh 22 + a3 sin 2p) (ch 2a + cos 2p)l; (2.8 1 
for case b) 

for case c) 

A = - 1 C3h-3n-2 [2C(8Cz - 3) + 3(8i2 + I)sh2S - 
3 

-2i(4C2+ 3)ch2C+3C2sh4C], 
5 = r ~h-ln-2[  - (16i3 + 9C) + 3sh2C + 2:(4C2 - 3)ch2C - 3kh4C + 

12 + 3 (i2 + 1)  sh 451. ( 2 . 1 0 )  

The coefficients A and B obtained a r e  complex functions of the unknown 
plate parameters.  
be complex integral-differential equations, and it will hardly be possible 
to use them as  such in the solution of nonelementary plate problems. 
These equations are,  however, easily solved by iterations: the problem is f i rs t  
solved by assuming some constant values for A and B ;  the solution obtained 
is then used for calculating A and 5 from the formulas given, and so on. 
Each iterative step will consist in solving a system of ordinary Reissner- 
type plate equations. It is of course necessary to determine whether this 
iterative process will converge. 

The plate equations (1.5), (1.6), ( 1 . 9 ) ,  (1.10) will therefore 

Q R 
P P Note that at the limit - - t o  and - - 0  the function $ reduces to 

and the corresponding coefficients wil l  be constants: 

( 2 . 1 1 )  

(2 .12)  

For these values of the coefficients the plate equations (1.5), ( 1 . 6 ) ,  
(1.9), (1.10) coincide with Reissner 's  plate equations /1-3/ .  



3. EXAMPLE 

Consider an elementary problem which can be solved directly be means 

Let a square hinged plate of width 2a be loaded by a sinusoidally varying 
of the equations given. 

load 

P = Po sin Sx sin Ey, ( 3 . 1 )  

n x  
a where E = -, and n is an integer. 

If the boundary conditions are: 

the system ( 1 . 6 ) ,  (1.1 6 )  will have the following solution: 

( * -- ''I ( A + 2 
4E'E 1 -  

E2B) sin Ex sin E v ,  W =  

V, = %cos Ex sin ~ y ,  

V" = 2E s1n Ex cos Ey. 

M, = M ,  = p0 (!$ + - - sin ix'sin ~ y ,  

23 

Po . 

The corresponding moments wil l  be 

h AB) 

( 3 . 3 )  

( 3 . 4 )  
+ - - cos Ex cos Ey. 

= Po ($$ 1 AR) 
Using relationships ( 1 . 1 3 ) ,  ( 2 . 1 ) ,  ( 3 . 3 ) ,  and ( 3 . 4 ) ,  we obtain that 

( 3 . 5 )  

It is easily seen here  that s > l r \ .  The substitution of ( 3 . 5 )  into ( 2 . 3 )  
and of the resulting expressions into (2 .8)  yields a system of equations for 
determining the coefficients A and 8. 
of the soldtion of this system for several values of the coefficient 

The table l i s t s  the numerical results 

( 9 - h: which characterizes the variation of the surface load v = - . 
It is seen from the table that the coefficients A ,  B a r e  near to the 

a Reissner coefficients down to ==2. 



TABLE 

I 

15.42 1.097 0.0711 
12.18 1.173 0.0962 
12.03 1.187 0.0987 
12.01 1.191 0.0992 
12.00 1.200 0.1000 

BIBLIOGRAPHY 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

R e i s s n e r , E. 

R e i s s n e  r , E. 

R e i s s n e r , E. 

B o 11 e ,  L. 

On the Theory of Bending of Elastic Plates.  - J. 
Math. and Phys. ,  Vol. 23. 1944. 

The Effect of Transverse Shear Deformation on the 
Bending of Elastic Plates. - J.  Appl. Mech., Vol. 12, No. 1. 1945. 

On Bending of Elastic Plates.  - Quart. Appl. Math., 
Vo1.5, No.1. 1947. 

6lastique.- Bull. Technique de la Suisse Romande, Vol. 73, 
Contribution au problGme lin6air-e de flexion d'une plaque 

pp. 1-2 .  1947. 
H e n  c k y , H. 

ebenen Platten.-Ing. Archiv, Vol. 16 .  1947. 
G r e e n ,  A .  F. 

-Quart.Appl. Math., Vol. 7, No. 2. 1949. 
S c h a f e r , V. M. 

dunner schwach gebogener Platten.- ZAMM, Vol. 32, No. 6. 1952. 
V l a  s o v ,  B. F. Ob uravneniyakh teorii izgiba plastinok (On the 

Equations of the Theory of Bending of Plates).  - Izvestiya A N  
SSSR, OTN, Vol. 12. 1957. 

Reissner '  s Theory of Bending of Plates). -1zvestiya A N  SSSR, 
OTN, No.4.  1958. 

of Bending of Plates of Medium Thickness). - Izvestiya A N  
SSSR, Mekhanika i Mashinostroenie, No. 2. 1959. 

on the Bending of Rectangular Plates.- J. Appl. Mech., Vol. 27, 
No.1.  1960 .  

gular Plates.- J.App1. Mech., Vol. 27, No. 3. 1960. 

of Anisotropic Shells) .- Fizmatgiz. 

nii v teorii  izgiba plit (Allowing for the Influence of Shearing 
Stresses  in the Theory of Bending of Plates).  - Izvestiya AN 
ArmSSR, seriya fiziko-matematicheskikh nauk, Vol. 14, No. 1. 1961. 

Theory of Plates of Medium Thickness).-PMM, Vol. 26, No. 2.1962. 

Foundation.- J. Appl. Mech., Vol. 29, No. 2 .  1962. 

Uber die Berucksichtigung der Schubverzerrung in 

On Reissner 's  Theory of Bending of Elastic Plates.  

ijber eine Verfeinerung der  klassischen Theorie 

G 01 ' d e n  v e  i z er , A. L. 0 teorii izgiba plastinok Reissnera (On 

M u s h t a r i ,  Kh. M. Teoriya izgiba plit srednei tolshchiny (Theory 

S a l e r n o ,  V. and M.A.  G o l d b e r g .  Effect of Shear Deformations 

V 01 t e r r a ,  E. 

A m b a r t s u m y a n  , S. A .  

K h a c h a t u r y a n ,  T. T. Ob uchete vliyaniya kasatel'nykh napryazhe- 

Effect of Shear Deformations on Bending of Rectan- 

Teoriya anizotropnykh obolochek (Theory 
1961. 

P on  y a t o v s k i  i , V. V. 

P i s t e r ,  K.S. andR.A.  W e s t m a n .  BendingofPla tesonanElas t ic  

K teorii plastin srednei tolshchiny (On the 

152 



TWO PROBLEMS CONCERhTNG SANDWICH PANELS 

A .  Ya. A l e k s a n d r o v  
(Novosibirsk) 

I. CALCULATING SANDWICH PANELS WITH FILLER 
MADE OF GLASS STAMPINGS OR BARS 

Plane and curved sandwich panels with filler made of glass particles 
punched from one of the faces in a rectangular or triangular grid pattern 
have been frequently applied lately. These glass particles a r e  welded or 
soldered by their bases to the other face (Figure 1 ) .  
to punch the glass particles separately, and then fasten them to both faces 
of the panel (Figure 2, a). The calculating model is in this case the same 
a s  that of a panel with fi l ler  made of continuous ba r s  (Figure 2, b). 

It is also possible 

FIGURE 1 

Bending and buckling calculations of such panels a r e  conducted by the 
formulas obtained for sandwich panels with compact filler and various 

faces. The rigidity of the punched face is 
calculated in the same way a s  the reduced 
rigidity of a plate weakened by holes and 
reinforced by soldered tubes (Figure 2, c). 
The rigidity of the second face is calculated 
in the same way a s  the reduced rigidity of 
a plate reinforced by washers and tubes 
(Figure 2, d). 

The reduced moduli of normal elasticity 
of such a filler can be taken a s  E x =  Ey = 0. 

in a rectangular grid pattern, the relative 

In view of the la rge  

a b 

FIGURE 2. 1. If the glass particles a re  arranged 

shear of the faces in the x direction will cause the sandwich plate to acquire 
the shape represented by the dotted line of Figure 3. 
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I II I I11111111 

rigidity of the glass particles in the direction of their axis, the shaded 
par t  of the faces (Figure 3),  bounded by curves of the type 

x = a r ( I - ~ s i n 2 2 )  
2b 

( r  = r I  or  r = r,; k (0 < k 4 1) is an unknown parameter determined from the 
condition of minimum of the deformation energy), is not deformed, and 
only rotates by an angle a .  

tx D 

t t tit1 t t t  t t t t t t t t t t t  t t  t f t  t tit t ," 

FIGURE 3 .  

The equation of the elastic surface of the face element, bounded by the 

l ines x = 0. y = 0, y = b and by the curve x =f ( y )  = a - r 

element is repeated continuously along the face), will be represented 
in the form ZE, ( x ,  y )  = A ( y )  x + B ( y )  XI where A(y)  and B ( y )  a re  to be found from 
the condition of compatibility of deformations of the elements. 

constant c ross  section jammed between the plate faces. These ba r s  will 
bend during plate deformations, and the position of the inflection point on 
them wil l  depend on the ratio between the rigidities of the faces (Figure 5). 
A part  of the glass particles wi l l  be considered a s  cantilever beams 
jammed between the plate faces. 

particles to the energy of deformation of some conventional homogeneous 
fi l ler  a t  a certain mutual displacement of the faces, and by determining 
the parameter k from the condition of energy minimum@< I), we obtain 
the following formula for determining Gx2: 

1 - k sirPY (this ( 26 ) 

The glass particles wil l  be considered approximately a s  bars  of circular 

By equating the energy of deformation of the faces and the glass 
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where $= zl- (a,, az cf. Figure 5) is  determined from the condition 
=e 

-_ dG,z - 0  (1 .2 )  
dB 

which is equivalent to minimizing the energy; 

cylindrical flexural rigidities of the faces; EcIc is the rigidity of the glass 
F ,  and F ,  a r e  found from Figure 4 for givenu, b, and r ;  D, and V, a r e  

particles. 

30 

25 

20 

15 

IO 

5 

0 

Rectangular grid 

2 3 1 5 6 7 8  

FIGURE 4 .  

Condition ( 1 . 2 )  yields the following expression for p :  

p s  - 4HV,F? + EJC , 

4 H D i F i t  Eclc 

If the faces a r e  identical, p = 1, and 
1 

2abH - + ~ _ _  
( 2 D F  3EcIc 

G,, = 1 

( 1 . 3 )  

(1.4) 

If the deformation of the glass particles is neglected, this reduces further to 

The same formulas (1.1 ) -( 1.5) can be used for determining the reduced 
modulus Gyt; 
and F, from the graph. 

relative shear  of the faces in the'n direction will cause the sandwich 
plate to acquire the shape shown in Figure 6 .  

it suffices to intervert the places of nz and n when finding F ,  

If the glass  particles are arranged in a triangular grid pattern, the 

The shaded par ts  
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of the layers,  bound by the curves 

kr  kr  n=f l (y)  = a -  f + -+ - s l n y  
2 2 6  

and 

kr kr . xy 
2 2 6  

x = f 2 ( y ) =  - a + r - - + - s i n - l  

a r e  not deformed, but only rotate through an angle a. 

FIGURE 5. 

The equation of the elastic surface of the face element, bound by the 
a and the curves x = f i ( y )  and x = f i ( y ) ,  will be represented in l ines y- 

the form 

ZtJ ( x .  Y )  = A (Y) x + B (Y) 9 + C(Y) ,e+ M (Y), 

where A ( y ) ,  B ( y ) ,  C (y), M ( y )  a r e  found from the condition of compatibility 
of deformations of the elements. 

tX 
t t t t t f t  t t t t t  i f f  t t f t t t  1 t f  t t  t t 

FIGURE 6. 
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A formula for determining the reduced shear  modulus is s imilar ly  
de t e r m  in ed: 

where p = 2, determined from the condition 
a? 

d G , ,  = 0, 
dB 

is given by the expression 

A t  identical faces p = 1, and 

and if the bending of the glass  par t ic les  is neglected 

Gyz is determined by the same formulas (1.6) -( 1.9 ), with the places of 
m and n inverted when determining F I , ~  from Figure 7.  

50 
45 

40 

35 
30 
25 

20 

I5 
I O  

5 

0 

t 

1 -  
I 
I 
I 
I 

Triangular grid 

FIGURE 7. 
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The obtained formulas were tested experimentally. 
2 .  The local stability of the faces under longitudinal compression was 

studied for the case of the bending represented in Figure 8 (corresponding 
to the deformation of the plate elements a t  shear). 
determined by the energy method. 

The critical loads were 

The following crit ical  values of the compression loads were obtained: 
in the case of a rectangular grid pattern 

in the case of a triangular grid pattern 

€4- where BI = is the rigidity of the faces a t  extension (i= I ,  2). 
(1 -2) 

FIGURE 8. 

If one of the faces buckles under the load before the other, this 
leads practically to the bending of the entire plate under a common load 

where Tdi is the smaller of the two critical loads. 
W e  shall assume that the values of the parameters k ,  and k,  coincide 

with the values which were found from the condition of minimum energy 
of bending of each layer.  
Figures 9 and 10; = 1, the 
value kl 

of m and n. 

plate on the modulus of shear of the filler can be allowed for by means of 
the formulas 

The values of 4 and 4 a r e  determined from 
in the case that they l ie above the curve k l ,  

= 1 is to be used in (1.10) and (1.11). 
Tyk can be calculated by (1.10) and ( l . l l) ,  by interverting the positions 

3. The influence of thelongitudinal forces 2T, or 2Ty applied on the sandwich 

G:~=C,,(  I - % ) .  2Txk 

G;,--G,( 1 - 3), 
2Tyk 

( 1 . 1 2 )  
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where G,, G,, a r e  values of the moduli without allowing for the com- 
pression forces. 

b 
Rectangular grid 

I 
21  
0 -  ' r -  

I 2  3 4 5 6 7 8 9 IO 
FIGURE 9. 

Strictly speaking, the energy of bending of the glass particles ought to 
in view, how- be taken into account in the determination of 2Txk and 2Tyk;  

ever, of the negligible influence of this energy, we disregard it. 

1s Triangular grid 

FIGURE 10. 

This problem was solved by Aleksandrov, Vol'pert, and Masalovich. 
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2. OPTIMUM PARAMETERS OF SANDWICH PLATES 
WITH FILLER MADE OF REINFORCED FOAMLEX 
AT COMPR.ESSION 

The longitudinal compression of an infinitely wide sandwich plate with 
identical faces and a filler made of foamlex reinforced by r ibs  placed in 
the direction of compression was considered (Figure 11). 
foamlex, and reinforcing r ibs  were glued together. The problem was to 
select plate parameters corresponding to a minimum plate weight at 
given load. 
plate, local stability of the faces, and strength of the filler. 
that the conditions of plate strength a re  fulfilled if  the value of the load 
acting on the plate is equal to 2 1 3  of the critical load, the s t resses  in the 
faces do not exceed the proportional limit of the material, and the reduced 
s t resses  in the filler, found by the second or third theory of strength, 
a r e  allowable. 

The faces, 

The conditions to be fulfilled were general stability of the 
It was assumed 

21 

FIGURE 11, 

The expression for the critical load of a compressed infinitely wide 
sandwich plate with identical faces simply supported by two edges (Fig- 
ure  11) is, allowing for the rigidity of the filler and the flexural rigidity 
of the faces /I/: 

where 
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- 
- E6 - 
B = -z is the tensile rigidity of the face per  unit width; 

modulus of elasticity and Poisson's ra t io  of the face material; E. G. p a r e  
the reduced modulus of elasticity, modulus of shear, and Poisson's ra t io  

of the reinforced-foamlex filler; a,= - is the reduced plate length; A is 

the coefficient of end restraint  of the plate edges; 
X = 2 at fixed support. 

same, the reduced s t resses  in the filler can be determined by the theory 
of maximum shearing s t resses .  In this case the reduced s t resses  (ap) in 
the filler of the sandwich plates a t  longitudinal compression are determined 
by the expression 121 

p a r e  the 
1 -P 

a .  
h 

k = 1 for hinged support, 

If the ultimate strength of the filler at  compression and extension is the 

~ p = ~ ~ a ~ o l + ~ . t ) '  + 4 ( T u k m + T ~ z c m ) ?  ,<[.I. (2.2) 

E .  
E 

Here ax = is the stress in the filler due to the compression of the 

entire plate; 
The values of the maximum s t resses  of pull and shear in the filler ozCr, 

T ~ ~ ~ , ,  caused by the initial symmetrical curvature of the faces a r e  determined 
by the formulas 

gX is the compression stress in the face. 

2(1  -p) ( 1  + $) - 3- 
2 ax wc 

azcm= 2 GT . -  
4(1 - p) - 1 akE - G x  * 6 ' 

= x  .". 
ak.c-ax 8 

- 
- -  ~ . t z c x  - ~ G I  

4 ( 1 - - p ) - - l  

T .  
6 

where <, =- is the critical value of Fx.  

( ; & . E )  and at  a buckling wavelength coinciding with the initial curvature of 
the face is calculated by the formula 

The value of the critical load in the face a t  local (symmetrical) buckling 

The s t r e s s  &.= will be maximum for the following value of the parameter 
'p which determines the initial curvature of the faces: 
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The value of the maximum shearing s t r e s s  appearing in the filler a s  a 
resul t  of the initial antisymmetrical bending of the plate tTzlku) is determined 
for an infinitely wide plate by the formula 

If the foamlex has different ultimate strengths a t  compression and ex- 
tension, the reduced s t resses  a r e  determined by the second theory of 
strength with the aid of the following two expressions: 

( 2 . 3 )  

where 
allowable s t r e s s  for the filler a t  compression. 
s t ress  G~,.,,, a r e  selected in such a way a s  to obtain the maximum reduced 
s t ress .  

a r e  determined by the following formulas: 

is the allowable s t r e s s  for the filler a t  extension; Iajc is the 
The signs + before the 

The reduced parameters of a foamlex filler reinforced by r ibs  (Figure 11) 

u$, + 
a b = - - - .  

6, + ij4 

where E3, G,, 
Poisson's ratio, 
r ibs  of the filler a t  compression (extension); E,, G,, p,, 
of normal elasticity, modulus of shear, Poisson's ratio, and ultimate 
strength of the foamlex (nonreinforced) at compression (extension). 

formulas (2.5), (2 .7 )  a r e  correct  i f  the r ibs  do not buckle a t  compression. 

r ibs  of the filler of a plate possessing an initial curvature and compressed 
in  the longitudinal direction. 

In order  to determine the critical values of these s t resses ,  consider 
an element made of two reinforcing r ibs  and three foamlex layers 
(represented in Figure 11 by strokes and dots). 

cJ a r e  the modulus of normal elasticity, modulus of shear, 
and ultimate strength of the material of the reinforcing 

a re  the modulus 

Formula (2.4) is correct if the reinforcing r ibs  do not buckle a t  shear; 

Note that compression and shearing s t resses  appear in the reinforcing 

This element behaves a s  
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an infinitely long sandwich plate of width 2h simply supported on two edges 
( the reinforcing elements a r e  considered a s  simply supported on the faces). 
Two forms of buckling a r e  considered for such an element: 
and antisymmetrical. 

buckling under compression (without shear) a r e  determined by the formula 

symmetrical 

The critical s t resses  in the r ibs  for the case  of antisymmetrical 

where 

The crit ical  s t r e s s  of symmetrical  buckling i s  determined by the 
formula 

where is found from Figure 12. 

6 4  

FIGURE 12. 

The smaller of the values (2.8) and (2.9) is used in the calculatioils. 

E 
Buckling will not occur if oxk >Tx (!--‘) . 
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The critical load of antisymmetrical buckling under the simultaneous 
action of compression and shear on the r ibs  is determined by the formulas 

The relationship between nit and m, is represented in Figure 13. 

( 2 . 1 0 )  

FIGURE 13 

In order to test the stability of the r ibs  under the simultaneous action 
of shear and compression and a symmetrical form of bending of the 
element, we determine the principal compressive s t r e s s  acting on the rib: 

The critical s t ress  on the r ib  is determined in this case by the formulas 

The stability condition is 

c 4a;k. 

Note that the value of the reinforcement step 6, is restricted by the 

This stability is checked for the case of antisym- 
requirement to ensure the stability of the face element located between 
two stiffening ribs.  
metrical  buckling by ( 2 . 8 ) ,  and for the case of symmetrical buckling by 
( 2 . 9 )  and Figure 12,  with 2A replaced by a,, b3 by 6, and 2G by G .  

The weight of unit area of the plate with reinforced filler will be 

(2 .12)  

164 



The problem of selecting the optimum parameters of sandwich plates 
reduces to solving the system of equations (2 .1) ,  ( 2 . 3 )  with the substitution 
of the reduced elasticity parameters (2.4), (2.5),  (2.6),  finding the re -  
lationship between the elastic parameters of the foamlex and i t s  unit weight, 
and selecting the plates having the minimum weight a t  given loading 

parameter --- . The condition Gvr < Tpl ( a i l  is the proportional limit of the face 

material) was fulfilled in the problem solution. 
The problem of selecting the optimum parameters was solved by means 

of computers. 
Curves of the optimum parameters a s  a function of the loading para- 

meter -, the initial symmetrical curvature of the face we,  and the anti- 

symmetrical plate bending w k ,  a r e  represented in Figure 14. 

load is determined here  from the expression 2Tk= - 2T where 2T is the 

service load per unit width of the plate. 
to foamlex of minimum unit weight for the given category (for foamlex 
FK20 ,  7 = 0.1 g/cm3, and for foamlex on the base of polystyrene, 
7 = 0.05 g/cm3). 

” Tk 
a0 

2 r k  

0 0  
The critical 

3 
2 

The minimum weight corresponds 

.~ 

Dl 1 
Foam DoTvstvrene ns 

Foam polystyrene 

9 
b. 

FIGURE 14. 

After the optimum parameters  had been determined, the strength of 
The design s t resses  in the bond of the filler with the faces was tested. 

these bonds (equal to the s t r e s s  in the filler [ g ]  ) were in all cases lower 
than the allowable shearing s t resses  for glues BF-2 and BF-4 (theultimate 
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strength of glues BF-2 and BF-4 a t  shea r  is, according to  TU MKhP 
1367-49,  of 150kg/cm2 a t  20°C). 

In o r d e r  to find the values of 6, and 6, which ensure the stabil i ty of 
the ribs,  formulas  (2.8)  to (2.10)  and Figures  1 2  and 1 3  are used (af ter  

E 
the ra t io  

84 
has  been determined f rom the curves).  

This problem was solved by Aleksandrov and Naumova. 
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ON THE DEPENDENCE OF THE U P P E R  CRITICAL 

BOUNDARY CONDITIONS F O R  THE TANGENTIAL  
DISPLACEMENTS 

PRESSURE OF A CYLINDRICAL S H E L L  ON THE 

N . A .  A l f u t o v  
(Moscozu ) 

Usually only the boundary conditions relative to the normal displace- 
ments a r e  taken into account when determining the critical loads, while 
the boundary conditions relative to the tangential displacements a r e  totally 
neglected. 
boundary conditions for the tangential displacements on the value of the 
upper critical pressure of a closed circular cylindrical shell; 
ment is given on the basis of an analysis of the buckling of a schematized 
s emimomentless shell. 

Consider a circular cylindrical shell of radius R ,  length I ,  and thick- 
ness  h .  
ordinates x and y ( i n  the axial and circumferential directions respectively). 
The shell will be considered a s  semimomentless, i. e . ,  we shall consider 
that the inner force factors in it a r e  expressed through the displacements 
of the middle surface points u, TU, uf in the following way: 

This paper is devoted to an assessment of the influence of the 

this assess -  

The points of i t s  middle surface will be described by the co- 

M ,  = M,, =0, 

where T,, T,, and S a r e  forces per unit length in the middle surface; 
M,, M y ,  and M, a r e  the corresponding bending and torsional moments; 
E and p a r e  the modulus of elasticity and Poisson's ratio of the shell 
material. 

and torsional rigidity in the axial direction, and in which the flexural 
rigidity in the circumferential direction and the tensile and shearing 
rigidities of the middle surface a r e  equal to the ordinary rigidities of an 
isotropic shell of thickness h. 
e r ro r  introduced by such a schematization of the shell. 

In other words, we consider an anisotropic shell which lacks flexural 

We shall t reat  l a te r  the question of the 
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r 

The system of equations describing the buckling of the shell considered 
under the action of an external transverse pressure P /1/ will have the form 

+ P R  (F - + w  ) = o ,  

where the following dimensionless coordinates have been used for simplicity: 

For this system of equations, which corresponds to a semimomentless 

Geometrical conditions: 
shell, we have the following boundary conditions at t = const. 

1) w = 0;  2 )  v =o; 3) u =o. ( 3 )  

Force conditions: 
1) Tx=[07E+P.($  du -91 =o; 

Boundary conditions of the type 

( 4 )  

have obviously no meaning for the semimomentless shell considered. 

system of equations: 
Further on, following / 2 /  and 131, we reduce system ( 2 )  to the following 

Eha 

Note that in the first two equations the terms between brackets are small 
compared with the main terms, and can be neglected; they are ,  however, 
important when the main te rms  mutually cancel 121 in the expression 
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We shall look for a solution of system ( 6 )  in the form 

u = ucos  t t y ,  
'u = Vsin R y, 

w =  W c o s n ~ ,  

where U. V, W a r e  functions of the Coordinate E only. 
The third equation of system ( 6 )  can be written in this case a s  follows: 

d4 W - - 1 4  w=q 
dE4 

where 

From the first two equations of system ( 6 )  we  find 

n 

1 u=- nz W ' f  [% W " ] .  

( 9 )  

A s  in equations (6) ,  the terms between brackets a r e  small compared with 
the main terms, and a r e  important only in the determination of S. 

The solution of equation (9) ,  which coincides in form with the ordinary 
equation of free transverse vibrations of a beam, is obviously of the form 

W= A, sin A E + A ,  cos XC + A, sh AE + A ,  ch LE, (12) 

where AI are arbitrary constants. 

relationship (1 1 ) . 
condition W = 0. 

Boundary conditions ( 3 )  and ( 4 )  will now be expressed through W, using 

1. The condition for 

2. The condition for E = const, v = 0 leads to the condition w =  0 .  
3. The condition for E = const, u = 0 leads to the condition dW/dE = W' 3 0. 
4. The condition for E = const, T ,  = 0 leads to the condition 

= const, w = 0 is obviously equivalent to 

W" =o. 

5 .  Finally, the condition for i = const, S = 0 leads to the condition 
W"' = 0 . 

Thus, if the boundary conditions for the shell are given, its critical 
pressure is easily determined from the corresponding characteristic 
equation for the natural frequencies of a beam. 
critical pressure is found from expression (10 )  

The relationship for the 

where l,, is the minimum root of the corresponding characteristic equation. 
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If n* >>I, expression (13) can be simplified, by finding the minimum of 
P,, by n :  

We shall now consider several specific variants of the boundary conditions. 
1. Both ends of the shell a r e  simply supported: 

at E =O and E = 1/R, w= T, =O; therefore,W= W"=O. 

This is similar to a hinged beam; the minimum root of the corresponding 
characteristic equation is 

The expression for the critical pressure at  n2>1 coincides with Papkovich's 
well-known formula 

2. Both ends of the shell a r e  hinged: 

at E =O and E=I/R, w=u=O; therefore, W= W'=O. 

This is similar to a beam with built-in ends 

(17) R 
I 

io =4.73 - . 

A t  n2 21 we obtain that the critical pressure is one and a half times larger  
than in a beam with simply supported ends: 

P,, =1.5 ( P , , ) ~ . ~ .  . (18 1 

3. One end is simply supported, the other is hinged: 

at 5 =0, w = T,=O, and E = LIR, w = =0, 

i. e., at f -0, W= W " 4 ;  at E = 1/R, W= W' -0. 

This is similar to a beam with one end built-in and the other supported 

R x,=3.93 - 
I 

At n2)>1 we have 

Pct 1-25 (per) s.~. 

4. One end is hinged, the other is free: 
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at E =0, w = u  = O ;  and E -1IR. T, =S =0, 
at  5 =O, W = W' =0, and E =I/R, W"= W"'=O. i. e . ,  

This i s  similar to a beam with one end built-in and the other f ree  

R 
L 

X0=1.87 - .  

A t  n2>1 

fc,=0.6 (Pc1)s.s. . 

5. One end is simply supported, and the other cannot move in the axial 
direction: 

at  i = O .  w = T,=O, at E=I/R; u=S=O, 

i. e., at  EA; W =  W"=O; at E = I/R, W'= W"'=O. 

This i s  similar to a hinged beam of double length 

( 2 2 )  b=-. xR 
21 

A t  n* >> 1 

6. One end is hinged, and the other cannot move in the axial direction: 
at  E=O, w=u=O; a t  E=lIR, u = S  =O. 

i. e . ,  at  E=O; W =  W'=O; at E=C/R, W'= W'"=O. 
This i s  similar to a beam of double length built-in at  both ends 

and 

R 
21 

;Io =4.73 - 9 

fc1=0.75 (PcI) s.s.. 

7.  One end is simply supported, the other is free: 

at  E=O, w=T,=O; at E = L/R, T, = S =0, 

i. e . ,  a t  E=O, W= W"=O; at E=I/R, W=W'"=O. 

This i s  similar to a beam with one end hinged and the other f ree  

It follows then from (13)  

1, =o. 

In other words, the critical pressure coincides in this case with the 
critical pressure for an infinitely long shell. 
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Note that system ( 6 )  could also have been obtained from the complete 
system of equations of an isotropic shell, by using the condition / 2 /  

The use of the semimomentless shell model clarifies the question of the 
correct boundary conditions. 
schematization, they a r e  the same a s  the e r r o r s  introduced by condition 
(27), i. e , ,  such a model i s  correct  for not too short shells 12, 31. 

We note in conclusion that the allowance for the boundary conditions for 
the tangential components of the displacements considerably influences the 
value of the upper critical pressure.  This influence is particularly strong 
for shells with one free end; thus, cases 4) and 7) differ only by the 
boundary conditions for u ,  while the expressions for the cri t ical  p ressures  
in these cases differ qualitatively (the quantitative difference can be 
arbitrari ly large). 

A s  to the e r r o r s  introduced by such a 

This las t  fact has been corroborated experimentally. 
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MOTION OF A RIGID-PLASTIC CIRCULAR 
CYLINDRICAL SHELL IN A RESISTING 
MEDIUM 

C 

B 

A . A :  A m a n d o s o v  
(Moscow) 

Am of displacement, a solution can be found 
to the problem of the motion of a rigid- 

The motion of a simply supported 
circular plate in a resisting medium 
under the action of a uniformly distributed 
load was treated in 1 2 1  under the assump- 
tion that the resistance force is propor- 
tional to the first power of the velocity 
of displacement. The present paper is 
devoted to the analysis of the motion 

, B  plastic body. 

n 

A in a resisting medium of a cylindrical 

1. INTRODUCTION 

It is assumed a s  in / 3 /  that a=p.c,  where p is the density, and c is the 
velocity of sound. 

The solution of this problem without allowing for the resistance forces 
is known 131 .  

The dynamic behavior of the shell will depend on whether the load will 
have a "medium" @,<p < p l )  or a %igh" ( p  > p , )  value ( p1 is determined in 
S3). 

173 



In this paper we give a solution for the case of "medium1' value of the 
In addition, since the solution for the second phase imposes re- load. 

strictions on the shell dimensions, we have solved separately the cases  of 
''short'' and "long" shells. 
spectively. 

These solutions a re  given in 3 and 4, re -  

A D  

A 

AB 
B 

2. FUNDAMENTAL EQUATIONS 

*-1 -16n<+l 

+ ] - I  
+ I *  - l c m c + l  

+1+1 
. 

The equation of motion of the cylindrical shell, allowing for the r e -  
sistance force, will be 

d2MX Np + p - q - s  d2w -= 0,  
dx2 a dtZ 

where Mx is the axial bending moment, Np, the circumferential force per 
unit thickness, p ,  the inner pressure,  q, the resistance force, and s, the 
mass  of unit area.  

We shall use the dimensionless magnitudes 

Pa saw P = -  w=-, 
4 k h '  2kh2 ' 4 k h  ' 4 kh tg 

Mx n: N, m e -  
I , .  ,., 

where 2L is the shell length, a, i t s  radius, and h ,  i ts  thickness. In these 
magnitudes (2.1) is represented in the form 

m 1 J / 2 ~ z + n + ~ - y W -  W = O ,  (2.3) 

where the pr ime designates differentiation by y ,  and the dot differentiation 
by the time T. 

Following 1 3 1 ,  we take a s  yield curve the quandrangle in coordinates 
( m ,  n) (Figure 1). The general method of solution for plastic-rigid material  
consists in assuming some "s t ress  profile" for the body, i. e., in assuming 
some locus of the s t r e s s  points relative to the yield curve. 

and B of the yield quadrangle can be used for determining the s t resses .  
The following table can be formed for these sides and apices. 

It turned out in the given problem that only sides AB, AD, and apices A 

I 

Sfresses 
Plastic 

range 

TABLE 
~ . .  

Vector of strain rates 
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3. SHORT S H E L L  UNDER A MEDIUM LOAD 

It can be shown that, just a s  in the absence of resistance forces 131, 
the shell as  a whole is in state A B  (the cylindrical par t  of the shell i s  in 
state B). 

F i r s t  p h a s e  ( 0 < ~ < 1 ) .  Since on side A B  \$"'= 0, then 

W = W o ( T )  y . (3 .1)  

Solving ( 2 . 3 )  allowing for ( 3 . 1 ) ,  and using the boundary conditions m (0) = 
=-1, nz (1)= +1, we obtain 

W,, is determined from the boundary condition m' ( I )  = 0: 

The integration constant is determined from the initial conditions 

+ - -(P-1)-1 : 
CZT VZ 2 .  I 

The deflection will be, on the strength of ( 3 . 1  ), 

( 3 . 4 )  

( 3 . 5 )  

Substituting ( 3 . 4 )  in ( 3 . 2 ) ,  we obtain the following expression for the 
moment: 

It is seen from ( 3 . 6 )  that, just a s  in the case of a plate, the expression for 
the bending moment is independent of 7 .  The deflection in the case of 
motion without resistance can be obtained from ( 3 . 5 )  by passing to the 
l imit  740: 

w =(&) [ ( 5 ) ( P  -1) - 1]G y .  (3.7) 

This coincides with solution 141. 
moment coincide with the solution obtained when the medium resistance is 

Since the expressions for the bending 
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neglected, the value of the medium load wil l  be 

4 
c* P , = P o + - .  (3 .8  ) 

S e c o n d  p h a s e  (id:.$:,). 
The load is abruptly removed at T 2 1. The motion of the shell is in- 

terrupted a s  a result, but only after the kinetic energy'acquired by the 
shell under the action of P has been dissipated in the plastic deformation. 

The stressed state is characterized by the points of segment AB, so 
that W = W,, y. For W, (7) we obtain, substituting P = 0 in (3 .8) ,  

The integration constants C, and C, a r e  determined from the condition of 

continuity of -and W at 'i = 1. 
aw 
a r  

The following expression is obtained for the deflection: 

This reduces at  the limit ~ - + 0  to 

(3.10) 

(3.11) 

This expression coincides with the result of / 3 /  for the second phase. 
For the moment we obtain 

(3 .12)  

aw 
Using the condition - = 0, we obtain the time r1 after which the shell 

passes into a state of res t ,  
dr 

( 3 . 1 3 )  

4. LONG SHELL UNDER A MEDIUM LOAD 

It wW shown in / 3 /  that the solution obtained in 3 for the second phase 
is correct for O<C< 0, 
unadmigsible, A different hypothesis for the s t ream profile i s  therefore 
to be assumed at C1>B. 

and the segment AB to the interval u <y < l ,  

If C 5 6 ,  we obtain m<-1 at > I =  0, which is 

It could be assumed that the point A corresponds to the interval O,<y<u, 
The corresponding calculations 
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show however that the yield conditions a r e  not satisfied in ' this case,  It 
remains to assume that point K corresponds to the interval O<y<i i ,  and 
side . 4 0  to the interval u < y < I .  
shell  remains rigid for O< y < u .  

S e c o n d  p h a s e  (l<:<:J. 

In this case,  a s  seen from the table, the 

F o r O < y < u  m=-1 ,  I L  :0, W - 0 ;  (4 .1 )  

(4 .2 )  for I I  < y < I  we have W = A y fB, IZ = -1. 

Solving equation (2 .3)  with the aid of (4.2), we obtain 

m = ce [w yJ -+- (1 + ,G +7 B )  yz] + c,y + D .  (4 .3)  

The boundary conditions for m in the case  u < y<1 a r e  

112 ( u ) = - I ,  m ' ( u ) = O ,  111 ( + - l ) = + l ,  m' (1)=0. (4.4)  

Using these conditions, we determine the unknown integration functions as 
functions of u :  

B + y B = - - l  + - (1 f U ) ( 1 - u ) - 3  , ( :J 
c=---12 u ( 1  - t q 3 ,  

D = 1 - 2  (1-311) ( I - u ) - ~ ,  

The condition of continuity of the velocities at T = 1. yields 

B = - A  Y .  

Using (4 .5)  we obtain 

(4 .5)  

The integration constants a r e  determined from the condition af continuity 

We find thus from (4 .2 )  and ( 3 . 5 )  
of Wat  'c = 1. 

whence 

Then 
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whence 
7 [ C 2 - - 6 ]  (7-1) 

U =  
- 1 )  (1-e- ' )  

(4.7 1 

The solution for the second phase is 

O<y< u, rn=-l, n=O. W=O. 

U < y < l ,  m = l +  (1 -U)-3 [--4~1'+6 (1  + U ) y 2 - 1 k Y - 2  ( 1  -3U)], (4.8) 

n =  -1, w =  - - -(l-U)-? 1 ( y - u ) ,  (A) [ :2 
2~ fCz-G) ( 5  - 1) 

3 -(f -1)-I ( 1 - P - T )  

. , 

1 
U =  

I i2 
for 1 < r < ~ ~  P ,  Q P s PI, V-i< C. 

The time after which the shell stops is 

(4 .9)  

Expressions (4.8) represent thus a solution for the second phase C> c. 
The value of the deflection as a function of 7 for C = 1, T = 1, and P = 7 is 
represented in Figure 2. 

,r=o 
0.5 

3 1  3 -  T= 0 
a=0.5 

0.25 0.50 0.75 
Y 

The deflection as a function of r 
FIGURE 2. 

It is seen from expressions (3.5), (3.10), and (4.8) that the influence 
of the medium resistance on the value of the deflection is very con- 
siderable even for a "medium" value of the load. 
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R Y N M I C S  QF A MOMENTLESS SPHERICAL SHELL 
MADE FROM AN IREALLY RIGID-PLASTIC MATERIAL 

A . I .  Babichev 
(Moscow) 

This paper is devoted to an analysis of the motion of a semispherical 

The shell material is assumed to be plastic-rigid without work-hardening, 
momentless shell with builtyin edges. 

and to behave according to Mises' yield condition and to the flow rule 
connected with it. 

is represented in Figure 1. 
The stress-strain diagram of this material a t  the simplest stressed state 

FIGURE 1. 

Segment OA corresponds to the initial loading up to the yield point a t  
extension, segment AB to the plastic flow, segments BC and CD to com- 
plete unloading with subsequent application of a compressing load up to 
the yield point a t  compression, and segment DE to plastic flow under a 
compressive stress. 

An axially symmetrical normal pressure is applied to the shell at the 
initial time moment. It is assumed that the material of the entire shell, 
o r  of a part of the shell (the other part can remain rigid), passes instan- 
taneously into a plastic state. 

into account, a r e  of the form 
The equations of motion of a momentless shell, taking large deflections 
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where 
N Q -  - 0  V h ;  Ne=oeh. 

Here v, w a r e  deflections of the shell along the meridian and along the 
normal to the surface; m is the mass  of unit area of the shell; Np and Ne, 
and a? and an are,  respectively, the meridional and circumferential 
membrane forces and s t resses  (Figure 2). 

The strains and €8 a r e  given by the following expressions: 

(v ctg 'p - w ) .  
1 

€8 = - 
The strain ra tes  will therefore be: 

( 4 )  

. 1 dv w 1 dw d w  
Bp =-- - -+--.-, 

r d? r ro dp 
- 1  
En = (Gctgrp - h). 

Mises' plasticity condition is / 1 /  (Figure 3): 

02 - ap.ae + 0; c 0:. 
The strain ra tes  a re  connected with the s t r e s s  components by the 

Saint-Venant-Mises equations / 1 /  (the flow rule) 

sQ = h (20, - on), 

€0 = X (20, - a?), 

FIGURE 2. 

Introducing the symbol 

FIGURE 3. 

and taking formulas ( 5 ) ,  ( 6 ) ,  ( 8 ) ,  ( 9 ) ,  and (11) into account, we can 
replace the flow rule ( 8 ) ,  ( 9 ) ,  and (10 )  by the single equation 
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A s  to the external pressure Z applied to the shell, it is assumed that 
it decreases monotonically from the shell pole to the edge, and that i t  
decreases (or a t  least  does not increase) with time. 

We shall now prove that the following proposition is t rue under these 
2Ns assumptions: the parallel of angle L:" at which Z (rp,) = 

into a plastic and a rigid part, the region about the pole will be plastic, 
and the region adjoining the shell edge will be rigid (Figure 4). 

splits the shell 

FIGURE 4. FIGURE 5. 

To prove this proposition, write equations (1 ), ( 2 )  for the case of 
equilibrium 

NF + Ne + Zr = 0, ( 1 3 )  

3 + ctg p (N?  - N O )  = 0. (14) d p  

Eliminating NU from ( 1 3 )  and (14), we obtain the following equation for N,: 

3 j ctg y (2N,  + Z r )  = 0. 
d? 

2N, 
r 

It is known that Z = -- - at '9 = yoand decreases further on. 

from ( 15 ) that 

It follows then 

*> 0. for 'p = yo. 
d v  

It follows in addition from (1 3 )  that 

It is easily shown with the aid of (16 ) ,  (17 ) ,  (18)  that in the case of 
equilibrium the points representing s t resses  for angles larger  than yo wil l  
be situated inside the Mises ellipse (Figure 3), i. e . ,  a par t  of the shell 
will remain rigid a t  'p > po. 

By reasoning in the same way it can be shown that in order that the 
part  of the shell adjoining the pole (7  <?,)be in equilibrium it is necessary 
that the points representing the s t resses  l ie outside the Mises ellipse. 
This cannot happen, since the material  is not work-hardened, and there- 
fore this part  of the shell passes into a plastic state. 
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It  then follows that if  the external pressure Z is everywhere smaller 
2Ns than -, the entire shell will remain rigid. 

2Ns the pressure is equal to or larger  than -, the entire dome will pass 

into a plastic state. 
Thus, in order to solve the problem it is necessary to solve a system 

of three equations ( l ) ,  (2 ) ,  (12) with three unknownsv, w, Nq (NO is con- 
sidered a s  a known function of N y  ( 7 ) )  for the region which passed into the 
plastic state. The following initial and boundary conditions are used for v 
and w: 

On the other hand, i f  a t  'p = 1. 2 

dw 
dt 0; a t  t = O ;  dV 

d t  
v = o ;  -=o, w 5 0 ;  -= 

(20)  v = O ;  w - 0 ;  at  y=yo .  

It also follows from the above considerations that a t  the initial t ime 
moment the s t r e s s  for the par t  of the shell which has passed into a plastic 
state will be represented by point A of Misesl ellipse, i. e., 

N , = - " , ;  N o = - N , ;  a t  t = O  ( 2 1  1 
everywhere for 'p 4 'po. 

that when solving the problem formulated for equations of the elliptic type 
i t  i s  necessary to state the Cauchy problem with zero initial conditions. 

The method of successive approximations can be used 121  for solving 
the system of equations (l), (2) ,  and(12) .  

We take a s  first approximation for the s t resses  

Note that in this case equation (1)  will be of the elliptic type. It follows 

A"=-",; N i = - N s .  

Solving next equation ( l ) ,  we find the first approximation for w.  Sub- 
stituting this value wl in ( 1 2 )  and solving relative to V ,  we find the first 
approximation wl. Substituting vl in ( 2 )  and solving relative to Nq (Ne is 
expressed through N ,  by Mises' condition), we obtain the second approxi- 
mation for the s t resses .  

If the load acts for a very short  time interval only, i t  can turn out that 
a t  some subsequent moment the strain ra tes  in the pole become equal to 
zero, while the velocities of displacement 
region a r e  negligible. The calculation is to be interrupted a t  this moment, 
and it is to be assumed that the shell has stopped after a certain compression. 

It can also happen that at  some moment the s t ra ins  in the shell pole will 
attain such a la rge  value that the material  will collapse. 
the calculation is to be interrupted, and it is to be considered that the 
shell has been put out of action a s  a result  of the failure caused by in- 
tense pressure.  

about the pole a sharply displayed increase, it can happen that the strain 
ra tes  lP and & become equal to zero although the external load continues 
to act, or if  the external load has already been removed but the ra tes  of 
deflection of the shell $ and &J a r e  still large due to the shell inertia. 

region where tensile stresses take place, since here  a stress of opposite 
sign is applied to the pole immediately after the unloading. 

The whole sequence is then repeated. 

and w in the entire plastic 

In this case too 

Finally, a t  some types of load, in particular in the case of loads having 

In this case (Figure 1) there appears in the shell pole an expanding 
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In this case  there  will no longer be a simple compression of the shell, 
and the shel l  can be put out of action as a resu l t  of an abrupt shapealteration 
(Figure 5). 
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STABILITY OF AN ORTHOTROPIC CYLINDRICAL 
SHELL IN A GAS STREAM 

2h .E .  B a g d a s a r y a n  
(Yerevan) 

Consider a thin cylindrical shell made of an odd number ( 2 k + l )  of 
homogeneous anisotropic layers.  The layers,  arranged symmetrically 
relative to the coordinate surface of the shell, all have the same thickness 
and the same physico-mechanical properties. The coordinate surface (a, p) 
is the middle surface of both the middle layer and the shell a s  a whole. 

It will  be assumed that the material  of each layer behaves according to 
the generalized law of Hooke and that at  each point there a r e  three planes 
of elastic symmetry, the principal directions of which coincide with the 
directions of the orthogonal coordinate lines a, p, T. It is also assumed 
that the shell layers  remain elastic after the deformation and do not s l i p  
relative to each other. 

Let a supersonic gas stream flow past the shell at an undisturbed 
velocity I/ directed parallel to the shell generator (Figure 1 ) .  

I 

1 
i 
iT I 

FIGURE 1. 

It is assumed that the hypothesis of undeformable normals is true for 

The following starting relationships and equations a r e  obtained for the 

a) equations of motion 

the whole sandwich shell. 

shell considered on the strength of the assumption made 111: 



d2Ml d2H d?M 1 d% , da2 + 2 - + 4 +  -7'r ,+z=m*--  dad? dp R dt2  
\ - - - - -  -I 

where m* is the reduced mass,  defined by 

( 1 . 2 )  

and 71 is the unit weight of the i-th layer, S 1 ,  the distance of the i- th layer 
from the middle surface of the shell, Z, the external load normally applied 
to the middle surface, 
R, the shell radius; 

TI, T,, M,, M,, H ,  inner forces and moments, and 

b) elasticity relationships 

where 

c) geometrical relation ships 

E - - ,  ' 2 = 3 e + R '  dv w w = - + -  du  d v  d u  
d? dx ' 

( 1 . 7 )  
d2w 2- d2W d2w 

w - - - *  x - - -  
dP2 ' = = - dad? ' 2 -  ' -  da2 

where u (a, p, L ) ,  w (a ,  8, t ) ,  .w (a ,  ?, t )  a re  tangential and normal displacements 
of the points of the middle surface of the shell. 

The substitution of the values of the inner forces and moments from 
(1.3)and(1.4) intothe equations of motion (1.1) yields, with the aid of 
( 1 . 7 ) ,  the following system of differential equations of motion of the shell: 
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(1.8) 
(cont'd) 

The problem of the stability of an isotropic, homogeneous, circular 
cylindrical shell of finite length in a gas stream was treated in 14, 51. 
Here we shall consider the same problem for an orthotropic sandwich 
shell, and shall determine the influence of anisotropy and nonhomogeity 
on the critical velocity of the flutter. 

By replacing Z in (1.8) by the expression / 3 /  

we obtain the equation of stability of a cylindrical shell in a supersonic 
gas stream; here  i is the damping coefficient, p - ,  pressure  of the un- 
disturbed gas stream, am,  sound velocity for the undisturbed gas, x ,  poly- 
tropic index, and t ,  time. 

If the frequency of natural transverse vibrations of the shell is small 
compared with the frequency of natural vibrations of the shell in  its own 
surface, the tangential components of the inertia forces can be neglected. 
In this case, by introducing the function @(a, p, f), connected with u, v ,  w by 
the relationships / * I  

and allowing for (1.9), we reduce system (1.8) to the following resolving 
equation: 

where 

(1.10) 

(1.11) 

' [Reference omitted in Russian text. 1 
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( 1 . 1 1 )  
(cont'd) 

Assume that the shell is simply supported by the base. The solution of 
( 1 . 1 0 )  can then be represented in the form 1 5 1  

( 1 . 1 2 )  

where m is the number of half-waves of the bent surface along the genera- 
tor, n, the number of waves in the circumferential direction, and f , , , , ( f ) ,  
some functions which remain to be determined. 

method w e  obtain the following system of ordinary differential equations 
for the dimensionless functions xmn = f,,,Jh.: 

By substituting ( 1 . 1 2 )  in (1.10) and applying Bubnov-Galerkin's variational 

r 

( 1 . 1 4 )  

( 1 . 1 5 )  

( 1 . 1 6 )  

(1.17) 

Here wmn a r e  frequencies of the small natural vibrations of the shell and 
v is the reduced velocity parameter.  

To the critical value of the velocity parameter v ~ ,  which corresponds to the 
appearance of flutter, will correspond in this case the passage of the 
characteristic index X from the left half-plane of the complex variable into 
the right half-plane. A t  m =  2 the following formula is obtained for de- 
termining the cri t ical  value v ~ :  

The solution of system ( 1 . 1 3 )  can be represented in the form x,.=ymneLr. 

(1 .18)  

A t  m = 4, in the case of absence of damping, the critical parameter 
i s  found from the equation 151 



36 
(1 - X 2 )  (Q;. - )\*) + - ( 1  - A*) (Q:n - A') -i- 25 ($)* K4v4 + [ 

The solution of (1.19) relative to v yields the relationship v = f ( 1 ) .  To 
the critical parameter v:, corresponds the junction of the two adjacent rea l  
frequencies X .  

Of greatest  interest  a r e  those values of the parameter n at which the 
cri t ical  velocity has a minimum value. 
minimum value a r e  determined from the equation 

The values n, for which v* has a 

(1.20) 

It is seen from (1.20)  that the critical value of the parameter n, depends 
to a considerable extent on the elastic coefficients of the shell material. 
Note that for a one-layer isotropic shell i t  depends on the Poisson ratio 

In the case of a one-layer shell equation (1.20) can be reduced to the 
only 151.  

form 

where 
Aih = Dik/D11; = 1 v Liz PZ. 'I = l/R. 

In the case of a one-layer orthotropic shell the cri t ical  value of the 
parameter n is thus determined in a first  approximation by equation (1.21), 

whose coefficients depend on ratios of the type -. 

1/R = 5, hiR = IjlOO. 
waves in the circumferential direction increases with the increase of )\zl and 
decreases with the increase of is6. 

It is seen from Figure 3 that the minimum value of the critical velocity 
of flutter increases with the increase of L,. 

To determine the influence of the material  nonhomogeneity on the critical 
value of n (and therefore on the critical velocity of flutter), consider a 
three-layer shell made of isotropic layers.  
all layers  have the same Poisson ratio. 

D i k  

4 1  

Figure 2 represents n, as  a function of the parameters  I.,, and at 
It is seen from these curves that the critical number of 

Assume for simplicity that 
We obtain in this case from (1 .20) ,  
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on the strength of (1 .5)  and (1.6) :  

where 1 = E ~ 2 ) / E ~ l )  i s  the ratio of the moduli of elasticity of the shell layers, 
k = S a l s , ,  and p is the Poisson ratio. 

0.08 0.2 0.4 0.6 0.8 1 A66 

FIGURE 2. 

Equation ( 1 . 2 2 )  i s  reduced to the equation of an isotropic one-layer shell 
by substituting k = 1. 

U I  1 

4 6 8 11 

FIGURE 3 

The results of the solution of ( 1 . 2 2 )  for several values of )i and k a r e  
represented in Figure 4 for 1/R = 5, hjQ = 1/100. It is seen from these curves 
that the critical number of waves in the circumferential direction increases 
with the increase of A in the entire range of variation of A ( O < X  < m). 

than the critical number of waves of the corresponding sandwich shell with 
coefficient A larger  than unity. 

It follows that the value of n, for an isotropic shell ( A  = 1) will be smaller 
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n t 5 IO 15 20 25 30 35 40 45 j\ 
FIGURE 4. 

If A <  1, the value of n, for a sandwich shell wil l  be smaller than the 
critical number of waves of the corresponding isotropic shell. 

FIGURE 5 .  

It is seen from the curves represented in Figure 5 that the minimum 
value of the cri t ical  velocity of flutter increases with the increase of 1, 
and therefore with the increase of the critical number of waves n:%. 

varying the geometrical and physical parameters ( h and k ) .  
The region of shell stability can therefore be extended considerably by 
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STUDY OF THE STABILITY OF ELASTIC RECTANGULAR 
PLATES WITH A RECTANGULAR HOLE, BUILT-IN 
BY THE OUTER AND INNER CONTOURS 

A .  B a r a t o v  
(Tashkent) 

Consider the following cases  of loading with application of forces to the 
outer contour of the rectangle only, with s t resses  not exceeding the elastic 
limit: 

to the rectangle sides (Figure 1A); 

only (Figure 1B); 

and extension in the direction of the other pair (Figure 1C). 

1) simultaneous action of compressive forces directed perpendicular 

2) plate compression in the direction of one pair of sides of the rectangle 

3) plate compression in the direction of one pair of sides of the rectangle, 

a t  // t t t i ' t  t t t 

N l  

FIGURE 1. 
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We shall study the influence of the ratio of the loads and the ratio of the 

The problem will be solved by the 

The equation of stability of rectangular plates in finite differences is 11 / 

sides on the stability coefficient K,, of plates with rectangular hole built- 
in by both the outer and inner contours. 
method of finite differences in a dimensionless form. 

2 [ 3 ( A 4 + 4 4 ) . 2 + 3 ) - ( ~ A 2 + l ) k ] C ~ - [ 4 ( ~ 2 +  l ) - k ] ( ' & + C ~ ) -  

- k* (4 ( 1 2  + I )  - Bkl(C, + C,) + 2k2 (C, + cp +c* + C 1 - t  r 

+ (CS + C A  + i4 (CU + C,) = 0, ( 1 )  

where is a dimensionless function of the dimensionless coordinates E 
and q ; k is a coefficient determining the unknown critical coefficient of 
stability K,, ; the subscripts of the function C represent the grid nodes; 
3 is the ratio of the number of divisions of the grid along the 

number of divisions along the E axis; a = %. b, is the ratio of the outer IL, ' 
(+)and of the inner (5) sides of the rectangle: 

axis to the 

a c  x - -=- .  
' - b  d 

Designate the ratio of loads on the rectangle by J. Then 

p = =.const. 
Nr 

It has been established elsewhere by us  / 1 1  that 

The stress distribution over the plate will be assumed to be uniform, 
just a s  in the case of continuous plates. 
function of the coordinates, the problem would have been considerably 
complicated, and we would have obtained an equation with variable 
coefficients. 

It suffices to consider the unknown points in one quadrant of the plate, 
since the applied load and the fastening of the plate sides a r e  symmetric 
relative to the axis of symmetry of the plate. The number of such points 
for the grid selected is seven (Figure 2) .  The plate deflections a r e  equal 
to zero a t  the nodal points of the grid lying on the inner and outer contours. 
These points will be designated by "0". 

Were we to assume that p is a 

b 

I 

FIGURE 2. 
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We shall use two approximate expressions for the boundary conditions 
for the built-in sides of the plate 1 2 ,  31:  

'11 . ' ' %'I 

. . . . . .  
. . ' %7 

Using approximation ( a ) ,  we obtain the following equalities connecting 
the functions corresponding to the points lying outside the contour with 
those corresponding to the points lying inside it: 

= o ,  ( 3 )  

r -  

c, = 3c3. Cd = x, - o.5c2; 

Cg = :,q = 3i,, c, = :k = 3i,. 

Ce = 3t1-0.5C5, c j  = 3Z2; 

. . . . . .  

with elements 
&i=2[(314+412+3)- (P*+ l ) k ]  +3).'+3=6+3X'+3; 

b22-b + 3k4, 633- b + €A4 + 1, b,,= 0.5 b $. 3 4 ;  

(4) 

( 5 )  
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b,, = b + 3, b,, = b + X4 + 6 ,  b,, = 0.5 b + 3 ;  

b,, = b,, = b,, = b54 = b,,, = - [4  (X' + 1) - k]; 
b 12 - - - [4 (Ae + 1) - k ]  - 0.5, 65, 65, = be, 

=b,, =b,,=-A2[4(A2+ l ) - - k ] ;  
b,, = - 1' 14 ( X 2  + 1) - pk] - 0.5 1'; 

b,, = b,, = 2 X', b,, = bol = h,, = b,,=X'; 

b,, = b,, = b,, = b4, = 1, b,, = b4, = B, ,  = b,, = b,, = b,, =b 2, = 67, 

b,, = b,, = b,, = ba4=b4, = 67, = 0. = b,, = b,, = b,, = b,, 6,: = b,, 

From equation ( 5 )  we determine kmin, i. e . ,  Kcr , for the given values of 
the parameters p, i. = A, (Table 1, b). 

8.925 
8.010 

6.625 
6.089 
5.626 
5.223 
4.868 
4.553 

TABLE 1 

14.469 -23.421 -16.875 
12.985 25.065 18.060 

7.25611.764 18.048 13.003 
10.741 12.535 10.500 
9.871 11.3.58 8.183 
9.121 9.527 6.864 
8.468 8.185 5.898 
7.892 7.163 5.161 
7.382 6.358 4.582 

-- 1 
-0.75 
-0.5 

-0.25 
0 
0.25 
0 . 5  

1 

-1 
-0.75 
-0.5 

0 

0.5 
0.75 
1 

0.75 

-0.25 

0.25 

-25.046 
31 .E99 
22.521 
17.176 
13.169 
I I  ,431 
9.740 
8.466 
7.476 

h = h , = l  

-18.046 
22.984 
16.227 
1?.375 
9.921 
8.236 
7.018 
6.100 
5.386 

kmin  

-4.493 
4.476 
4.386 
4.300 
4.217 
4. I36 
4.057 
3.976 
3.820 

-6, I90 
6.247 
6.114 
5.982 
5.848 
5.708 
5,546 
5.325 
4.914 

- 
K C  r 
- 

-29.137 
29.021 
28,441 
27.885 
27.344 
26,819 
26.305 
25.782 
24.7i3 

-40.142 
40.509 
39,644 
38.789 
27.924 
37.012 
35.965 
34.532 
32,866 
~. 

-I 

-0.75 

-0.5 

-0.25 

0 

0.25 

0.75 
0.5 1 

29.024 { 40.509 
28 444 { 39:664 
27.885 { 38.789 

26.305 { 35.965 
25.782 ( 34.532 
24.773 { 32.866 

TABLE 2 

h = h ,  = 2 

14.469 
16.479 
12.985 
14.852 
11.764 
13.517 
10.741 
12.402 
9.871 

11.458 
9.121 

10.647 
8.468 
9.945 
7 . 8  2 
9.331 
7.382 
8.790 

h = h , =  3 

-1 6.875 
-18.046 
18.WO 
22.984 
13.003 
16.227 
10.500 
12.375 
8.183 
9.921 
6.864 
8.236 
5.898 
7.0 8 
5.161 
6.100 
4.582 
5.386 

kmin 
-~ 

-29.442 
-49.98s 

67.12C 
35.11; 
23.275 
17.263 
13.669 
11.293 
9.611 

-31.025 
- 46.734 

60.170 
41 .CC9 
26.754 
19.497 
15.268 
12.521 
10.601 

h = h , = 4  

- I  1.935 
-12.574 
-17.828 
-18.941 

27.203 
32.492 
14.230 
16.863 
9.433 

10 843 
6.997 
7.902 
5.540 
6.188 
4.577 
5.075 
3.895 
4.236 
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Equations ( 3 )  and (5) were solved by the method of iterations / 4 /  on one 
of the computers of the Institute of Cybernetics of the AN UkrSSR.. 

1 

i Kcr<i R 

t 

I 
I -0.75 -0.50 -0.25 0 0.25 0.50 0.75 p 

FIGURE 3.  

Tables 3 and 4 establish the connection between the maximum and 
minimum values of the stability coefficients Kc, and the parameters  f and 
IL1 determining the properties of the combined system of loads and the 
geometrical shape of the plate, and give the boundaries of the range of 
variation of the parameters  in which the plate does not buckle. 

197 



I 
4 .  Symbols - by the first approximation (a) 

0-- -  by the second approximation (b) 
0 ,  I 

1 2 

FIGURE 4. 

TABLE 3 

- l < f l < l  

h, 1 H c r m a x  1 Kcr m i n  1 Stability range 

p = - 1  
-1 < p Q - n.75 

I98 

.. .. . 



-1 
-0.T5 
-0.5 
-0.25; 0; 0.25 

0.5; 0.75; 1 
- 

~~ 1 Stability range 

)., = 1. 3 .< h,  5 4 

Note that these values of the stability coefficients were obtained by us  a s  
a resul t  of numerical solutions and have not been accompanied by studies 
of the general properties of Kcr as a function of the parameters  p and AI. 
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NONLINEAR INTEGRAL A N D  INTEGRAL-DIFFERENTIAL 
EQUATIONS OF SHALLOW SHELLS A N D  THEIR 
APPLICATIONS 

A .  A .  B e  r e  z ov s k i i  

(Kiev) 

1. The determination of the s t ressed and strained s t a k  of flexible 
shells and plates is reduced to the solution of nonlinear boundary-value 
problems 

where A is the quadratic elliptic matrix of differential equations; f is the 
rectangular differential matrix of the boundary conditions; u ( P )  is the 
unknown vector function; f o ,  f , ,  yo, p1 a r e  given vector functions u ( P )  of 
point P of the region of the middle surface S limited by the contour 1 .  

boundary conditions f, the boundary-value problem (1 ) is reduced to an 
equivalent system of nonlinear integral equations 

- -  

Using Green's tensor I( (P.  Q) for the operator A at homogeneous l inear 

where G is the differential matrix of the boundary conditions, completing 
matrix f ;  uL (Q) is the solution of the corresponding linear problem 

System ( 2 )  represents thus the solution of the nonlinear boundary-value 
problem (1 ) as  the sum of the linear solution and of a correction for the 
nonlinearity . 

Proceeding to the approximate solution of the system of nonlinear 
integral equations (?), we approximate the Green tensor K(P,  Q) by the 
degenerate tensor K (P. Q). 
nonlinear integral equations ( 2 )  reduces to the solution of a system of 
nonlinear algebraic equations. 

2. 

Then, a s  known, the solution of the system of 

We shall represent K ( f ,  Q)in the form of the sum 

k (P, Q)= x K k '  ( P ,  Q), kf,! ( P ,  Q) = k;' (Q) U J $ ( ~ )  , ( 4 )  
k, I= 1  
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where w:: ( P )  a re  elements of the approximating tensor Q*l (P) ,  all columns 
of which a r e  equal* and satisfy the homogeneous l inear boundary values of 
of problem (1): fp Qbl (P)=O, P 6 1;  ky' (Q) a r e  arbi t rary functions of point Q ,  
which will be determined with the aid of the matrix equations of the Bubnov- 
Galerkin method: 

Q ' k l  (P)  Ap k (P,  Q )  dSp=- 2'k1 ( P )  fi (P - Q )  E dsp. ( 5 )  

where the prime designates the operation of transposition; E i s  the unit 
matrix; 8 ( P -  Q) is the delta function. 

matrices,  we obtain the equality of two matrices,  with identical rows. 
The equality of the elements of these r o w s  gives the necessary number of 
l inear algebraic equations for determining 

Having realized the operations of multiplication and integration of the 

k:' ( Q ) ,  k , l = l ,  2;. . 
In the f i r s t  approximation 

Replacing the tensor K (P, Q) in system ( 2 )  by the degenerate tensor 
i< ( P ,  Q ) ,  we obtain i ts  solution in the form: 

where the vector function ukl (Q) is determined from the system of vectorial 
nonlinear equations 

U ~ I  ( Q )  = - J KI" (P.  Q )  f i  ( u L ( P I  + ai; (P )  )dSp + 
S i .  j = l  

t @ & K k l ( P , Q J ~ ( U 1 ( P ) +  u , . ( f ) ) d l , > ,  k , I = 1 ,  2 , 3 , . . .  (8) 
1 i. , = I  

In a fir st  approximation k = 1 = 1  

u (Q) = un ( Q ) +  uI1 iQ),  ( 9 )  

u11 (Q)= - 1 K" (P,  Q )  f1(., ( P )  + all (P I )  dsp + 
S 

3. 
The problem of the large deflections and buckling of a circular simply 

We shall consider a number of specific cases.  

supported plate under the action of a normal load of intensity q ( r ) ,  a 
compressive force p ,  and a bending moment m, uniformly distributed over 

If A is a diagonal matrix, a diagonal matrix is likewise selected for the approximating matrix QH(P).  
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the contour, is reduced to the nonlinear boundary-value problem (l), 
where 111 

Here O<r <a; E ,  p, h ,  and a a r e  Young's modulus, the Poisson ratio, 
thickness, and radius of the plate; u, 6 a r e  radial displacement and angle 
of rotation [change of slope] of the middle surface of the plate. 

tegral-differential equations ( 2 )  corresponding to this case: 
The following expressions a r e  to be substituted in the system of in- 

P = r ,  Q =  x ;  dSp=rdr; G = r E ,  $ = I" ; 
1 0  

x3 3 + p  x 3q ( I -  p') 
") ( x )  = - - -- -. 'I = 

a3 I + p  a' 4 E h3 
W'riting 

W1 ( r )  = t u  ( r )  E ,  

we obtain from ( 6 )  

d 1 d  / dr r dr 
K" ( r ,  x )  = /Ju(j-' w(r) w ( x )  E, ]I cor = - w ( r )  - - - (rw(r))rdr. (1 4 )  

The substitution of ( 1 4 )  in ( 1 0 )  yields 

(4 = uL,* (4 + all (4, all tu 4x1, 0 441, ( 1 5 )  

where u is some second-degree polynomial of 0 .  and 6 is a real  root of 
the cubic equation, which in three particular cases of the load on the plate 
is transformed to 
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4. The problem of la rge  deflections of a simply supported shallow 
spherical shell under the action of a normal load of intensity q ( r )  and a 
bending moment m, distributed uniformly over the contour, is reduced to 
the nonlinear boundary-value problem (1 ), where 121 

k 2 p  0 - - ,  62 B s - k 2 p s ] ,  < [O,O),  k 2 = 2  1/ 12 ( 1 - 7 )  f4 2 h 

H is the r i s e  of the shell; O d p , < l .  

equations ( 2 )  
In this case we must substitute in the equivalent system of integral 

The substitution of (1 9 ) in (1 0 )  yields 

a ( X I  = "I. (4  f u l l  ( X ) ,  111, Is '"1 ( X ) ,  ow, ( x ) ) ,  

1 1 ~ ~ 1 1 ~  s = a f 1, 0 f cG2, Ilto# 0 = ds + efk; 
27 1 3 1 
160 6 r? 138 IC; 

27 1 1 27 
80 6 8 160 

where 

- - - 12 - - k2 a + '- a 171 - -- + - /$,ir ; 

( 2 1  1 1,; - - - a -  -/<?+-/,,, c = . . - - ;  

1 27 1 27 
8 80 

d = -- k? + - 8 0 1 + - n z ,  e = - .  

In the case k=rrr -0 we obtain for  the determination of fi the cubic equation 

44.80' o=o, 
9.27' 

( e + a ) a +  -- 

5. In those cases when it is impossible to form the l inear  solution (3), 
we shall establish an approximate l inear solution, replacing the Green 
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tensor K (P ,  Q) in (3 )  by the degenerate tensor I? (P, Q): 

The approximate solution of boundary-value problem (1 )  is transformed 
then to 

where the vector function ukl(Q) is determined from the system of non- 
linear vectorial equations 

In a f i rs t  approximation k = I = 1  
a (Q)=aii (Q).  (9") 

ul1 (4) = - S K" (P .  Q)[f, (4 + f,( all (PI !JdSr. + 
s 

+ $GP K" (P, 4) [GO (8 +&(a,] (4 ) ) d l ~ .  ( 1 0 " )  
I 

6. In the case of boundary-value problem (1 6 )  at  y =0 equation (10") 
is reduced to the resolving cubic equation 

H 
h 

The critical value of the slope parameter k=21/12(1-p2) - a t  which 

the buckling becomes possible is equal to 3.64. 
in this case 1 2 1  3.53 ,<k 63.59. 

In the case of a simply supported spherical shell quadratic in the plan 
subjected to a circumferential load, equation (10") is reduced to the r e -  
solving cubic equation / 3 / 

The linear theory gives 

= C J - 4 k  
9 

H 
h 

The critical value of the slope parameter K = 8  - is equal in this case 

We obtain in both the f i rs t  and the second cases almost the same value 
to 16.8. 

of the ratio -- (2.03 and 2.01 respectively); this ratio remains therefore 

practically constant for a spherical shell, independent of i t s  shape i n  
the plan. 

H 
A 



7. The problem of the large deflections and buckling of a shallow shell 
of double curvature under the action of compressive forces T and bending 
moments M is reduced to the nonlinear boundary-value problem (1 ), 
where / 4 /  

l + p  d? h2 
A,,=A,,= - - A,, = - VZ 02, 

2 dxdy' 12 

f--. dzw dw - ) .  
a y 2  dx 

aw dw dw d?w d.le, d2w k, - - - p k  - + -. - --p -. ~ - 
dY ' d y  dy dyz dx dxdy 

<, ('("">' 2 ax , ' ( " ) p ,  2 dy 
0, 0)  

If the shell edge is built-in 

If the shell edge .r=a is hinged 

1 0 0  

0 0 -  

If the shell edges I y = 0, b a r e  built-in, and the other two edges a r e  hinged 
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- - 
. (26 )  

cos 2 x sin" y COS xsin 5 y 0 a b b 

b a b 0 
n sln 2 y sin 2 x sin- y 

yz(y--a)2sinZ x 

In the c a s e  of a p la te  k,=k,=O, and equation ( l o " )  r educe  to the  cubic 

a 0 0 

equation 

D = 
12 (1  - p2) 

BIBLIOGKA PHY 

1. T i m o s h e n k o ,  S. P. Plates and Shells.-  McGraw-Hill. 1959. 
2. Teor iya  gibkikh kruglykh plastinok (Theory  of Flexible Ci rcu lar  

3.  B e r e z o v s k i i ,  A .A. -  DAN UkrSSR, No. 6. 1961; Inzhenernyi 

4. V o r o v i c h ,  I. I. -1zvestiya A N  SSSR, matemat icheskaya  ser iya ,  

P l a t e s ) ,  pp. 101-127 .  [Russian translation. ] 

Zhurnal,  Vol. 1, No. 4. 1961. 

Vol. 19, No. 4. 1955. 

206 



ON T H E  S Y M M E T R I C A L  DEFORMATION OF A N  
ORTHOTROPIC TOROIDAL S H E L L  

Yu.D. B e s s a r a b o v  and M . A .  R u d i s  
(Mias  s ,  Voronez  h) 

The problem of calculating an isotropic toroidal shell loaded by an 
axially symmetrical  system of forces was treated in /1-7/ and in many 
other papers. 

tion of an orthotropic toroidal shell. 
equations of symmetrical deformation of anisotropic shells 18 1. 
equation of the problem is obtained, which contains a small  parameter 
(proportional to the shell thickness) at a high-order derivative. 
equation i s  solved by the asymptotic method, and i t s  solution i s  expressed 
through tabulated functions / 9  1. 
studied in detail; simple formulas a r e  then given for determining the 
maximum s t resses  and strains in the shell. 

by adsymmetr ical  forces reduces to determining the complex unknown 
function V from the differential equation 

The present paper is devoted to the study of the symmetrical  deforma- 
The solution proposed is based on the 

A resolving 

This 

The f i rs t  asymptotic approximation is 

1. The calculation of an orthotropic toroidal shell in the case of loading 

Her e 

where E,. E2, v l ,  and v2 a r e  the moduli of elasticity and the Poisson ratios 
in the meridional and circumferential directions of the shell, respectively; 
the pr imes represent  differentiation by 8 .  
in Figure 1. 

The other designations a r e  shown 

FIGURE 1. 
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The load function f in the right-hand side of (1.1 ) is expressed by the 
for mu1 a 

where 

F, = - cosO-J, + sfn 6 -+ I v (29: 1 )  

(1.3) 

Her e 

I ,  = roRo (4 ,  sin e + q,cos e) (1 + a sin 9) de, 
0. s 

8 

I ,  = roRo (4 .  cos 0 - q1 sin e) (1 + a sin e) de, 

q, and q, are components of the external surface load in the directions of 
the normal and the tangent to the shell meridian, and 'P, i s  the axial component 
of the external forces applied to the parallel circle e = Bo. 

Knowing the external load acting on the toroidal shell, i t  is easy to find 
by means of formulas (1.3) the functions F ,  and F,, and thus to define 
completely the function f .  

In the particular case that the axial force P, acts  on the shell 

and formula (1 .2 )  reduces to 

It is easily shown that the second term in the brackets of (1.4) is of order 
h - compared with unity. It can therefore be neglected compared with the 
r0 
f i rs t  term, without decreasing the accuracy of the initial equations; then 

f = i D c o s @ ,  ( D =  (1.5) 

A similar simplification can be made in formula ( 1 . 2 ) .  
however the function E;, must not increase during differentiation. 

In this case 
Then 
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Having determined the function V from (1.1 ), the magnitudes characterizing 
the stressed and strained state of the shell can be found by the following 
formulas: 

normal forces per  unit length ( s t r e s s  resultant) 

T, = Im v’; p cos e Im V + F , .  Tl = 
R,(I +asinel  ’ r0 

shearing force per unit length 

bending moments 

Re V). a cos 0 __ 
ro 1 f a s i n 8  

Re V); acosO 
1 + a sin 8 

M I =  .4 ( Re V’ + v2 

M2= Re V’ + 
meridional and circumferential strains 

(1.7) 

(1.9) 

(1.10) 

+ J-ImV‘; v2 (r cos OIm V+ F,) 
E,hR, (1 + a sin 6) 

Ea = - 
Eahro 

angle of rotation [change of slope] of the normal to the shell meridian 

8 = R e V ;  

axial and circumferential displacements 
(1.11) 

t 

4 = C, - r, [Re Vcos e de, A,= Ro (1 + asin 0) sa; (1.12) 
J 
1. 

maximum s t resses  in the shell 

(1.13) 

In formulas (1.7 ) to (1.13) 

E2h1 > Di=  3 ( k l ,  2) .  
p = ~ 1 2 ) 1 ( 1 - v v , v , )  12 ( I  - V1Vr) 

Re . . . and Im.. . a re  the rea l  and imaginary parts,  respectively, of the 
functions V and V‘. 

2. Equation (1.1) can be represented in the form 
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where E = - ill3 is a small  parameter (proportional to the shell thickness), 

Equations of the type (2.1)  have been studied in detail in 171. 
The solution of (2.1)  is of the form 

I/= 2, [C,h, ( t )  + Czhz ( t ) ]  -I- v*:, (2 .2)  

where C, and C, a r e  complex integration constants, determined from the 
boundary conditions of the specific problem or from the conditions of 
joining the toroidal shell with shells ofother types, h, ( t )  and h , ( f )  a r e  Airy 
.functions 

2 
3 

H!;! a re  f i rs t  and second Hankel functions of the complex argument - t"', 

'Z, = ~~ ~ I*/', I sino(i:asine) 

In practical calculations the following approximate expressions can be used 
a t  small values of a: 

v-1 ---a9. 3 
10 

(2.4)  

The values of h , ( t ) ,  h,(t) and of their derivatives a r e  given in 191. 
values of t - i s  (s>6) one can use expressions ( 2 . 3 )  with the first  t e rms  
of the Hankel functions only 1101.  

by the asymptotic se r ies  by the powers of - (p = - il) 

At large 

A particular solution of the nonhomogeneous equation (2.1 ) is represented 
1 

P 

where E, ( t )  a r e  generalized Airy functions. 
The functions e , ( t )  have been tabulated for n = 0, 1, 2 191. 
The f i r s t  asymptotic approximation for the particular solution will now 

At n = 0 w e  obta.in from (2.5), allowing for be considered in more detail. 
(1.61, 

This reduces a t  0 = 0 to 
1 V-: (0) = - e, (0) F, (0). 
P 
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It follows that at  the singular points of the torus (0 = 0 and 8 = n) the particuliar 
solution is finite (unlike the particular solution obtained on the basis of the 
membrane shell theory V&= "-1. 

p sin9 
The differentiation of (2.2) by 9 yields 

V ' = C , [ d h , ( t )  - x ( e ) h ; ( t ) ]  +C,[a 'h, ( t )  - x ( e ) h ; ( t ) ]  + V*', (2 .7)  
where 

The function P i s  found by differentiating ( 2 . 6 )  by 0 .  Since, in addition, 

1 u' = - 
pva' 

expressions ( 2 . 2 )  and ( 2 . 7 )  solve 
the orthotropic toroidal shell. 

Four boundary conditions (two 

completely the problem of calculating 

on each edge of 'the shell) a r e  necessary - 
in order to determine the four integration constants. 
edge conditions of the shell, these boundary conditions can be given in 
forces or in displacements. Expressions (1.7) to (1 .12)  can be used for 
formulating the boundary conditions. 

Let, for instance, the shell edge 0 = Bo be fastened in such a way that 
the rotation angle 9 and the circumferential strain el a r e  equal to zero.  
No restrictions a r e  imposed on the axial displacemect of the shell edge 
(the force Pz is known). According to (1.11) and ( l . l O ) ,  the conditions 
9 =  e2 = Olead to the expressions 

Depending upon the 

Re V (e,) = 0, 
p ( 1  +as in0 , )  Im I/' (0,) - p cos B,, Im V(0,)  = F ,  (0,J. (2.8) 

av2 

Formulas similar to (2.8 ) can be obtained for other variants of the boundary 
conditions a s  well. 

In practice, the method of separate fulfillment of the boundary conditions 
is frequently used. 
a s  criterion of applicability of this method: 

For a toroidal shell the following conditions can serve 

3.8 
O k > F '  ( 2 . 9 )  

Here 0 t  is the angular distance between the shell ends considered; ', the 
coefficient 3.8 was obtained from the analysis of the variation of the 
function h 2 ( t ) ,  which increases with t .  The numerical value of the co- 
efficient has been determined with the accuracy of 5 %  normal in technical 

calculations - - - c: - 2 3  
3. Consider a s  an example a toroidal shell truncated along a parallel 

a r c  8, = -1/2x loaded on this edge by the axial force P,. 
edge be f r ee  in the sense of radial displacements but incapable of rotating. 

Let the shell 
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Such boundary conditions reduce to the requirements N = 8 = 0 at B= f 1/2-. 
A particular solution for a toroidal shell loaded by an axial force P,  is 

V* = LDucotOe, (s). (3.1 1 
The expression for the shearing force will be in the case considered 

N =  R0 (1 +a ' sin0) ( ~ c o s ~ - - p S i n ~ I m  2x v 1 . (3.2) 

Itfollows f rom(3 .2)  a n d ( l . l l )  that at e = + 1 / 2 X  R e V = I m V = O .  Since 

V" &- = 0, the complex integration constants C, and C, must be equal 

in the given case to zero. 
shell is thus described in this case by the function L'*. 

0 
The s t ressed state of the orthotropic toroidal 

FIGURE 2. 

Figure 2 represents  the distribution of s t resses  a1 and a2 in an ortho- 
tropic toroidal shell of geometrical dimensions ro = 1 0  cm, R, = 50 cm, 
h = 0.25 cm. 
values: El = 1.2X105kg/cm2; Ez = 0.6X105kg/cm2; v1 = 0.072; v 2 =  0.036. 
The shell is loaded by an axial force P ,  = 100 kg. 

It is seen from the curves of Figure 2 that the distribution of s t r e s ses  
in the shell is very nonuniform. 
siderable bending moments. 

and s t ra ins  in the shell. 

The elastic constants of the shell material  have the following 

This nonuniformity is due to the con- 

We shall now establish formulas for calculating the maximum s t r e s ses  
Let u s  assume for simplicity that 

The approximate expression for the function V* will then be 

V* = LDe, (s) (3.4) 

(since ucot O=:]for small  a within a wide range of variationof theangle e ) .  
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A f t e r  the values (3.3) have been substituted in (1.1 ), the latter splits 
into the following two equations: 

Re V"- 1% I m  V =  - PD, Im V" + P O  Re V =  0. (3.5) 

Consider the approximate expression for the meridional bending moment 

Obviously, to the maximum value of M, there corresponds approximately 
the condition R e  V'= 0. When this condition is satisfied the f i rs t  equation 
of (3.5) reduces to 6 Im V =  D . The substitution here of the value of Im V 
according to (3.4) yields 

-sIIme,(s) = 1. (3.7 1 
The value of s which satisfies this equation is s = & 1.225. It follows that 
the value of the angles e, at which maximum meridional bending s t resses  
will appear in the shell is determined by the expression 

( 3 . 8  1 1.225 
1 

e,= -. 

The formulas for the maximum s t resses  a r e  in this case (for v 1 v 2 z 0 )  

A similar analysis of the second equation of (3.5) leads to the conclusion 
that the maximum circumferential tensile s t r e s s  occurs at O z O .  
following values of the maximum s t resses  a r e  obtained for this value of 6 :  

The 

aZp (0) = 2.15i'" (r$Q)..p,. - 
(3.10) 

Expressions (1 .12 )  and (3.4) will be used for deriving the formula for 

Since /7 /  
axial divergence of the shell edges for Q = - 112%: 

i Re e, (s) ds = X ,  

.-" 

we obtain 

(3.11) 
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Atv,=v,=Y, El=E2=Ei t fo l lowsfrom (3.11) that 

which corresponds to the axial divergence of the edges of an isotropic 
toroidal shell. 

Formula (3.11 ) can be used for the approximate assessment of the 
deformation of a toroidal shell reinforced along the meridian by stiffening 
r ibs .  Substituting in (3.11) v,=v,=v, &=E and El= E11 + 12(1-v2)zI/2d?, ,h3]  
we obtain 

(3.12) 

where I is the moment of inertia of a r ib  relative to the middle surface of 
the shell; z i s  the number of ribs;  I,, = 2xR,,h3/12 (1  -vz) is the moment of 
inertia of the shell wall. 
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THERMAL STRESSES IN A REINFORCED 
CYLINDRICAL SHELL 

L . A .  B o r d u n o v a  
(Moscow) 

This paper gives a solution to the problem of determining the tempera- 
ture  s t resses  and displacements in a cylindrical shell (Figure 1) reinforced 
by stringers in the case of axisymmetrical heating. The temperature is 
assumed to be constant through the shell thickness and to vary along its 
length according to some arbi t rary law i s h =  t ( € ) .  The temperature of the 
stringers can vary in both directions (length and height): t s t -  t E, z);  it is 
however assumed that i t s  variation with height is linear. The temperature 
field is assumed to be stationary, the material  of the shell and stringers 
to be elastic and isotropic, and the physical-mechanical characteristics 
of the material  to be temperature-independent. 
an exact formulation, a s  a contact problem. The displacements and 
s t resses  in the shell a r e  determined first ,  and the displacements and 
s t resses  in the stringer afterwards. 
fulfilled along the line of junction of the shell and stringer: 

The problem is solved in 

The following conditions must be 

The temperature field being axisymmetrical, the shell is deformed sy-m- 
metrically relative to the places of fastening of the stringers.  Consider 
the par t  of the shell between adjacent stringers.  
system of equations the complete system of the moment theory of cylindrical 
shells, with temperature te rms  added. 
librium in displacements is 

We shall use a s  an initial 

The system of equations of equi- 

dt  
L i i ~  + Lizv f LiaW = R ( 1  + V) a 

L,,U + L,,w + L , p  = 0, 

L& + L,,w + L a p  = - R 1 + v) ut  ( t ) ,  

1 

( 2 )  

where 
tangential, and radial displacements respectively; u is the Poisson ratio; 
v is a coefficient of l inear expansion; R is the shell radius. 

ments will be: 

L , 2 , - . - ,  L,, a r e  known differential operators 111; a, w, w a r e  axial, 

The relationships between the forces per  unit length and the displace- 
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(3) 
(cont'd) 

System ( 2 )  will be solved by the operatorial  method. 
corresponding homogeneous system reduces in this ca se  to the solution of 
one resolving equation of the eighth order  relative to some potential 
function 11: 

The solution of the 

In deriving this equation we have neglected the value a z =  __ h2 in ' compari-  3R2 
son with units ( 2 h  is the shell thickness). 

FIGURE 1. 

The solution of the nonhomogeneous system reduces to  solving a system 
of the form 

d t  Dql = (1 + .) R a x  v 

( 5 )  
D $ J * = - ( ~  + v ) R a t ( S ) ,  

with the displacements a*, v* ,  TO': determined through the unknown functions 
of this system by means of the following equations: 

u:C = D  11'h + DlR2. (6) 
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Here D is the determinant of system ( 2 )  and D,,, D,?, . . . , D,, i ts  correspond- 
ing minors. 

trigonometric se r ies  by the variable i : 
We shall look for a solution of the resolving equation in the form of a 

~. 

The substitution of ( 7 )  in ( 4 )  yields for each term of the ser ies  an ordinary 
differential equation with constant coefficients relative to the unknown 
function f, (cp) 

ft' - (41.2, - 2)f!,? + (6hR - 8X: + 1)f:) - [4X6, -(8- 2v2) X', + 4h:n] I$)+ 

By solving this equation we obtain a solution of the following type for each 
term of the expansion: 

Q,,, = [eam' (Cl,cos b, , ,~  + C2, sin b m y )  + 
(C~,COS b,T+ '&Sin b m v )  + ea',' (Cs,cos h,cp + C6,sinb1,~cp)-t + 

( C 7 m C O S b l m V +  Cs,sinbl,y)] COSLE, ( 9 )  + e-almY 

where C,,, C2,, .  . .. CS, a r e  arbi t rary integration constants and a,, a',, 
b,, b,, are the  real  part  and the coefficient of the imaginary part  of the 
complex roots of the characterist ics equation obtained from (8 ). 

The displacements a r e  determined from the relationships 

d3Q, d W  h2 [ (1 + l v ~ ~ l -  v )  ___ d 5 0  
dPdcp2 ' uo= - ~ dEgy2 $- dEJ + 3R' 

+ 

2(2 - 2 ~  +Y') @0 
I--v 

The symmetry condition w (91) = w ( -  cp) leads to the following relationships 
between the arbi t rary constants: 

C i m  = C 3 m ,  C f m  = - c 4 m  3 CSm = C 7 m .  C 6 m  = - CSm. 
The displacements contain therefore four arbi t rary constants. 
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The temperature along the shell can be represented a s  a cosine ser ies  

( k m  a r e  expansion coefficients). 
The following expressions will represent then a particular solution of (5) :  

Having obtained a complete solution of system (2) ,  we shall find now the 
expressions for the forces and moments ( 3 ) .  Let the shell be hinged: 

Z = W =  0, T,=O, GI= 0 at  E =  1. (13)  
(2n + 1) n These conditions will be satisfied if  cos 1,s = 0 whence km = ___ 

where it is any positive integer. 

bending. The shell tran.smits to each stringer uniformly distributed forces 
per unit length ij= 2N, .  F= 2S, and moment I. = 2H2. In addition, the stringer 
is heated to a temperature 1 Sf= t(E, z ) .  
stringer element (Figure 2 )  will be 

21 ' 

The stringers will be considered as  beams subjected to extension and 

The equations of equilibrium of the 

I * dE +tRdE = 0. x- (IQSf dE + qRdE = (I, 

dMSf  - RdE - 
d€ 2 dE 

di - diut (14) 
- dE + QSfRdE - yRdE - - tRdE. 1 - i*Rd€ + __ dE = 0 

(,Ut is the bending moment appearing in the stringer with the variation of 
the temperature along its height). 

t z  
FIGURE 2 

The boundary conditions for the stringer are:  

a t  E =  * I w s f = O ,  pSf=O, MC=0;  

a t  E = O  ust=0. 
(15)  

The condition of symmetry yields the relationship wstt(E) = wsq- E ) .  The 
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solution of system (14), taking into account the boundary conditions (15)  
and the equation of bending 

&gJSt M 
RTdELIp = - F' 

yields the expressions for the displacements and forces in the stringer.  
The arbi t rary constants through which the displacements and forces in 

the shell and stringers a r e  expressed a re  determined from condition (i ). 
The cylindrical shells a r e  reinforced in most structures by s t r ingers  

and frames. 
temperature s t resses  in the sheathing and stringers was assessed 
approximately in our studies. 

enough to each other two prevent the deflection of the stringers.  Thus, 
without considering the frames separately, we assume that the flexural 
rigidity of the stringers increases infinitely and the deflection wst is equal 
to zero, and therefore that the shell deflection along its line of junction 
with the stringer is equal to zero from the condition of compatibility of 
deformations. This solution represents a particular case of the above 
considered solution. 
and s t resses  in the shell and stringer, and writing in them J s t = o o ,  we de- 
termine the arbitrary constants from the relationships existing along the 
line of junction of the shell and stringer a t  'p = qP: 

The influence of f rames on the magnitude and distribution of 

We assume that the frames a r e  absolutely rigid and a r e  disposed close 

Using the expressions obtained for the displacements 

1 )  uSh(€,  p) = u ( E ) ,  2) WSh(E, q) = 0, 

The solution considered and the supplement given make it possible to 
estimate the expected distribution of temperature s t resses  in a cylindrical 
shell reinforced by s t r ingers  and frames, and also to find the s t resses  
transmitted from the side of the sheathing to the stringer in the presence 
of a temperature gradient. 
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DYNAMIC CONTACT PROBLEM FOR A THICK 
P L A T E  IN THE CASE OF AXIAL SYMMETRY 

N . M .  B o r o d a c h e v  
(Sara tov) 

1. Consider an infinite thick elastic plate (elastic layer) of thickness h 
lying on a rigid foundation without friction. Let a circular-cylindrical 
punch of flat base be placed on the plate ( see  figure), and le t  a vertical 
force Q + Pef’t act on the punch along its axis of symmetry. 
that Q >  P ,  and that there is no friction between the punch and the plate. 

It is assumed 

FIGURE. 

Problems of this type a r e  met when the foundation on which a machine 
with a crank movement is set l ies  on a relatively thin soil layer underlain 
by a rocky foundation (or more generally by a foundation considerably more  
compact than the upper layer).  

two problems: 

the action of the constant force Q; 

force Pelwt. 

on a rigid foundation. 
relative to the case of axial symmetry. 
the present paper. 

general solution of the problem of steady vibrations of an elastic layer of 
finite thickness lying on a rigid foundation in the case of axial symmetry. 

The problem can be solved by superposing the solutions of the following 

a) the problem of the penetration of the punch in the elastic layer under 

b) the problem of the motion of a punch under the action of a dynamic 

The first problem is a static contact problem for an elastic layer lying 

The second problem is treated in 
This problem was treated in our papers 11, 2 1  

2. Before solving the dynamic contact problem we shall establish a 
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We shall use the cylindrical system of coordinates ( r ,  9, z) ,  with the z 
axis perpendicular to the boundaries of the elastic layer.  For the case of 
steady vibrations of frequency u) of an isotropic elastic layer we can write 

Ur ( r ,  z, t )  = u: ( r ,  z) e"', 

uL ( r ,  z, t)  = u: ( r ,  z)  elm', 

where U r ,  

coordinate axes, respectively; i~;, u:, must satisfy the following equations: 
a r e  projections of the displacement vector on the r and z 

Here k, p a re  Lamd's elastic constants, and p is density; 

The functions 633, q* satisfy in their turn the following equations: 

where 

(2 .5)  

By applying Hankel's integral transformation by the variable r to equa- 
tions (2.2)-( 2.4), we obtain after the corresponding calculations 

5 [E ( A ,  sh k,z + A,ch k , t )  -kk,(A,ch k?z + A, sh k g ) ]  J1 (rS) dF, ( 2 . 6 )  

u i ( r ,  z ) =  E [ - - , (A,chk,zfA,shk,z)+ j 
+ E(A,shkp+A,chR,z) ]J , ( r i )dE.  ( 2 . 7 )  

Here 

J ,  ( x )  is a Bessel function of the f i rs t  kind; A, ( 5 ) .  A,  (E), A, ( E ) ,  A, (E) a re  
functions determined from the boundary conditions at  z = 0 and z = h.  For 
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l a r g e  positive values of i each of the radicals  in (2.8) is taken with 
positive sign. 

boundary conditions: 
In what follows we shall  need the case character ized by  the following 

the s t r e s s e s  a t  z = 0 a r e  

'?L ( r .  0, t )  = 0: ( r ,  0 )  eiwf, T,= ( r .  0, t )  = 0, (2 .9)  

the vertical  displacements of the layer  and the friction fo rces  a r e  equal 
to z e r o  at  z = h :  

u2 ( r ,  / I ,  t )  = 0 ,  T,=(K, h,  t )  = 0. (2.10) 

For these boundary conditions we obtain 

where 
A,= - A ,  c th  klh,  A,, = - A ,  th k,h, 

B (€1 = (2:' - m')* c t h  k,h - 4E2k,k, cth k,h. 

(2.11) 

(2 .12  

(2.13 

(2.14 

3. The r e su l t s  obtained in s.2 will be  applied now to the solution of the 
dynamic contact problem for  a thick plate. 
plate (e las t ic  layer)  of thickness h lying without friction on a rigid founda- 
tion be subjected to the action of a circular-cylindrical  punch with flat base,  
advancing under the action of an axial force /JerUvf.  It will be assumed that 
t he re  is no friction between the punch and the plate, and that t he re  is no 
load outside the punch. 

The boundary conditions for the dynamic contact problem considered 
will be  

Let an infinite thick elastic 

LL, ( r ,  0, t )  = beiwf a t  0 < r < R, (3.1 1 
4 > ( r ,  0, t )  = 0 at  r > R, (3.2) 

c,= ( r ,  0, t )  = 0 0 < r < m, 

I&, ( r ,  h, t )  = 0 a t  O<r<m,  

: r r ( r , h , f ) = O  at  O < r < m  

a t  (3 .3)  
(3 .4)  

(3.5) 

By substituting in (2 .7 )  the expressions for  A,, A,, A,, A,  f rom (2.11),  (2.12) 
and writing then z = 0 we obtain 

This expression sat isf ies  the boundary conditions (3.3)-(  3.5). 
i n (  3.6) is to be  considered a s  a contour integral .  The singularit ies a t  points 
E = Em, m, E,, E,. . . . , E,, . . . , E,-, a r e  to  be by-passed along the arcs of the c i r c l e s  
located above the singularit ies.  Here  I, a r e  the positive roo t s  of the equation 

The integral  
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B(E) = 0. By satisfying the boundary conditions (3.1 ), (3.2) we obtain the 
dual integral equations 

(3.7) 

Er:,o, ( E ,  0 )  .I, (rE) dC = 0, r > R. 

(Expression (3.6) and the Hankel transformation formula were used in the 
derivation of these equations.) 

Equations (3.7 ) must be solved relative to X;ca, ( 5 ,  0), after which the s t r e s s  
( r ,  0, t)  acting along the contact area is determined from the formula 

G, ( r .  0, t )  = e;-' (E, 0 )  ( r t )  dt. (3.8 1 
0 

The solution of system (3.7 ) can be reduced to solving Fredholm's 
integral equation of the second kind by means of J. Cooke's method / 3 / #  
The second equation of (3.7) will be satisfied if we write 

4 (1 - €2) pbR ' 

q ( o , ( E ,  0 )  = - x 1; ( X ,  cos ( R E X )  dx. ( 3 . 9 )  
U 

In order  that the function C : , a , ( i ,  0) thus defined may satisfy the f i rs t  equation 
of (3.7), the functionf(xjmust be a solution of Fredholm's integral equation 
of the second kind 

where 

The integral in (3.1 1 ) is to be considered a s  a contour integral. 
singularities a t  points p = i, 1, fix, pz,. . . , B,, .. -, pN a re  to be by-passed along 
the a rc s  of small  c i rc les  lying above the singularities. 
the positive roots of the equation 

Here p, represent 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

The 

Some problems connected with the determination of the roots of (3.14) have 
been considered by Marguerre 141. 
calculated by approximate methods. 

The integral in (3.11) must be 
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Integral equation ( 3.1 0 )  will be solved approximately, by substituting 
The integral is re-  for it a finite system of linear algebraic equations. 

placed by a summation by Simpson's formula: 

. where n is the number (even) of equal par ts  into which the integration 
interval ( 0 ,  1)  is split: 

a, = a, = 1; a, = a3=.  . = a,,-1=4: a' = a 4 = .  .+=a,,-? = 2. 

By successively introducing in ( 3 . 1  5 ) the equalities 

x=xo, XIr x z , . . . ,  x,, 

we obtain the following system of equations: 

By solving this system we obtain the approximate values of the function 
By using then some interpolation formula w e  f(x) atpoints x,, xl, x P ; .  ., x,. 

can obtain an approximate expression for j ( x )  in the whole interval ( 0 , l ) .  
The substitution of the expression for C:,o,(5,0) from ( 3 . 9 )  in ( 3 . 8 )  yields 

at r <  R. 
The elastic layer reaction can be found from 

R 

Poe'"f = - 237 az ( r ,  0, t )  rdr. ( 3 . 1 8 )  
0 

Substituting in ( 3 . 1 8 )  the expression for uZ(r,  0, t )  from ( 3 . 1 7 )  and integrating 
by r ,  we obtain 

Introduce the designations 

(3.19) 

( 3 . 2 0 )  

(3 .21  ) 

The elastic layer reaction can then be represented in the form 

foe'-' = 8 (1 - E') pRTob,ei(wf+ 8 - y ) .  ( 3 . 2 2 )  

If the external force acting on the punch is equal to Pcoswl(J , f  =O), the 
equation of motion of the punch will be 
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where M is the punch mass.  Using (3.21), (3.22), and (3.23), we obtain 

- Mw2bo COS ( w t -  9) + 8 ( 1  - E') ~ R ~ o 6 0  C O S  ( w t  + 8 - 7 )  = PCOS of,  

from which we find 

(3.24 

~ ~ _ _  (3.25 P bo = 
8(1  - E ~ ) ~ L R T ~  1 /1 -2c~cosE+c2  ' 

where 
(3.26) 

Therefore, if the force acting on the punch is equal to Pcostuf, the 
punch will move according to the law bocos ( w t -  y) .  
shift y is determined by formula (3.24). 
the connection between the amplitude of vertical displacements of the 
punch 6, and the amplitude of the applied force P. 
and (3.25), we obtain a formula for determining the normal s t resses  acting 
along the a rea  of contact: 

The angle of phase 
Relationship (3.25) establishes 

Using (3.17), (3.21), 

zz ( r ,  0, t )  = - Re 
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VIBRATIONS OF CYLINDRICAL SHELLS FILLED 
WITH LIQUID 

V . E .  B r e s l a v s k i i  
(Khar'kov) 

Two basic problems ar i se  when considering the motion of liquid-filled 
The f i rs t  problem is to study the motion of the system liquid thin shells. 

+ shell under the action of the given system of forces; Moiseev, Narimanov, 
Rumyantsev, Sretenskii, Rabinovich, and others have studied it. The 
second problem is to study the motion of the liquid and its influence on the 
shell, the pattern of motion of the shell being assumed a s  known. Pavlenko 
/I/ has studied the two-dimensional motion of a liquid in a rectangular 
cavity; 
cylinder a s  a beam, and the influence of the liquid filling the cylinder; 
Bublil. and Merkulov / 3 /  have studied the question of dynamic stability 
of liquid-filled shells. 
and ribbed cylindrical shells partially or completely filled with liquid. 
Both a normal pressure and an axial force can act on the shell. Let the 
x axis be directed along the cylinder axis and coincide with the vertical. 
We assume that the cylinder is filled with a completely uncompressible 
liquid which performs a potential motion during the cylinder vibrations. 

(a t  different boundary conditions the solution will differ negligibly from that 
obtained for this particular case). 
boundary conditions will then be satisfied by displacements of the form 

( 1 ) 

Okhotsimskii / 2 /  has studied the vibrations of a straight circular 

In this paper we study the free vibrations of smooth 

We shall consider the vibrations of a shell with simply supported edges 

The equation of shell vibrations and the 

u = M cos my cos LE; v = N sin my sin XE; . w = Y c o s  tn'p sin >E, 

where u, v. w a r e  components along the shell axis, the tangent to the cross- 
section circle, and the normal, of the displacements of a point of the 
middle surface; M, N, Y a r e  time-dependent magnitudes representing 
generalized coordinates; 'p is an angle defining the position of the point on 
the cross-sectional circle of the shell or the position of the liquid particle; 
m is the number of waves in the shell c ross  section; R is the radius of the 

nrR 
L 

middle surface of the shell; X =  __ ; 

E=- 
R' 

n is an integer; L is the shell length; 
X 

It is assumed that the liquid motion depends on the coordinate x but is 
performed in the plane normal to the shell axis. 
flow continuity for a liquid layer will be, in cylindrical coordinates, 

In this case the equation of 
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where r is the distance from the given point to the shell axis; @ (r,  'pP) is 
the velocity potential. 

The normal components of the velocity of the liquid and shell must 
coincide at  the liquid- shell boundary: 

d t  ?I d r  r = R  (3) 

Since the shell displacements a r e  periodic relative to 'p, the velocity 
potential can be represented in the form 

where 
@ ( r ,  'p, E ) = @ , ,  (r)  cosm'p sln hE, ( 4 )  

( r )  =const.rm. 

Expression ( 4 )  satisfies equation ( 2 )  and the boundary condition ( 3 )  i f  

The dot designates differentiation with respect to time. 
expression for the velocity potential will be 

It follows that the 

K @ (r,  'p, E) = - rm cos my sin A€.  
mR" (5) 

The natural frequency of the liquid-filled shell wil l  be determined by the 
Lagrange equation 

d dT d l l  
m ( 3 )  + %=O' 

where T is the kinetic energy of the shell and liquid; l3 is the potential 
energy of the shell; t is time. 

The kinetic energy of the shell is equal to 

where s is the a rea  of the middle surface and p is the mass of the shell 
per unit a rea  of the middle surface. We obtain after integration 

(nit+ N Z + K * ) .  p 5 i H  L 
Tsh 

To determine the kinetic energy of the liquid we shall make use of the fact 
that in the case of vortex-free motion of the liquid in a simply connected 
region the kinetic energy of the entire liquid depends on its motion at  the 
boundaries 141 
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where p 1  is the m a s s  density of the liquid. 
then be  

The total kinetic energy will 

The potential energy of the shell is determined from the expression / 5 /  

where I ~ ,  c 2  a r e  relative elongations; UJ, is shear;  x1 and x2 are variations 
of the curvature; T is torsion; 6 is shell  thickness; E is Young's modulus; 
v is the Poisson ratio.  

By replacing in ( 1 0 )  the s t r a ins  by displacements according to / 5 / ,  and 
by assuming that the vibrations a r e  harmonic 

M=M' sin V J ~  t. 
,V= N' sin w 1 t ,  

I< = K' sin LO 1 t ,  
we obtain equation ( 6 )  in the form 

E6 where 5- - --"; d=2 (1-- v) .  
1-  v- 

Since system (1  1 ) must  have a nontrivial solution, its determinant will be 
equal to zero. This yields a third-degree equation relative to w;, f r o m  
which three values of the frequencies are obtained for given in and IL .  

determine the frequencies of the principally normal  vibration one can 

neglect higher powers of px w: 61; one obtains then after some t r ans -  

To 

B 
formations 

I B ( ~ - V ~ ) X ~ + ~ ( A ~ + ~ Z ~ ) ~ .  
p ~ 2  m2+<G+ m?)2 

where #uUo' = - is the natural  frequency of the shell  in 
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62 

12RZ 
vacuum: k = - .  

If the liquid does not completely fill the shell ( h  < L), we assume that the form of 
vibrations of the shell is determined by relationships (1 ) .  
for the velocity potential remains the same a s  before, and the kinetic energy 
of the liquid will be 

The expression 

The kinetic and potential energies of the shell will be the same as  in the 
case of complete filling of the shell. We obtain from the Lagrange eque- 
tions the frequency determinant, and the following formula for the frequency 
of the mainly normal vibrations: 

(13) 

If a normal pressure acts in addition on the liquid-filled shell, the 
natural frequency will increase. 
of an empty shell subjected to the action of a normal pressure APis 

According to 171, the natural frequency 

where 

It follows that the frequency of vibrations of a shell filled with liquid 
up to a height h and subjected to the action of a normal pressure will be 
given by the formula 

If the shell has flexible r ibs  and is subjected to both a normal pressure and 
an axial force, the natural frequency will be given by the formula 

5 (ha+ d)? (m? - 1 )  + + ? I 2  ( A 2  - t  m?)z 
w2 =w-r +- 
P. pRZ til2 f (A2 -+ ITl?)' 

N ,  ( 1 - v') 
where Q2= E 6  

frequency of the ribbed shell (without load). 

; N,  is the longitudinal force and w r  is the natural 

The following approximate formula can be used if  there a r e  only 
transverse ribs: 

2 1  w c  =- 
PR2 
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E l  Here i= -, I is the moment of inertia of the cross  section of the r ib  with 

the shell portion attached to it relative to the axis passing through the 
center of gravity of this element and parallel to the shell axis; I, is the 

distance between ribs; s = l -  ; 1, is the length of the connection between 

the rib and the shell. 
If the loaded ribbed shell is filled with liquid, the natural frequency wil l  

be determined by the formula 

l o  

43 

where h is the liquid level in the shell, and 1). is the mass  of the ribbed 
shell per unit middle surface area. 

The formulas obtained were tested by means of an empirical determina- 
tion of the natural frequencies of a cylindrical steel shell filled with water. 
The shell was placed vertically, and i ts  dimensions were L = 97 cm, 
R =  12.5cm, 
equal to 0.3. 
of the experiment a re  described in / 6 /  and 171. The results of the ex- 
perimental determination of the frequencies of the full f y x  and empty f,exshell 
a r e  represented in Table 1 together with the corresponding values cal- 
culated by (12) .  
was determined from oscillograms. 

8 = 0.12cm; E was taken a s  equal to 2X106kg/cm2, and v as  
The scheme of the experimental installation and the method 

The experimental value of the frequencies in cycles/sec 

f e , X  

270 
220 
300 
4 30 
660 
920 

TABLE 1 

I 

390 385 
540 552 

3.5 

2.0 
3.3 
1.3 
2.2 

- 

It is seen from Table 1 that the values of the frequencies calculated by 
(12) a r e  quite near to the experimental values. R.elationship (12) can 
therefore be used for calculating the influence of the liquid on the fre-  
quency of vibrations. The frequencies were determined in the case of 
partial filling a s  well. A considerable discrepancy was established in 
this case between the empirical and calculated (by (13 ) )  values. 

3 values obtained for h = -  L a r e  given in Table 2. 
4 

realized in the case of action of a normal pressure on a liquid-filled shell. 
The resul ts  obtained at complete filling and an excess pressure AP = 
= 2 kg/cm2 a r e  represented in Table 3, when fcalcis the calculated value 
of the frequency (cycles/sec),  andffxpis the experimental value of the 
frequency (cycles / sec) . 

The 

An experimental determination of the frequency of vibrations was also 
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TABLE 2 

.I_ . 
~ . 

2 270 120 5.0 I 2.5 
3 220 105 

257 7 . 1  
580 

4 
5 
7 

0.95 

4.95 _- -- .. . - 

T A B L E  3 
. .- 

2 122 125 2.5 
3.5 4 

5 
7 4.1 

1 I iyi 1 0.65 
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PRINCIPLES OF THE STABILITY CALCULATIONS 
OF THIN SHELLS 

B . M .  B r o u d e  
(Moscow) 

The mast wrecks which have occurred in recent years  have raised 
doubts a s  to the adequacy of the stability calculations relative to compressed 
cylindrical shells. Structural elements such a s  bars  and plates a r e  cal- 
culated allowing for the possible imperfections and plastic properties of the 
material, and only the shells a r e  usually considered a s  perfectly elastic 
bodies of ideal shape. 

An attempt is made in the present report  to approximate the influence 
of initial curvatures and elastic-plastic behavior of the material  on the 
cri t ical  load of a circular cylindrical shell. 

An initial curvature a l ters  the phenomenon of buckling not only quan- 
titatively, but qualitatively as  well. 
given in Figure 1 of the load parameter x a s  a function of the displacement 
w''' normal to the middle surface, and in particular from the values of the 
characteristic points where x (ai*) is a single-valued function. 

This can be seen from the curves 

FlGURE 1. 
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Curve 1 corresponds to an ideal elastic shell (without initial curvature). 
There a r e  two characteristic points here: the upper critical value of the 
load parameter xu, the bifurcation point (the linearized solution is shown 
in dotted line), and the lower critical value xl, the minimum of the function 
y. (w*). The descending branch of the curve between xu and x1 corresponds 
to the unstable state of equilibrium, and the ascending branch to the stable 
state. Curve 2 corresponds to a very slender shell+ with an initial curva- 
ture  so small  that the deformation takes place within the elastic l imits.  
The qualitative change is expressed by the appearance of displacements 
from the very beginning of the loading. There is no bifurcation and the 
upper cri t ical  value of x coincides with the maximum x ( ~ ~ 1 : ) .  

branches of the curve represent stable states of equilibrium, and the de- 
scending branch represents the unstable states. 
is overcome in the range 2; d x < x ;  a discontinuous transition to a new 
stable equilibrium state becomes possible; this is the case of elastic 
buckling. 

The lower cri t ical  value can be defined in a general manner a s  the 
minimum stationary value (provided there is at  least  one more stationary 
value). This definition is also applicable in the case of a larger  curvature 
(curve 3), when the maximum and minimum coalesce in the inflection point. 
With the further increase of the initial curvature in a perfectly elastic 
shell the function ./. (ai") becomes monotonically increasing (curve 4). 

represented by curves 3, 4 a r e  not usually realized. 
velopment of the plastic deformations leads to a qualitative change in the 
buckling (curve 5). 
is not restored, and the branch of unstable equilibrium states approaches 
the abscissa asymptotically. This phenomenon, similar to the process of 
buckling of a compressed-bent bar, will be called buckling of the second 
kind, or "plastic buckling. I' In the absence of the second branch of stable 
states, the elastic buckling is impossible and the critical state coincides 
with the attainment of the load maximum. 
of large and medium slenderness at considerable initial curvatures or for 
shells of low slenderness at  any initial curvatures. 

exhaust all  possible cases.  The rigorous plotting of the relationship 
in the general case would have necessitated to take into account both the 
geometrical and the physical nonlinearity of the initial relationships. 
a general problem is not treated here; 
particular problems: 

ture on the lower cri t ical  load of the elastic shell; 

of a shell with initial curvature. 

f i r s t  problem. 
formulation, but allowing for the physical nonlinearity (the diagram of 
the elastic-plastic material  is used). 
linearization in the determination of the critical load is proved. 

Both ascending 

When the energy bar r ie r  

If the shell material  possesses plastic properties, the relationships 
A substantial de- 

After the maximum is attained the stable equilibrium 

Curve 5 is typical for shells 

The characteristic schemes of shell behavior considered above do not 

Such 
it is replaced by the following two 

1) an assessment of the influence of a sufficiently small initial curva- 

2) the determination of the critical load in the case of plastic buckling 

Only the geometrical nonlinearity is allowed for, by definition, in the 
The second problem is treated in a geometrically linear 

The acceptability of the geometrical 

* The classification of the shells according to  their slenderness ratio is given a t  the end. 
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1 .  ESTIMATES OF THE LOWER CRITICAL LOAD 
O F  AN ELASTIC SHELL 

Unlike the papers of Donne11 and Wan / l /*  and Loo Tsu-Tao 121 ,  in 
which the solution is found by the Ritz method, minimizing by two para- 
meters ,  w e  obtain here approximate estimates by forming majorants 
(minorants) of the solution of the related system of nonlinear equations. 

Consider a circular cylindrical shell of radius R and wall thickness t 
subjected to axial compression and torsion by forces applied to the middle 
surface a t  ends x=O, 1 .  In the case of small  initial curvature:: .WO ( x ,  y )  the 
shell equilibrium is described by the nonlinear equations 

(1.1) ( D / t )  A A w = Q  (9, ~ ' + w ~ + Y * / ~ R ) ,  
A A T = -  E Q ( w ,  ~ / 2 + w ~ + y ~ / 2 R ) ,  

where x ,  y a r e  coordinates by the generatrix and the directrix; w is the 
radial displacemenc 4, (f, g )  
function; E is the modulus of elasticity; D is the cylindrical rigidity. 

f x x  gYy + fyy g,, - 2fiy  gAy;  'p is a stress 

The boundary conditions at  x=O, 1 a r e  

L i  [w] =o, i=l. 2. ( 1 . 2 )  

( 1 . 3 )  
2nR 2zR 

(1/2rR) J 'pyv dy = - x o  , ( 1 / 2  rR)J  yxv d y  = - ~ 7 .  

1 

0 0 

Here Lt is a linear operator; Y>O and T a r e  constants of dimension s t ress .  
Consider the system 

(1.4) 
( D / t )  AA ZU= @ (y, ( 1  t e) w + y 2 / 2 R ) ,  

A A  = - E@ (w, ( 1  + 28) ~ / 2  + j 2 / 2 R )  

with boundary conditions ( 1 . 2 ) ,  (1.3).  Let a 
lower critical load, for which x=xg, w =w0, qz===p exist a t  sufficiently small 
values of p. By writing W O =  pwp we can see that the same solution satis- 
f ies equations ( l . l) ,  although i t  cannot be asserted that i t  assumes a 
stationary value of Y .  

a t  sufficiently low values of p .  

lower critical value Y,, for an ideal shell is known. 

Here p>O is a parameter. 

This las t  can be used only a s  an assumption suitable 

Consider the problem of obtaining a two-sided estimate for xp i f  the 
Substitute in (1.4) 

where 

We obtain 

( 1 . 6 )  
( D / t )  AA W* = @ [rp*, W* + ( y2 /2R")  ( k / c ) * ] ,  

AA y" - EO (w", ~ * / 2  + y2/2R*) .  

The boundary conditions ( 1 . 2 )  and ( 1 . 3 )  a r e  satisfied. 

* Meaning that wo is small compared with R ,  the initial curvature can be considerable compared with the 
wall thickness. 
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Equations (1.6) differ from the equations for an ideal shell only in the 
term R” (c /k )  =R* (1 + P)/(l + 2P), which appears in the first  of them instead 
of the larger  magnitude R*. The increase in the radius decreases the 
cri t ical  load, and therefore by taking in (1.6)  c/k = 1 we obtain a lower 
estimate. 

to x i =  f (t/R“). 
Let the lower cri t ical  value for an ideal shell with a ratio R*/ t  be equal 

~p > k f ( c t / k R ) .  

By using relationships xp>xo and R*:=  R k cwe obtain 

In particular, in  the presence of compression only j ( f / R ” )  =o.t/R*, whence 

* = X g / x , > [ ( l + p )  (1 +2p)]-”:. (1.7) 
Here z0 is the lower critical value for a n  ideal shell with ratio R/t. 

In a similar way one can obtain the upper estimate 

“a< k f ( k t l c R )  

and in the case of axial compression 

e =xB/xo < (1 + 2 p P  (I  + P)-”z , 

9 --k = (1 + p)- l  . 

( 1 . 8 )  

(1.9) 

or approximately 

If the values of p a r e  sufficiently s m d l ,  the total deflective W d = ( l +  p)w8 
can be equated approximately to the amplitude of the dent of an ideal shell, 
equal to - 5 t  at R/t = 180 (cf. /3/, p. 330). 
curvature be equal to u,, then 

Let the amplitude of the initial 

9 = 1 - 0.2a,/t. ( 1 . 1 0 )  

Formula (1.10) shows that the initial curvature lowers the lower critical 
load relatively little. It should be remembered, however, that the 
estimates obtained a r e  t rue only at low values of p, so  that formula (1.10) 
can be used only a t  a& <l. 

2. PLASTIC BUCKLING (BUCKLING OF THE 
SECOND KIND) 

We consider here  buckling at  axial compression of elastic-plastic shells 
of low and medium slenderness; in other words, we have to determine the 
maximum of the function x (W).  The problem is considered in a geometrical- 
ly  l inear formulation. The initial curvature is assumed to be axially sym- 
metrical  and similar to the form of the buckling of an ideal shell. 
approximate values of the cri t ical  s t r e s s  a r e  found under two assumptions: 
1) the modulus of elasticity in the circumferential direction remains 
constant; 
s t resses  beyond the elastic limit. 

thickness t (Figure 2 )  have an initial curvature 

The 

2) this modulus decreases with the passage of the meridional 

Let an infinitely long circular cylindrical shell of radius R and wall 

wo=ao sin (x x / f ) ,  
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where Y is measured 
is established below. 
circle of radius R. 

along the cylinder axis and I is a length whose value 
The axial s t r e s s  i s  distributed uniformly along a 

. 

. 
-2R 

N 

FIGURE 2. 

The hypothesis of conservation of normals i s  used. The relationship 
between the relative elongation in the meridional direction E- and the 
corresponding normal s t r e s s  G i s  assumed to be the same a s  in the case 
of monoaxial extension: 

,E/= (E), z="o-w''z, ( 2 . 1 )  

where E,, is deformation at  the origin of the coordinate 2, measured along 
the normal to the deformed middle surface; w is radial displacement 
measured from the initial (curved) middle surface; 
differentiation by x .  

the pr imes stand for 

The deformation is assumed to be everywhere active. 
Assume that the elastic properties of the material  in the circumferential 

direction do not vary with the passage of J beyond the proportional limit. 
Isolate a s t r ip  of width 1 by two meridional sections; 
i t  the equation of equilibrium as  for a compressed-bent beam on an elastic 
foundation of foundation modulus €f/R' ( E  i s  the modulus of elasticity) 

we can write for 

Here N is the absolute value of the compressive force per unit strip width; 
zI. z2 a r e  coordinates of the edge fibers of the section. 

By using the method of variation of the equations of equilibrium by w 
and E a t  a stationary value of N 141 and origin of z fixed in each section we 
obtain 
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(dolde) (SE, -- Z~W'') d z  -0. 
2, 

(2 .5 )  

dodl is a function of x ,  z ,  E ~ ,  w :  

dGfd€;=p (x , z ,  E o ,  w ) ,  

while bo and C L ~  are functions of x alone. 
the origin of z so as to  satisfy the equation 

For any fixed .v one can select  

f 'pz di =O. 

Equation (2.4) r educes  then to 

(D, 8 ~ ' ' ) ' '  f- h'h" -+ EthTel/R2 = 0, (2.7 1 
where 

D,= (dg/dt )  z ' ~ z =  [&/(I-v')J Z'dz, (2.8 1 ;! 2, *r 
Et is the tangent modulus, Y is the Poisson ratio; D, is obviously the re- 
duced rigidity of the s t r ip  section, depending on x and w .  Equation (2.6) 
shows that the origin of z must  coincide with the center  of gravity of the 
reduced section. 

calculated from the given s t r e s s - s t r a in  diagram in section Y = 0.5 1, and 
by restr ic t ing ourselves  to satisfying the equilibrium conditions (2.2), 
(2.3) in this section. The r e su l t  is one of the following two formulas,  
depending on whether a yield zone is present  on one o r  on the two sides: 

An approximate solution can be found by using a constant value of D, 

i (2 .9)  
0.5 [ 1 - (G,/G~)*/> 1 (a.,/o, - 1) = Uo't .  

( GT/40,,) [ 1 - ( ~ ~ k ~ ) ~  - ( ~ / 3 ~ ) ' / 3  1 = a&. 

Here  3,= N!t, cT is the yield s t r e s s ,  and oe =Et /R  v m ) .  
which establishes which of the two formulas  is to be  used is the inequality 

The cr i ter ion 

(2.10) 

in which the upper sign corresponds to the case  of one-sided yield. Equa- 
tions ( 2 . 9 )  were obtained for  / = l o = x m t  v'.,/.E [ 1 2 ( l - P ) J - " L .  
I-/, > I , ,  the value of uo/t found from (2.9)  must  be increased. 
by a: the t r u e  value of the initial amplitude, we obtain 

al/f=!n,,it)(l - sin 10.5 7: ( 1  - - l , , /L .~) ]I - ' .  

If we take 
Designating 

The method described gives a n  upper es t imate  of the cr i t ical  stress. 
Consider now the second variant. Assume that the modulus dec reases  

in  the circumferential  direction in such a way that the reaction created by 
the circumferential  s t r e s s e s  r ema ins  the same  as a t  the moment of 
appearance of yield in the meridional direction. 
to  J e i ek ' s  solution / 5 /  for a ba r  of rectangular section. 
corresponding to  f = n  J"-n [I2 ( I  --v')]-''' a r e  given below: 

The solution is s imi l a r  
The r e su l t s  
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The first equation corresponds to the case of one-sided yield, and the 
second to the case of two-sided yield. If an arbi t rary value I:> is used 
instead of the value of 1 indicated above, the magnitude c,in ( 2 . 1 1 )  is to 
be multiplied by 0.5[([/fi;)'+ ( l , : : / / ) z ]  and the magnitude a, by 2 11 + (f./L)4] -'. 

We shall now establish the criterion of elastic or inelastic buckling. 
The following value of the shell slenderness is adopted a s  criterion: 

( R l t ) '  =0.18 E/o, . ( 2 . 1 2 )  

If the initial curvature satisfies the conditions aJt <1, LJ[> fi it can be 
shown that a t  R/ t>2 (R/ti'"the buckling will be elastic. 
called "very slender. " On the other hand, at  R / t  < iR/t)* plastic buckling 
wil l  predominate. 
the two regions, since the effect of the transition beyond the elastic l imit  
on the lower critical s t ress  has not been studied so far .  
(213) (R/t) '5 can be adopted on the basis of experimental data a s  such boundary. 
In the range (2 j3) ( R / t ) *  < R/t < 2 (/?it)" (shells of medium slenderness) both 
buckling modes a re  possible, depending on the value of R/ t  and the character 
of the initial curvature. 

elastic buckling is a function of the value of aJt; thus, a t  a,/t = 2 this 
boundary is 3(R/t):':.  

to calculate the lower critical s t ress  of an elastic shell. 

Such shells wil l  be 

It i s  difficult to establish a clear-cut boundary between 

The value 

It  should be stressed that the boundary above which stability is lost by 

It follows from the above that in practical calculations i t  is not sufficient 
It is alsonecessary 

to find the critical s t r e s s  U, corresponding to the 
second mode of buckling of an elastic-plastic shell. 

critical s t ress  of the shell was ignored in  the de- 
termination of (R/ t ) :%.  If this influence i s  taken into 
account and we write ( R / f i : ' : = n  €/G, (.<0.18), the 
upper boundary of the zone of plastic buckling is 
shifted to the left. 

lower critical s t resses  of an ideal elastic shell 
differ substantially in magnitude. 
is small, it is sufficient to determine the upper 
critical s t ress ,  allowing for the initial curvature. 

Consider a s  an example a cylindrical shell subjected to an external uni- 
form pressure normal to the middle surface (Figure 3). 
an infinitely long shell having an initial curvature "J,= a, sin28 ( 4 is the 
central angle) similar to the mode of buckling of an ideal shell, a r e  given 
below. 
understood to be the critical circumferential s t ress ;  a0/2 is replaced by 
a,; oe=EtZ/ [4R2 ( I -  31. 
with the increase of R/ t .  
60 70 lower than in the case of an ideal shell; 
difference is of 40 70 only. 

The influence of the initial curvature on the lower 

A l l  this is true for  loads for whicn the upper and 

Q 
If the difference 

FlGURE 3. 

The results for 

The following alterations a r e  introduced in equations (2 .1  1 ): a, is 

The influence of the initial curvature decreases 
Thus, a t  R / t  = 30 and n,/t = 1 the critical load is 

at R/t = 50 and ajt < l  the 
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BENDING OF SANDWICH PLATES ALLOWING FOR 
TEMPERATURE STRESSES 

L .  E .  B r y u k k e r  
(Novos ib  irsk)  

The paper deals  with the s ta t ic  derivation of the l inear  equations of 
longitudinal-transverse bending of nonsymmetrical  sandwich plates with 
r igid filler allowing for a nonuniform heating t = f ( x ,  y, 2). 

The moduli of elasticity of the faces E,, E? a r e  assumed to be constant. The 
moduli of elasticity of the fi l ler  E, G vary through the thickness. 

It is assumed that the Poisson r a t io s  a r e  constant and equal to each 
other (p, = p? = 11). The broken-line hypothesis is used for  the distribution 
of s t r e s s e s  ( u ,  Ti\ through the plate thickness. 

The r e fe rence  surface was selected at  a distance from the middle sur- 
face such that Bn = 0; 
those which follow from 111, where the reference surface was selected 
equidistant from the faces .  

i n  the filler exist  under the hypotheses made: 

The th ree  l aye r s  of the plate a r e  made of different isotropic mater ia ls .  

the equations obtained a s  a r e su l t  a r e  s impler  than 

The following relationships between the displacements and the s t r e s s e s  

etc. 
For the faces 
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d f  = (1 + p) (al (h,& 1- D'I) - (h,Ba - D L Z ) ~ ;  

d; = ( I  + p) In1 (H,Bt ,  + Dit) - a2 (HzBtz - Dtdl; 
-h 

h, = (1 + p) (D:- a,h,Btl + a2h2Bi2): Bfi = E  I I ffdz; 

Dtl = € 1 ,  ztdz; 

- ( h r + U  
( 4 )  
(cont' d) r h,+ 6, t h z  

B , : = E I Z  [ t d z :  B : = l  aErfdz; 
h 8 11 I - ( h & t h )  

A,+ 82 

Dt2 = E r  t tdz; 0;- j?kE  tz&, 
ha s - 18, 

Here U I , ~ ,  ~ 1 , ~  a r e  displacements of the middle surfaces of the faces; ul. a2, a 
a r e  coefficients of linear temperature expansion; HI,  H, are the distances be- 
tween the reference surface (% = 0) and the middle surface of the faces (figure). 

.b 
FIGURE. 

- - -  - -  
The following five equations for u. v ,  '1. E (it,. 2, vr. 2 )  and w a r e  obtained with 

the aid of the equations of equilibrium of a plate element and expressions (3 ) :  

( 2h 

) - 2Nx,  pl dz?'% - 
dxdy 

U2W dZw - 
-",P'z2- N y p l  -1 d y  - 9 - Q'Dt; 

2h dx 

1 - pd2G +--)+ I + p d2Z 
v2w + d'pl dy"+ -- SDx8 d 

2h dy (dz' 2 dx' 2 dxdy 
-- 
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where 

( 5 )  
(cont'd) 

System ( 5 )  can be simplified i f  plane z = 0 is set  at  a distance from the 
faces such that B k  = 0 (cf. formulas ( 4 ) )  instead of being set  at  the middle 
of the filler (h l=  A,). 

If the temperature varies only along the plate thickness ( t = f ( z ) ) ,  the 
temperature te rms  in equations ( 5 )  vanish. 
f i rs t  three equations coincide in form with the equations of bending of 
sandwich plates with faces of equal rigidity, so that the results given 
in 121 can be used in many cases  in their solution. 

the values of the critical forces at  t = 0 for simply supported sandwich 
plates under conditions of cylindrical bending. 

It should be noted that when the filler is assumed to be undeformable 
in the transverse direction the redistribution of s t resses  between the 
layers caused by the temperature gradient through the plate thickness does 
not have an influence on the critical loads for the plate. 
in the case ofauniformly distributed transverse load q a r e  given by the 
for mu1 as  

In this case (at  Br = 0)  the 

We shall give a s  an example the values of the deflections at t = f ( d  and 

The deflections 

where 

1' Dt 6 qe' 48K c, +---Cct; ) 8 D p 1  
[W],=O = - - 

384 Dp1 

x* Bpi+ c, r,, = - __ 
I' I + K  ' 
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2hGX 1 -  - 

r 

1 r = Dx - 2 [ 'P (h f +) - ( h16, - h,6,) (B,h, - B,h,) 

These formulas are cons ide rady  simplified if the simplifications made 
in / 3 /  a r e  used. In this ca se  the values of the deflections and the cr i t ical  
loads coincide in form with expressions (6), with C, = 1; C, = Ct = 0. 
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STABILITY OF STRUCTURALLY ORTHOTROPIC 
CYLINDRICAL PANELS UNDER THE ACTION OF 
SHEARING AND NORMAL FORCES AND INTERNAL 
PRESSURE 

E . F .  B u r m i s t r o v  a n d A . A .  M e l ' n i c h e n k o  

(Saratov) 

1. Consider a shallow structurally orthotropic cylindrical panel 

The-problem of the bending of shallow cylindrical panels at large de- 
stretched along the generatrix, with a middle surface radius equal to R .  

flections reduces to the integration of the following two equations 1 2 1 :  

Her e 

w is the panel deflection, '9. the s t ress  function, q ,  the external load, and 
6, the shell thickness. 

The elasticity relationships for a structurally orthotropic shell a r e  

The coefficients E* = mlmzr nz = n,n, a r e  determined from the expressions 

where E,, E,, v,, v, a r e  Young's moduli and the Poisson ratios respectively 
of the shell at  extension along the coordinate lines, and E;, E;, v i ,  Y; a re  
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the same magnitudes a t  bending, E, v .  and p a r e  the reduced Young's 
modulus and the Poisson ratios, el, E ~ ,  w, I,, xlr  and 7 a r e  s t ra ins  of the middle 
surface, connected with the displacements by the formulas 

E2 = - av w +-;-(-). I aw 2 x - - ,  d2 w 
ay R 2 ay ? -  dy2 

2. In order to find the critical combination of the acting loads, re- 
present the deflection and the s t r e s s  function in (1.1) and (1.2) in the form 

w=w1+w2. ' P = ' p 1 + ' p 2 ,  (2.1 1 
where w1 and 'pl are the deflection and the s t r e s s  function in the precrit ical  
state, and w2 and 'pz a r e  the additional deflection and the function of the 
additional s t resses  appearing with oblique waves. 

u s  in what follows; we shall therefore assume that wt is small compared 
with wlr and shall discard in the stability equations all  the te rms  containing 
squares and products of the derivatives of w 2 .  A l l  magnitudes relative to 
the precritical state a r e  assumed to be known. 

By subtracting from equations (1.1 ) and ( 1.2 ), in which w has been r e -  
placed by w, and 'p by ylr the same equations but with w and 'p replaced 
according to (2.1 ), we obtain the following differential equations of 
stability of a cylindrical panel subjected to the action of the forces TI, T,, S, 
and q 

Only the moment of appearance of oblique waves in the panel will interest  

The system of equations ( 2 . 2 )  and (2.3) is linear and homogeneous 
relative to the unknowns w2 and (p.. 

We shall determine the upper boundary of the critical loads, since w2 
is considered a s  small  and is determined from equations ( 2 . 2 )  and (2.3) 
a s  a function of the s t resses  and strains of the precrit ical  state, caused 
by the load q. In order to determine the lower boundary of the critical 
load it is necessary to consider wz a s  large, and this leads to nonlinear 
equations. 

the generatrix ( n B b )  and loaded by the forces TI, S, and q (Figure 1). 

cri t ical  state is therefore wl = wl(y). 

in this case to the integration of the following system: 

3. 

The panel can be considered a s  a strip, and its deflection in the pre- 

The problem of the bending of a structurally orthotropic panel reduces 

Consider a structurally orthotropic cylindrical panel stretched along 

A&= 0. 
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FIGURE 1. 

dS Since -- "l  - '3 = - = 0, system (3.1), allowing for the equations of equi- 
ax ax ax 

librium, can be reduced to the one equation 

- q = o  d'w d?Wl 1 

dY4 
Dn2n2-' - T2 (3.2) 

and the conditions 

as _=-=___ d ~ ,  FPT, --,  (3.3) 
ay dy a y z  

Conditions (3.3)  mean that in the precrit ical  state the s t resses  'c, a,, and 
z2 a r e  constant, and that the las t  two depend only on the values of the 
forces at  the edges, and a r e  independent of the load q. 

The equations of stability for a s t r ip  a r e  simpler, and reduce to 

We shall now solve equation ( 3 . 2 )  for the following conditions: 

y = f - - .  r= -=  const, w 1 - 2  - d2w1 -0 ,  - v1=o. (3.5 1 b 

2 6 dY 

A l l  the conditions for wl will be satisfied by representing it in the form 

w1 = f1cos 2. (3.6) 
b 

The substitution of (3.6) in (3.2) and the integration of the expression 
obtained by the Galerkin method yield 
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b 
To determine T, we make use of the condition vl = 0 at y = & - 

2 

or after integration 

Define the dimensionless magnitudes 

The substitution of (3.9) in (3.7) and (3.8) yields 

(3.9) 

(3.10) 

(3.11) 

The f i rs t  term in (3.11) is a function of f' and fionly, and can be r e -  
presented in 9' and f'coordinates by a family of curves with parameter 
6 = const. 
a function of r a n d  q' only; 
curves with parameter 0; = const. 

The second term gives the correction due to a; and is likewise 
i t  can likewise be represented by a family of 

Consider as  an example a plywood panel for which 

E = 0 . 6 .  la5 kg/cm2 G = 0.07. lo3 kg/cm2 V = p = 0.036. 

ni, = n, = 1, m, = n, = 0.5, m2 = n? = 0.5. 

Equation (3.11) is represented graphically in Figure 2. 
4. Proceed to the problem of the stability of a cylindrical s t r ip  stretched 

Equations (3.4) a r e  to be integrated for the following along the generatrix. 
boundary conditions: 

It will be assumed in addition that the longitudinal beams a r e  absolutely 
rigid a t  bending, i. e. ,  that they do not bend with the appearance of oblique 
waves. 

This means that vt =O at y = 2 L, i. e., 
2 
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I ,I_ I,... I. I -,,---..,.........-- 

f for t h e  upper curves  I f: for t h e  lower curves 

FIGURE 2 .  

The second additional displacement u, a t  the edges must  l ikewise be 
equal to zero.  
accordingly r e s t r i c t  ourselves  to satisfying condition u2 = 0 on the average 
ove r  the wave length A along the generatr ix  / 3 /  

These conditions are difficult to satisfy, and we shal l  

(4 .3 )  

A l l  boundary conditions will b e  satisfied by taking w, and (p2 in  the fo rm 

Substitute (4.4) in (3.4) and integrate  by the Galerkin method f r o m -  A to 
b b  

A and f r o m  -- to -. 2 2  
After the calculation of all the integrals  we obtain 
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Here 

By restricting ourselves in what follows in a f i rs t  approximation to 
two te rms  in the ser ies  for wZ (i=2, j=l)and four t e rms  in the se r i e s  for v2 
with coefficients (Do, D2, C,, C,) we reduce equations ( 4 . 5 )  required for a 
determination of coefficients A2 and B, to 

( 4 . 8 )  1 6nz 16na 
3 x  3x  

LIB,-  ----*:A ? -  - 0, - - ‘“B,+L,A, = 0, 

( 4 . 9 )  

1 
is the relative shearing s t r e s s  and - =r IS ’ a parameter  character-  

x f; 
izing the rat io  of the total deflection f’ to the r i s e  of the panel 0 < x < 1. 

to zero: 
System (4 .8  ) has a nontrivial solution only if  i t s  determinant is equal 

( 4 . 1 0 )  
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Equation (4.10) determines the critical value of the force S(2')  at 

The relative wavelength 7 is selected so a s  to make T* minimum at 
variable parameters  a;, ai, f *, and 7.. 

constant values of all other parameters,  i. e., we must add to (4.10) the 

The number of independent variables in equations (4.10) anb(4.11) can 
be reduced with the aid of equality (3.10). 

Equations (4.10) and (4.11) thus give a relationship between the cri t ical  
values of the loads a;, a;, T. and the geometrical characterist ics of the panel 
f' and x in a parametric form. 

The dependence of the critical shearing s t r e s s  T* on the total deflection 
of the shell f ' f o r  a plywood panel is represented in Figure 3.  

The following conclusions can be drawn from the preceding treatment: 
1. The resul ts  of the f i rs t  approximation turn out to  be overestimated, 

just as is the case of an isotropic panel 111. This follows from the 
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formulas of the second approximation ( three te rms  were taken for mz, and 
five t e rms  for ' p f ) ,  which a r e  not given here  because they a r e  very 
cumber some. 

somewhat lower than for an isotropic panel / 1 /. 
2. The numerical values of 5' for a plywood panel turned out to  be 

FIGURE 3. 
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APPLICATION OF THE METHOD OF LAGRAiVGE 
MULTIPLIERS IN THE STUDY OF THE 
STABILITY OF PLATES AND SHELLS 

A . A .  B u s h t y r k o v  
(I4,!IOSCOW) 

When the Ritz method is used for solving stability problems of plates 
and shells, the displacements of the middle surface points a r e  usually 
represented in the form 

n n 

where u,,, vn, w,, a r e  some functions of the coordinates which satisfy the 
boundary conditions. 
general case on these functions. The solution is, however, considerably 
simplified and leads to satisfactory resul ts  when the coordinate functions 
u,,, v n ,  and wn a r e  orthogonal. 

which satisfy all the boundary conditions of the problem. 
then that expressions (1 ) themselves satisfy the conditions a t  the edges. 
By substituting (1 ) in the relationships representing the given boundary 
conditions we obtain for the parameters on, b , ,  and cn some k equations of 
the form 

No mathematical restrictions a r e  imposed in the 

In many cases  i t  is impossible to form a system of orthogonal functions 
It can be required 

f r  ( a n ,  bn, c,) = 0 1, = I .  Z. . k )  ( 2 )  

which must be satisfied. 

after the necessary integration, an expression for the energy U as  a 
quadratic function of the parameters a,, bn,  and c n :  

The substitution of (1 ) in the expression for the total energy yields, 

U = 0 (a,,, bo, Cn) .  ( 3 )  
If (1  ) is considered a s  a solution of an extrema1 problem, the parameters 

a,, b,,  and c,, must be selected so that expression ( 3 )  will have a stationary 
value and conditions ( 2 )  wil l  be satisfied. 
finding the relative extremum of the function ( 3 )  whose arguments a r e  the 
parameters a,, On,  c, , ,  linked by the additional conditions (2 ) .  
ly this is realized by means of the method of undeterminate Lagrange 
multipliers. Form the function 

The problem reduces thus to 

Mathematical- 
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where A, a r e  undeterminate multipliers, which must be selected so  that 
the values found for the parameters u,,, b,, and cn satisfy equations ( 2 ) .  
Expression (4) must in addition have a stationary value, ie . ,  

Equations ( 5  ) determine, together with conditions (2 ) ,  the values of the 
parameters an, b,, c R ,  and the multipliers 1,. 

The method exposed here  has not been used so far in Soviet l i terature.  
A very brief description of the method is found in the t reat ise  111, together 
with references to hardly accessible sources. 

method of Lagrange multipliers is given below. 
The solution of several  problems of elastic stability by means of the 

1. STABILITY OF A BAR WITH ONE END BUILT- 
IN AND THE OTHER HINGED 

Consider a slightly bent bar loaded by an axial compressive force P 
(Figure 1). The total energy of the bar will be 

Let i ts  elastic curve in the slightly bent state be 

FIGURE 1.  

mrx  
I It is easily seen that every coordinate function y,  = sin --:-- satisfies 

the boundary conditions of the hinged bar  ( y  = 0, y" = 0 ) .  but does not satisfy 
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the boundary condition y' = 0 at x = 1. 
be satisfied it is necessary to have 

In order  that this boundary condition 

m 

m - I  

2 (- 1)"am = 0 .  

This is the additional condition imposed on the parameters  a , .  
Form the function u, making use of (4):  

dU 
The condition T~; = 0 leads to the following expression for the parameter a,: 

(- l )m21 . )i 
a,,, = 

x2m mzPE - P,, ' 

n2EI 
I2 

where P E =  ---is the Euler critical force for a hinged bar. 

only i f  
By substituting (1 0 ) in (8 ) we find that (8 ) has a nontrivial solution X 

m 1 

Condition (1 1 ) determines the value of the critical load. By substituting 
successively m =  2 ,  3, etc. we obtain respectively P,,= 2 . 5 P ~ ,  2 .33  PE, etc. 
The solution converges to the exact value P,, = 2 PE. 

A solution to the problem of the stability of a bar built-in at  both ends 
is given in / 1 /. The stability equation obtained is 

m 1 

The solution converges to the exact value P,, = 4pE. 

2 .  STABILITY OF A R.ECTANGULAR. PLATE 

Consider a plate built-in along two opposite edges and simply supported 
along the two other, compressed in the direction of the supported edges by 
the uniformly distributed forces N,  (Figure 2 ) .  
will be represented in the form 

The deflection function 

(2m - 1) x x  

a ( 1 3 )  
(2n-  1)xy 

w = cos amcos 
m - 1  

dW The clamping condition 

edges x = 

= 0 is not satisfied by this function on the 

z. 2 The edge conditions will be satisfied by imposing on the 
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parameters am the additional condition 

m 

a ,  (2m - 1) (- 1)" = 0. 
m=l 

By solving the problem along the same lines a s  above we obtain the 
following stability condition: 

where 

Eha . 

3 
(2m - I)* k, = 

a D =  12 (1 - v?) ' 

h is the plate thickness; v is the Poisson ratio. 

The calculations conducted for several  values of 6 and b have shown 
that the solution reduces to the values of the critical load given in 121 .  

3. STABILITY O F  A N  ORTHOTROPIC CYLINDRICAL 

OF A N  EXTERNAL PRESSURE 
SHELL WITH BUILT-IN EDGES UNDER THE ACTION 

Introduce the following designations: R ,  L ,  h a re  radius, length, and 

'p, x ,  z a r e  coordinates of points a t  the middle surface; 
thickness, respectively, of the shell; ell, E*?, ill, xllr zt2, xI2 a r e  s t ra ins  of the 
middle surface; 
El, E,, G ,  vl, v2 a r e  elastic constants along the principal elasticity axes, 
which are assumed to coincide with the lines of principal curvatures; 

€,ha 
> D -  B , = T  , B,,= Oh, D - ~ ~ ~ 1 3  

12(- = - 12(1-v1v,) ' B -- - 1 - V1V2 I - VIV* 
~~ 

Oh 
12- 12 D - -are rigidities of the shell; n is the number of waves formed in 

the peripheral direction at  buckling; 
The displacement functions will be represented in the form: 

p is the external pressure.  

m (2m- ] ) A X  . 
L '  u = stnnrp 2 a, sin - 

m = l  
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m (2m - 1)xx . 
L 'u = cos ny b m  cos 

(16) m-1 

m (2m - 1) xx (cont'd) 
L w = s i n q  2 cmcos 

m-1 

am To satisfy the fundamental clamping condition = 0 at the shell edges 

( x  = $-), the parameters cm must be linked by the following additional 

condition: 

FIGURE 3. 

The shell energy is equal to 

U = Ul+ U2- A ,  
where 

The strain components w i l l  be written in the form 
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Using these relationships, we can represent the function 0 in the form 

m - 
U=U--A 2 (-l)mcm(2m-l) ,  

m-1 

where 

( l t 2  - 1)' "l 
m + & { D,a3 2 c', (2m - I)' + 0, 8 2c :+  

m = l  m-1 

+ 2 [D,vz (n' - 1) + 2D,,n2] a c', (2m - I) '+ 40,,8 2 6; ( 2 ~ 7 ~  - 1 ) 2  1 - 
m=I m - I  

and 

The stationarity condition ( 5 )  yields the following system of equations: 

where 
n2 a,, = B16 (2m - I)* + B,, 7 ; 

uI2 = a,, = - (Blv, + B12) n (2m - 1) 

a - a  - -BB,v,(2m- 1); 13 - 31 - 
nz 

= B, + Blzh (2m - 1)'; 

ri,, = a,t = B ; 
2 6  

1 1 
a 8 6R' B - + -{D*(/z'- I)*+ 2 [D1v:(n2- 1) + 2D,,nz] tZ(2m- l)'+ 

L + D,6'(2m - I)'} --p - (n2- 1); 

4x 
d = --g (- (2m - 1). 

By solving system ( 2 5 )  we find cm 

%a, - 4, 
A '  c, = 
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where A is the determinant of system (25) .  

expressions for the determination of the cri t ical  pressure:  
By substituting ( 2 7 )  in (17 )  and allowing for ( 2 6 )  we find the following 

In (2m - 1)2 
- = 0, 

m=I  2 @I +.- e3 

R (n2 - 1) 0, R3 ( t i2  - 1) 

where e, = B,B,B,, (1  - Y1V2) 6' (2m - I)'; 
0, = B2B,,n4 + BIB, (1 - v1y2) n2a2 (2m - - 
- 2B,B1,v26%*(2m - 1 ) z  + B1B,,8' (2m - l)4; 

D, (n2 - 1 ) 2  -I- 2 [D,v, (n2 - 1) + 2D,,n2] fi (2m - 1)2  + D,64 (2m - e, 
In the case of an isotropic shell (28 ) simplifies to 

m ( 2 m -  
= 0, 2 P' -Pcr 

* = I  

where 

FIGURE 4. 

Relationship ( 2 9 )  was programmed on the "Ural-2" electronic computer. 
The main results obtained a r e  represented graphically in Figure 4, which 

represents  in a double logarithmic scale the relationship 9 =f (+) at 
R different x. The parameter represents the ratio of the critical pressure 
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for a built-in shell to the cri t ical  p ressure  of a hinged shell. 
relationship, s imilar  to Mises' formula, was used in the la t ter  case: 

= (1 - v') R [ (n* + S2j2 (aZ - 1) -k mz 

The following 

( 3 0 )  
Eh 8 4 ( 1  -q h2 (6' + /t2 - I)'  

($7)-] ' 

24 
18 
13 
10 
9 
7 
7 
6 
5 
5 

It is seen from the data given that the influence of the clamping is small  
for shells of length L = (2 to3) R and represents  about 5 to 10 70, and that at  
R L T > 200 and R> 4 it is smaller than 5 70 and can be neglected. In the 

case of relatively shorter shells, on the other hand, (+ < 1 ), the influence 

of the clamping is substantial; thus, a t  R =  100 and k = 0.25 i t  i s  more  
than 50%. 

Another interesting feature is the difference between the patterns of 
wave formation, which is illustrated by the values given in the following 
table. 

h R 

TABLE 

20 
12 
9 
7 
6 
5 
4 
4 
4 
3 

~~ 

Number 
Hing  

/ ? / / I  = 100 
~~ 

0.25 
0.50 
1.0  
1.5 
2 .o 
3.0 
4.0 
5.0 
6.0 
8 .O 

16 
11 
8 
7 
6 
5 
4 
4 
4 
3 

waves in the  DeriDheral direction 
edges Built-in edges ?/"-';Mi R//z = 100 I R/h = 500 

26 
18 
13 
10 
9 
7 
7 
6 
5 
5 
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S T U D Y  OF MEDIUM A N D  L A R G E  DEFLECTIONS OF 
SHALLOW SPHERICAL SEGMENTS UNDER 
A R B I T R A R Y  AXIS  Y M M E  T R I C A L  LOADS 

D . L .  B y k o v  
(Moscow) 

1. The problem of the axisymmetric elastic deformation of a shallow 
spherical  segment can be reduced to the solution of the following system 
of equilibrium equations 11 1: 

d - (UlT1)  - r, = 0, 
dll  

1 AAw - - ( T ,  + T,) - ( TIzl + T2z2) - p (u) = 0. 2Eh3 -~ 
3 ( 1 - v 2 )  R 

Here TI and T, a r e  meridional and circumferential  forces  pe r  unit length; 
x1 and xZ a r e  variations of the curvature; p ( u )  is an a rb i t r a ry  normal  load; 

R i s t h e r a d i u s ,  2h is the shell  thickness; 

normal  deflection; E is the modulus of elasticity; Y is the Poisson ratio.  
RZh2 

By writing a1 = roar where I,"= 3 ( 1  -vy?)  , and expressing the magnitudes 

T,, T,, xl, x2 through w and the meridional displacement u with the aid of the 
relationships 

u w  1 dw 
E - - - - ,  x , = - - ,  

R a, da, 2 -  

we obtain a system of two nonlinear equations relative to the displacements 
u and w. 
the segment to a. at  its edge. 

segment does not have a cut in the pole. 
boundary conditions: 

The dimensionless coordinate a var i e s  f rom z e r o  at  the top of 

Consider a par t icular  ca se  of a rigidly fixed edge, and a s sume  that the 
We have then the following 
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( 4 )  u = o ,  w = o ,  -- dw - 0  for I =a,,. dn 

The third condition of ( 3 )  means that t he re  is no concentrated force a t  
the top of the dome; 
placed by the condition of statics 1 2 1 .  

System ( 1 )  being written in displacements, w e  can study the problem of 
small ,  medium, and l a rge  deflections of a shallow spherical  segment. We 
shall  adhere to the classification proposed in 111: w (( 1 a t  sma l l  deflections, 
tuz< 1 a t  medium deflections, and QI- 1 a t  l a r g e  deflections, where w i s  the 
rotation of a l inear  element as a resul t  of the bending. 

By twice integrating the f i r s t  of the equilibrium equations ( 1 )  after 
substituting in i t  the displacements one obtains i~ a s  a function of w. The 
two integration constants are  determined f r o m  the conditions: u = 0 a t  
2 = 0, a,,. 
equation leads to the following nonlinear integral-differential equation re- 
lative to the normal  deflection w: 

were such a force present  it should have been r e -  

2. 

Substituting the value found for u in the second equilibrium 

The operators  figuring in this formula have the following values: 

1 d ( . . . )  d2 ( * - )  
a dz daz ' 

VZ ( .  . .) = ( .  . .)" 1. - (. . .)', (. . .)'= ~ , ( .  . .)"= ~ . 

A t  sma l l  deflections equation ( 5 )  reduces to  the following l inear  equation: 
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Its  solution, which satisfies boundary conditions ( 3  ) and ( 4 ) ,  is 

where 

J, ( a )  = Re 1, ( a p ) ,  Iy ( a )  = - Im J ,  (a 6). 
J3 (a)  = Re Hi*)(a E), f4 (a)  = ImH;') (av / r ! .  

Here Jo(avF)  
respectively, of the f i rs t  kind, 

HA') (fi) a r e  zero-order Bessel and Hankel functions, 

where 

3. Equation ( 5 )  can be solved for medium deflections by making use of 
the fact that the external load p ( a )  is bounded and by applying the method 
of successive approximations. It will be assumed that w = l imw" ,  where 

wn satisfies conditions ( 3 )  and ( 4 )  and the recurrent  equation by means of 
which every successive approximation can be determined from the 
preceding one: 

n--  

The function 'wn is determined by formula ( 7  
placed by the fictitious load 

, with the actual load p ( u )  re -  

- 
We shall represent p ( a )  in the form p (a)  =p , .p(a) ,  where po has the 

dimension of s t ress .  The process  of successive approximations converges 
if po does not exceed some definite value, which depends on thegeometrical 
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- 
dimensions of the shell and the law of variation of the load p ( a ) .  
general case the limiting value of po for which the process  of successive 
approximations is still convergent can be found by direct calculations. 

We have solved as an example the problem of a load varying by the 

law p ( a )  = p,cos -. It w a s  found that for a. = 6 the process of successive 

approximations converges for t < 2  and diverges for f 2 3, where 

t = " ( x > ' v p ' .  The maximum deflections for the converging process 

attained the order of two shell thicknesses. 
In order to study la rge  deflections it is necessary to apply to 

equation ( 5 )  a method of solution which does not make an important use 
of the fact that the load p ( n )  i s  bounded. It is possible in particular to use 
the Bubnov-Galerkin method and to look for a solution of (5) in the form 

In the 

rra 
2% 

E 2h 

4. 

~ e r  = h (Awl + BwJ, ( 9 )  

where w1 and w2 a r e  known functions satisfying conditions ( 3 )  and (4), and 
A and B a r e  constants depending on the amplitude of the load Po which 
remain to be determined. 
the solution of the initial problem we selected wl and .w, in a special way. 

linearized equation of equilibrium of the shell considered at  given loading 
law and given boundary conditions 

In order to obtain the best  approximation to 

We select a s  w, a function satisfying (up to a constant factor) the 

d 
I da w; = 0, - v2w, = 0 for n = 0, 

w1=0, w ; = o  for a = a P  
L (Wl) = P  (4, (10)  

Such a selection of the function w, not only satisfies all  the boundary 
conditions, but also makes i t  possible to allow for the specific law of 
distribution of the external load. 

A s  w2 we select a function proportional to the deflection of the segment 
considered under the action of a circumferential concentrated load applied 
along a circle of radius ',,a,. 
constant, which can be varied in order  to obtain the minimum value of the 
cri t ical  load. The boundary conditions which the function w2 satisfies a r e  
the same a s  for the function w ,  i. e . ,  ( 3 )  and (4). The range of variation 
of the parameter a, i s  O<a,<a,. 

The function w, can be expressed explicitly with the a id  of formula (7 ) ,  

with p (a) replaced by - ?-p (a). 
The function w2 can be represented in the form 

The parameter w2 represents  an  indeterminate 

2Eh - 
R- 

where 
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The function ai2 corresponds to the influence function for the l inearized 
problem of bending of the shallow segment considered. 

By using the Bubnov-Galerkin method we obtain a system of two 
equations for determining the constants A and B: 

-N,(Aw,+ Bw,) wiada=O, ( i = l , 2 ) .  (12) I 
By using the propert ies  of the functions w1 and w, we can write the 

following equalities: 

The function (70,; w,) is obtained from 4, (w,; w,) by interverting wl and w,. 
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The substitution of ( 1 3 )  and ( 1 4 )  in ( 1 2 )  yields 

Nl (w,) wiada + AB M (w1, w,) ~ r a d a  + A a  

By calculating the coefficients of the different powers of A and B 
we obtain a system of two equations from which we obtain expressions for 
these constants as functions of the load parameter  p o .  

The r e su l t s  of the solution of system ( 1 5 )  can be represented in the 
f o r m  of the curve po = po [w (ax) ] ,  where ax designates the coordinate of 
some  character is t ic  point, whose displacements character ize  the local 
stability of the shell. A s  such point can be taken the dome top o r  the 
point where the load maximum is attained. 

5. 
By writing A + 0, B=O, we obtain an equation for determining A :  

System (15)  can be spli t ' in two equations in a f i r s t  approximation. 

0 

% 

( A  - ~ ) ~ p ( a ) w , n c i a = A '  N2(wl)wlada; ( 1 6 )  

by writing ;I 10, B + 0, we obtain an equation for determining B: 

In this case,  when finding the relationship between po and w ( z , ~ )  f rom (1  6 )  
one should take w(a,) = Ahw,(a,) and from ( 1 7 ) :  

A second-approximation solution can also be found for other fo rms  of 
the functions w, and w,. Only the left-hand pa r t s  of equations ( 1 5 )  a r e  
altered a s  a resul t .  If in particular the function wz i s  left unchanged and 
the function .rel is replaced by this s ame  function w2 but with a different 
value of the pa rame te r  a ] ,  for instance a ; ,  the left-hand par t  of ( 1 5 )  
becomes 

w(ax)= Bhw,(~,). 

where wz(a)is determined a s  before by formulas  (11 ), and w,(a) differs 
f rom w2(a)  only in that a1 is replaced by a ; .  

the c a s e  of loading of the segment by a circumferential  dis t r ibutedpressure.  
6 .  We have examined a s  an application of the Bubnov-Galerkin method 



If we designate by F the total force acting on the shell, the function p ( a )  
becomes of the form 

0, O<a,<a, - -E 

0,  a S + r Q a < a o  
I ,  a , - - E < a < a s + e  * ] ( 1 9 )  

- F 

p ( a ) = w v  J=b (4 where a ( ~ ) = ;  

It follows from ( 1 9 )  that the load acts along a ring of outer radius io (as + e )  

and inner radius io (as - e ) .  
- a(= )  p ( a ) =  -. A number of calculations were conducted for the following 

a, -E 

numerical values: a. = 10; as = 2.2; t = 0.6. 
and was taken in turns a s  equal to %=0.2; 0.6; 1.7; 1.8; 2.1; 2.4; 3 .  
solutions were obtained in a f i rs t  and second approximation. 

In addition, the problem of the action of a concentrated circumferential 
load was also considered. It was assumed in this case that its diameter 
is equal to 2r0as.  The solution was found from the equations for the cir -  
cumferential distributed load by passing to the limit for e - 0 .  

Note in conclusion that although only the case of a normal load 
was considered here, the same reasoning applies to the case of the com- 
bined action of a normal pressure and meridional distributed forces. 

In this case the first equation of ( 1  ) will contain a component of the 
shearing load, which will influence in what follows only the expression of 
p ( a ) .  Since, however, no restrictions were imposed on the form of the 
function p (g), all  methods of solution remain unchanged. 

A s  po we took the value p o - - - 4nr,: and a s  P (4 ,  

The parameter a, was varied, 
The 

7. 
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ITERATIVE ALGORITHMS AND NUMERICAL 
PROBLEMS OF THE THEORY OF PLATES 
AND SHELLS 

D .  V .  V a i n b e r g ,  A . L .  S i n y a v s k i i ,  and 
E .  S .  D e  k h t  y a r y  u k  
(Kiev) 

The development of high- speed computers enabled new approaches to 
the problems of the theory of elasticity. 
calculating structures do not take into account the possibilities of modern 
computers. 
were considered completed not long ago. 

not sufficient to know a method of solution realizable by man. Additional 
logical formulations a r e  necessary in order to formalize all stages of the 
problem solution. 

future an independent branch of the engineering science. 
ture  on the subject is scarce, and the necessity of exchanging information 
on the subject is obvious. 

We shall consider here  the problem of determining the algorithm of the 
numerical solution of a wide class of systems of discrete equations of the 
theory of elasticity in such a way a s  to use the resources of modern 
digital computers efficiently. 
the limited volume of the computer memory and makes maximum use of 
the possibilities offered by the high speed of the calculations. 

Methods of solution in which the equations a r e  not transformed in the 
course of the calculations turned out to be best suited for problem solving 
by means of computers. In this case the separate equations a r e  not stored 
in the computer memory, but each of them is formed automatically at  the 
moment when i t  has to be used. Iterative methods must be considered a s  
suitable from this point of view. The iteration (continued repetitions of 
similar calculations) is a most natural method of work for digital computers. 

A program based on the iterative method was worked out, suitable for 
solving a wide circle of problems, differing by the type of equations, the 
configuration of the region, the type of boundary conditions, and other 
initial parameters.  The program makes an efficient use of the computer 
memory. 
The program has been split into blocks on the basis of a detailed study of 
the algorithm structure, each block fulfilling a specific function. The set 
of such standard blocks enables the solution for a wide circle  of similar 
problems to be programmed easily. 

The traditional methods of 

There appear many new problems in regions of study which 

Of course, in order to be able to solve a problem on a computer it is 

The calculation of structures on digital computers will become in the 
Today the l i tera- 

The method proposed takes into account 

The input and output data a r e  represented in a compact form. 
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The program described below is based on the class of iterative algorithms 
called descent methods. 
follows. 

in the n-dimensional Euclidean space. 

A brief geometrical exposition of the method used 

Consider a positively determined form Q, (E), where <is a vector 
The equation 

+ 
9, (E)=C 

defines a family of hypersurfaces. Let it be required to determine :he 
"center" of the system of hypersurfaces (1 ), i. e . ,  to fin? a vector E for 
wh$h @ f i )  is equal to zero. * Take an arbi t rary vecotr E, and calculate 
@ (E,)=C,. The iterative metho_ds which consLst in passing a t  each step 
from the vector E, to a vector i tfor which Q (€ , )=C,<C,  a r e  called descent 
methods. 
the straight line given by the parametric equation 

The transition from E, to E2 will be represented a s  motion from 

+ 
where u is a vector characterizing the direction of descent, and T is-a 
parameter.  The multidimensional problem of the minimization of @ ( E )  has 
been reduced thus to a secies-of one-dimensional problems of determining 
the minimum of 'p (T) = Q, (El + TU). 

The vector E, is determined by assuming a certain value of the para- 
meter T = t :  

- . +  -+ 

E,=E,+ t u .  ( 3 )  

A set  of different descent methods i_s obtained by assuming different 
conditions for determining the vector u and the number t .  The step t %an 
be determined in particular from the condition that the minimum of Q, ( E )  
is attained on the straight line ( 2 ) .  This minimum is attained at the point 
where the hyperline ( 2 )  is tangential to one of the hypersurfaces of family 
(1 ) . The condition of tangency is 

-.. e . . .  

ugrad Q, (E,+ t u )  =O. ( 4 )  

The problem of solving the functional equation 

- - +  
A E=b, ( 5 )  

-+ 
where A i s  an operato$ in the n-dimensional Euclidean space, E is the 
unknown vector, and b is a known vector, is equivalent to the minimization 
of the form 

Relationship ( 4 )  then becomes of the form 

* - P  

grad (A?, - i) ( A  5, - 6 )  =O. (7) 
+ 

If the vector u is selected at  each step parallel to one of the coordinate 
axes, we obtain the relaxation method. 
* It  is assumed that the  problem has a unique solution. 
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- . +  -. -.- 
If we select u = r,, where rl= A E,-b is the so-called "discrepancy" vector, 

If we select u= - grad ( A  E,- b ) ( A  E, - b )  we obtain the method of fastest 

The results of the preceding calculations can be allowed for in the 

we obtain the mzthod of descezt by discrepancy. 

descent. 

selection of the vestor u .  The allowance for the preceding step imposes 
one constraint on u, the allowance for the preceding two steps imposes 
two constraints, etc. The m-ethod of imposing the constraints can be the 
following. _Let the value E = E 2  have been attained during the-descent along 
the-vector ul. ($) is qrthogonal 
to u, . We-shall look for min@(E) among the vectors of the type au,+ 
+ p grad @ (b) which leads to the following conditions for calculating a and p : 

Equation ( 4 )  shews that the vector grad 

* -P 

u, grad @ (E,)=O, 

grad @ (<) grad @ Gs)==O. ( 8  1 

Equation ( 4 )  is nonlinear in the case of nonlinear problems. The 
transition from the problem of the minimization of 'p ( r )  to equation ( 4 )  can 
turn out to be only a reformulation of the problem, so that i t  is best to 
find directly by a numerical method the minimum value of the concave 
function 'p ( r )  without calculating i ts  derivative. 
methods is the introduction in the number of basic mathematical operations 
of the process of finding the minimum number from a finite table. 

The methods described above a re  based on reaching the minimum of 
0 (€)on the line ( 2 )  at  each step. 

We shall give now an algorithm which makes it possible to have the 
the final aim, the vector E,, in view a t  each step. Introduce the designation ,!$I 

for a k-dizensional space. 
of vector E o ,  a s  the intersection of n mutually orthogonal subspaces Et?] ,  
E:% 
W e  select a certain direction of descent iil: 

The essence of such 

Our object will be to determine E':), the end 

@?I. The system of subspaces is built in the following way. 

The step 1, is selected from the condition 
- . + +  - 

(E, - €1) (E* - Eo)&. (10) 
+ . .  

The space E!!?, is selected so  that the vector (E2- 6) l ies  in i t  and E!!:, 
Obviously L$'O'cE$'11. 

The vector ut is selected from among the vectors E E% 

-b 

is orthogonal to q, - 

The value of tt is determined from the condition 

- 7  

The subspace E?] is selected in such a way that the vector (E, - E,) lies 
i 

in it and &!?I is orthogonal to 4, and therefore also .!$!I -E&o'~cEf!l, whence 
a9'c13,~1~ n E:?,. 

27 1 



This process is continued until we obtain at  the n-th step 

- +  -+ * 
En = En-1 $. to-lun-1 = €0 , 

with 

This method is applicable in those cases  whe: i t  is possible to satisfy 
equations ( l o ) ,  (12) ,  by eliminating from them E,. 
0 (E) 
can be represented in the following farm: 

In the case when 
-+ + - b  - . +  

(AE - 6 )  (AE - t), where -4 is a h e a r  operator, the iterative formula 

where 
- c -  

r I  AA'rl AA' ri vI 
UII = - , aIl=-aIr . 

A A' r I .  A A' A' V I *  A'v 1 

We obtain the method of conjugate gradients, which our studies have 

We shall now describe the program. 
shown to be very efficient in solving a number of problems. 

I ts  distinctive feature is that the 
structure of the equations, the form of the grid region and the type of the 
boundary conditions do not figure in the program itself, but a r e  introduced 
with the input data. 

A set  of similar blocks do, d,, dz, d t  ...?; a r e  se t  apar t  in the computer 
memory for storing the input data and the resul ts  of the calculations. 
Block d, serves for storing the approximate values of the unknowns, d, for 
storing the "discrepancies", d, for storing the loads, etc. The number of 
blocks set  apart  for intermediate calculations is determined by the variant 
of the descent method used. 

The address 
of a given cell is obtained by adding to i ts  number f a  the constant d, which 
defines the position of the block in the memory. 
with the concept of a rectangular grid. 
considered in the problem is inserted in these blocks, and forms a part  of 
them. 

The method used for distributing memory space, based on the iterative 
method, resul ts  in a considerable saving in memory space a s  compared 
with methods requiring the filling of matrices.  Thus, 4n cells a r e  needed 

The cells in all the blocks a re  numbered in the same way. 

These blocks a r e  associated 
A grid region of arbi t rary shape 

Block dr starts from cell d,+,. 
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in a problem with n variables a s  against n1 cells necessary for storing a 
matrix of order n. 

Information on the form of the region and on the types of boundary 
conditions is fed to the computer in the following way. A.specia1 copy do 
of the grid has been provided, on which a r e  marked the codes describing 
the type of the given point and corresponding to inner points of the region, to 
points which do not belong to the given region, to points lying on the contour with 
an arbi t rary support, to'lforecontour'' points, etc. To each code, i.e., to each 
type of point, there corresponds a specific structure of the equations. 

The algorithms proposed have been written in  the address-programming 
language / 1 / . 

We shall use the following symbols: 'i is the iteration number, 't 'Pis 
the total number of iterations, 'a is the number of the grid node, 'a, is the 
total number of nodes. 

We star t  with the following commands: 

l : l = > i ,  a 

2 : 1 = > a .  

The calculation will then proceed along different paths depending on the 
coded position of the point a relative to the boundaries of the elastic region. 
This is realized by means of the multivalued predicative formula 

3: Q[ ' (d , ,+ '~ )=1 ,2  ...., k, 0 ;  4.5;. . ,  k+3,  kt-41, 

which means that a t  ' (d0+ 'a )=1 ,2 ; . . ,  k ,  0 control is transferred respective- 
l y  to the commands 4.5, . . . k +3, k +4. 

The commands 4: f a [  I => 4+ 'a, k+4;  
5: f2[ ] = > d , + ' ~  k +4; 
. . . . . . . . . . . . .  

k f3: f r [  ] = > d , + ' ~ ,  k + 4  

calculate the discrepancy in node a of the grid, with subsequent jump to 
command k C 4 .  

The functions f c a , + a )  [ 

A s  a result  of this arrangement of the program the equation for each 
node of the grid is not stored in the memory, but is formedautomatically every 
time when needed. Note that commands 3 to k + 3 form a separate block and a r e  
fed to the computer with the input data, and not with the program. 

1 depend on several  magnitudes of the type 
' (4 + 'a + i). 

k +4: ' (d2  + ' a )  +'(d, + 'a) = > d, + 'u. 
The following two commands serve for by-passing the grid 

k+5: 'a+ 1 = > a ,  
k +6: p ('a < 'a,,) 3. 

Command k + 6 checks the condition 'a < 'a,. 
transferred to command 3, and in the contrary case to the next command. 

If i t  is fulfilled, control is 

* T h e  symbol *"i" means "the number contained in cell i'*. 

273 



k +7: calculation of the descent step, 
k + 10: 
The form of the program blocks k +7, k + 10 depends on the iterative 

method used. 
inside operators k t 7, k + 1 0  a s  a function of '(do +'a) a re  the same a s  
illustrated above in the calculation of the discrepancies. 

The following commands ensure the fulfillment of 'io iterations and the 
printing of the results.  

k +  l l : ' i + - 1 = > i .  
k + 12: p( ' i<  'io), 
k + 13: printing of the results.  The computer stops. 
This program can be repeated several times in succession. 

calculation of new approximate values of the unknowns. 

The by-passing of the grid and the sequence of operations 

By trans- 
fering control to command 1 at  the end of the program, the computer will 
perfarm 'io more iterations, using the results obtained before as  initial 
approximation, and then stop. 
commands 3, . . . , for the case of bending of a rectangular plate: 

We shall give as  an illustration the form of 

' (d]  + 'a)  - ' (d ,  + 2 + ' a )  = > d ,  + ' u ;  k, +4, 

' (d ,  + 'a)  - ' (d l -  2 + 'a)  = > d ,  +' a;  k ,  +4, 
' (d ,+'U)-- ' (d ,  + 2 N + ' u ) = > d 1  +'a; k1+4, 
' (dz  + ' a )  - ' (dl  - 2N - 'a)  = > dl + ' u ;  kl +4, 

20 ' (dl  + 'a)  -8  ['(dl - 1 + 'a)  + '(d, + 1 + 'a)  + ' (dl  $- N + 'a)+ 

+ ' ( d l - N + ' a ) ] + Z  ['(dl - N - - l + ' ~ ) + ' ( d , - h ' + l + ' ~ ) +  
+'(d,+N- 1 +'a) +' (d ,+  N +  1 + ' a ) ] + ' ( d l -  2N+'a )+ ' (d , -  

- 2+'U)+'(dl+2N+'U)+'(d,+2 + 'a)  = >d,+'a; kl+4.  
It is important to note that only the contents of memory block do vary 

with the passage from a problem relative to a region of given shape to a 
problem relative to a different shape or  to a problem with different boundary 
conditions. 
equations, i t  is necessary to replace only the program block consisting of 
commands 3 to k + 3. With the transition to a different iterative method the only 
program blocks to change a re  k + 7 and k + 16. 

variable grid step, a variable rigidity, the values of these magnitudes a r e  
stored in special memory blocks, similar to those indicated above. 

Dirichlet problem was solved for a set  of 625 nodes. 
concentrated transverse force was calculated for a grid of 100 nodes. 
cylindrical panel was also calculated, 
a double-connected region was solved by iterations. The problem of 
calculating warpedplate systems was programmed. The algorithms and 
programs considered remainunchanged in the case of physically discrete 
systems, such a s  staticallyundeterminate f rames or guy nets. The same meth- 
ods canalso be applied to three-dimensional problems of the theoryof elasticity 
and to nonlinear problems, where they a r e  particularly efficient. 

If one passes  to problems containing different difference 

If the difference equations contain variable parameters,  such a s  a 

A group of profiles were calculated for the case of torsion, and the 
A plate loaded by a 

A 
The two-dimensional problem for 
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VIBRATIONS OF SHALLOW SPHERICAL SHELLS 

G . A .  Van F o  F y  and V . N .  B u i v o l  

(Kiev) 

1. The system of equations of t r ansve r se  vibrations of a shallow 

Eh 
V*VZ'p + - vzw = 0; 

R 

spherical  shell  can be written in the form 

where 'p is a s t r e s s  function; w is the deflection; R and h a r e  the radius  
and thickness of the shell; 

is the flexural rigidity; elasticity of the shel l  material;  D = -.___ 

P ( t )  6 (y- .o! Ls the disturbing force normal to the surface; 
i n  polar coordinates p, 0 ;  t is t ime. 

therefore ?=ye'"'', 

7 and E a r e  the specific gravity and modulus of 
Eh3 

12(1 - v Z )  

V* is the Laplacian 

We shall  consider harmonic vibrations. Then, writing P(t)=Poe'"" and - - 
w = wefwof we reduce system (1 ) to 

In o r d e r  to  obtain separate  equations for 'p and w introduce the auxiliary 
functions F and 6 / I /  

If we write 1 = ( ~ h u ; R ) - ' ,  we obtain from ( 2  ) the following two independent 
equations for determining these auxiliary functions: 

v'v*F = 0;  

where 

iJ08(7-F0) , 
D '  + (VZVZ - I(, = ( 4 )  
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2. The soIution of the f i rs t  equation of ( 4 )  can be considered a s  known; 
as to the second equation, its solution can be represented in the form 

9 = r: + $0 + e1 + $** (5) 

where $,, is a particular solution of the nonhomogeneous equation; the 
other three functions a r e  the general solutions of the following equations 
respectively: 

V V O  = 0; 
v x  + %VI = 0;  

dh - X V t  = 0. 
( 6 )  

There is no need to dwell on the solution of the Laplace equation. The 
general solution of the second equation is 

9, = [CinJ. ( V I +  D,. H, ( V I ]  sin ne + (Z.,,,J, (zp) + ;31nHu (xP)] cos ne, (7 

The solution of the third 
where C and D a r e  integration constants and J .  and Hn are n-th order 
Bessel and Hankel functions of the f i rs t  kind. 
equation is of the same form, the only difference being that the factor 
i =v? appears in the arguments of the Bessel and Hankel functions. 

representation of the S -function by a Fourier integral 
The next step consists in finding a particular solution Jb.  Using the 

where (dz)=dndm, ~ ( ~ - ~ ) = n ( x - x o ) + m  ( y - y o ) ,  wecanalso  represent q,, 
as  such an integral: 

Integral ( 8 )  can be calculated by the methods of the theory of functions. 
The integration contour is to be selected a s  for a source. 
we obtain then 

Following 121,  

In polar coordinates p. 8 we can, by using the ser ies  expansions for the 
logarithm and the cylindrical functions 131 ,  represent +,, in the following 
form: 
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The apostrophe on the summation sign means that the first  term of the sum 
is to be multiplied by 2. 

is applied a t  the top of the shell, we have PO = 0, and also Dim= Dtn = 
= D,, =DZn = 0. 
and +&e functions F and 9 we can write 

3. In the particular case of axial symmetry, when the disturbing force - 
- 

Based on the relationship between the functions 'p and w 

EhP, Eh 
2n Dx'R R - up'+ - In P - - [CJ, (xp) + dJ, ( i x p ) ]  + -1-4 

iP, 
4Dxa 

we-"" = - 4Xa - x T J ,  ( x p )  + x2dJ, ( i x p )  + - [H, ( x p )  - H, ( i x p ) ] .  

Note that the solution obtained is arbitrary,  both in this particular case 
and in the general case, and that it is possible to satisfy any boundary 
conditions (on two contours in the general case). It is seen that in the 
particular case of axial symmetry the solution is obtained in a closed form. 

The arbi t rary constants a, c ,  d in the expression for 7 and w a re  de- 
termined from the boundary conditions. Thus, in the case of rigid fixation 
of the shell edge, the boundary conditions 

dw u = w = - = O  for p=b 
dP 

yield a system of three linear algebraic equations for determining these 
constants : 

2k 
CJb(x6) + dIb(xb) + 

Here I ,  and KO a r e  modified Bessel functions of the f i rs t  and second kind. 
The solution of system ( 1 0 )  yields the natural frequencies of the shell for 
the boundary conditions considered. 
system to zero we obtain the frequency equation 

By equating the determinant of the 

From the value of xb we determine the fundamental frequency by means 
of the formula 
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In the case of boundary conditions 

T - -=I=-=  dw 0 for O = b  
dP 

P -  

the frequency equation will be: 

4AEh 
Rxb 

Jo (xb) I ,  ( x 6 )  + .Il ( ~ 6 )  I ,  ( xb )  - -Jl (xb) I1 ( ~ 6 )  = 0. 

Consider a shell with R = 2 m, h = 0.2 cm, E = 7.2.105 kg/cm2, 7 - 0.3, 6 = 40 cm, 
y g  =2200 kg/m3. We obtainfor i t  xb = 7.62, W* = 9573, or w1 = 15.6 cycles/sec. 
For  a plate with the same characterist ics o1 = 1 4 . 3 .  It is seen therefore 
that the curvature does not have a considerable effect on the natural f re -  
quencies. 

It follows from the formulas obtained that at  o-+wO, the amplitudes of 
vibrations increase indefinitely, and therefore the analysis of the shell 
vibrations near w = wo is realized allowing for the dissipation of energy 
inside the material .  In particular, a satisfactory approximation of the 
process  for certain plastics at room temperature is obtained by assuming 
a force of internal friction proportional to the ra te  of t ransverse de- 
flection -141.  
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ON THE THEORY OF CALCULATING PLATES ON 
A N  ELASTIC FOUNDATION 

V .  V .  V a r d a n y a n  
(Yerevan) 

The theory of calculating plates on an elastic foundation with two elastic 
characterist ics is being widely used lately. This theory is free of many 
of the shortcomings of the Winkler theory; it is also much simpler 
mathematically than the methods of solution based on the representation 
of the elastic foundation a s  a homogeneous isotropic elastic half- space. 
The theory has been considerably developed from the point of view of 
practical applications 121; 
of the two foundation moduli k and t entering in the expression for the 
elastic reaction of the foundation q=kw-2tvzw has not been sufficiently 
elucidated. 
perimentally, by applying an eccentric force on a rigid punch placed on the 
elastic foundation. In / 2 /  the elastic foundation was replaced by an elastic 
layer of thickness Hand the foundation moduli were determined by semi- 
empirical formulas containing, in addition to Young's modulus &, and the 
Poisson rat io  pot the layer thickness Hand a parameter 7, called the co- 
efficient of damping of the depression with depth. 
however, for the selection of Hand y in different specific cases. 

foundation moduli is preserved, but a different method is advanced for 
determining their values. 
half-space, and the parameters k and t a r e  determined from the condition 
that the resul ts  of the calculation diverge a s  little a s  possible from the 
resul ts  given by the theory based on the elastic half-space hypothesis. 
This idea is not new, a s  applied to a Winkler foundation, but has not been 
recognized in the l i terature only because with the one Winkler foundation 
modulus ko i t  is impossible to ensure a close coincidence of the results 
relative to both the deflections and the bending moments. The introduction 
of two foundation moduli widens the possibilities of using this idea, a s  will 
be shown below on the example of a circular plate of radius a lying on an 
elastic foundation and loaded by an arbitrary axisymmetrical load. 

spherical base of radius R .  
half-space by a force P ,  the magnitude of the la t ter  can be selected in 
such a way that elastic reactions of infinite magnitude appear on the punch 
edges (Figure 1). 

the question of the determination of the values 

It was proposed in 111 to determine these coefficients ex- 

No sound rule was given, 

In the present paper the mathematical frame of the theory with two 

It is assumed that the foundation is an elastic 

Consider a cylindrical circular punch of the same radius a with a 
When such a punch is pressed in the elastic 

The  elastic reaction q and the deflection w at any 

219 



arbi t rary point under the punch can then be determined by the formulas 
1 .  

where po is the mean value of the pressure: p o  = P :  %a2 ; 
coordinate: p = r : a ;  

p is a relative 

FIGURE 1 .  

If the flexible circular plate lying on the elastic half-space is loaded 
from above by a transverse load p (p) distributed by law (1 ), and along the 
contour by uniformly distributed bending moments M, given by the formula 

( D  is plate rigidity and p is the Poisson ratio), then such a plate wi l l  be 
in a state of pure bending and i ts  deflection will be determined by ( 2 ) .  

elastic foundation characterized by two parameters k and t (Figure 2 ) .  
The soil reaction and the contour fictitious forces wil l  then be determined 
by the formulas 121:  

Assume now that the plate l ies  not on an elastic half-space, but on an 

q = k ~ - 2 t v  w 
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where Kl ( 
functions of the second kind; wr is the deflection on the plate contour. 

) and KO ( ) a r e  modified f i rs t -order  and zero-order  Bessel  

I 

FIGURE 2. 

Introducing the designations 

we can rewri te  the expressions for  q and Q$in the following form: 

y = p , (  x ( I + +  6 ) + 8 r 8  --86p2 9 1 

Obviously, in the case  of an elastic half-space, when the reaction y has 
the value ( 1  ), we obtain p - q=O. If q has the value ( 6 ) ,  then p - q f Oand 
therefore the plate will bend under the action of a t r ansve r se  load p 
The problem now is to determine the values of the coefficients x and 7 for 
which the potential energy of bending of the plate under the load p - q will 
be minimum. It can be asser ted that the values of x and 7 determined in 
this  way solve the problem of determining the two foundation moduli in 
such a way that the solution obtained by the model of an elastic foundation 
with two moduli differs l i t t le from the solution by the elastic half-space 
model. 

q.  

W e  now have to solve the equation of bending of a plate 
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with conditions at  the edges and the center of the plate 

z, =(I - =o ‘Zl=o Qp =o . ( 9 )  I p -  1 dPI, - 1 dp p - u  lp4 

dw 

The second condition of ( 9 )  means that the plate is built-in along the con- 
tour.  This condition must  be adopted f o r  two reasons: the variation of the 
slope on the contour w i l l  vary the fictitious loads Q$, and in addition the 
contour moments M, will do an additional work, which will a l ter  the values 
of the potential energy. 

To determine the potential energy 

U=i;a2D ( ~ ~ . w ) ~ p  dp ( 1 0 )  1 
i t  is sufficient to  determine v*w from ( 8  ): 

The substitution of (1 1 ) in (1 0 ) gives for  the potential energy a relationship 
of the type U = U  ( x ,  T), where s and : a r e  not independent, but a r e  related 
by the equilibrium condition 22 =0: 

1 

( p  - y) 2n (ap) d (up) -%a.  QJI = 0 ,  

h 
or,  in expanded fo rm 

The problem is thus reduced to  finding the minimum of the function 
U =  U ( x ,  7) under condition ( 1 2 ) .  
corresponding to the extremum of the function ti are determined f rom 
the system 

It follows that the values of x and T 

Equations (1 3 )  are reduced after simplification to  the form 

- [M + N ( a Z  -I)](dx +e- f) =O, Mr +2 Nu v2y-I =0, (14) 

& = -  1 + - 8  c=- l + -  
4:( 1; ); 6:0( 
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(15 )  
(cont'd) 

It is seen from (5  ) and (1 5 ) that all the coefficients in (14 )  depend only 
T = T  (6). 

By analyzing (14 )  i t  is seen that the coefficient x increases  with the 
Taking a lower l imi t  T = 0 for  T ,  

on the one dimensionless magnitude 6 ,  and therefore  x = x ( 6 ) ;  

increase of i ,  and that 7 decreases .  
i.  e . ,  passing to tb? case  of a Winkler foundation, w e  obtain an upper l imit  
for 5 equal to 0.582; for this value a. = 1, x = 0.91. The lower l imit  of S 
is determined from the condition of the soil reaction at  the plate center 
q (o)=O. We obtain from ( 1 )  for !J = 0 that F,,,1,=-0.375, for which a = 1.20, 

pa rame te r  2 can vary within the l imits  0.582 p 6  z-0.375. The correspond- 
ing ranges of variation of X ,  T , U .  will be 

= 0.48, : = 0.047. We thus note that for the problem considered the 

C.91> y. 20.48; 0<:<0.047; 1 c a s 1 . 2  

0.041 

FIGURE 3. 

The curves given in Figure 3 represent  the values of the coefficients x 

and T as  a function of 2 which ensure the minimum of the potential energy 
of plate bending ( 1  0 )  under the action of the load p -- q represented in the 
right-hand pa r t  of ( 8 ) .  
ca se  of pure bending. 
t r ansve r se  load p ,  the values of the pa rame te r s  k and t a r e  determined a s  
follows. By writing p =po-f (p), where p o  is the mean value of the load, 
and f (p) is a dimensionless function, we approximate the plate deflection 
under a load p by the deflection a t  pure bending. 
elastic reaction q and the deflection w a r e  taken by formulas ( 1 )  and ( 2 ) ,  
but that the pa rame te r  8,  related to the radius  R by formula ( 3 ) ,  is 
selected in a suitable way depending on the type of load p .  

displacements 

The resul ts  given above correspond to the par t icular  
If the plate is subjected to an a rb i t r a ry  axisymmetrical  

This means that the 

If 6 acquires an increment dB, then according to  the principle of virtual 
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where dA, is the elementary work of the external load p. dA, is the ele- 
mentary work of the elastic reaction of the foundation, - d U  is the ele- 
mentary work of the internal forces of the plate, equal to the increment 
of the potential energy dU with opposite sign. 
and dA, a r e  calculated by the formulas 

The elementary works dAp 

The potential energy of pure bending can be presented in the form 

where 

Using relationship ( 3 )  between R and 6, we obtain from ( 1 6 )  the follow- 
ing expression for 6: 

1 

where the coefficient 0, called the relative flexibility of the plate, is 
determined by the formula 

Note that a differs from the similar magnitude S used in / 3 /  by the factor 
M I +  PI. 

In the case of concentrated forces the integral in the right-hand par t  of 
(17 )  is to be understood in the Stieltjes sense. Thus, for a uniformly 

distributed load, when J(p) = 1, we obtain E =1 : ?$ + +j. For  a force 

concentrated at  the center we have 8 =4: 32 + - 
load distributed along the contour 6 --2: - + - . 

Thus, in order to determine the parameters k and t in the case of an 
axisymmetrically loaded circular plate, we find u and k, by (18) and ( 3 )  
from the initial data Eo, p (for the elastic foundation) and E, p, (2, h (for the 
plate); we then determine 8 by ( 1 7 )  from the given load; finally, we 
determine from the curves of Figure 3 the dimensionless foundation 
parameters x and 7 ,  and therefore k = ko.x and t = ko.u2-=. 

and for a concentrated (Is 6) c: ,'> 
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It follows that the pa rame te r s  k and t should not be considered a s  con- 
stant for the same  foundation, since they depend not only on the foundation 
character is t ics  Eo and p,,, but a lso on the plate outline, i t s  re la t ive 
flexibility 3, and the type of the applied load. 
conducted with the values of k and f found by this method, and their  r e su l t s  
were compared with the data given in 131, pp. 260-270. The diagrams of 
the bending moments and the deflections w e r e  very s imilar  to  the diagrams 
obtained from the tabulated data in 1 3 1 .  
a t  the center of the plate; 
3 70 for the bending moments, and lower than 8 70 for  the deflections. 

mination of k and t i t  is possible to refine the computing model of the 
foundation a s  well. 
in the form q = k m -  2tv2 w + n.v4 w. 
be written in the form 

Several  calculations were 

The discrepancies were l a rges t  
the value of these discrepancies was lower than 

Note in conclusion that by using the method described for the deter-  

It is thus possible to r ep resen t  the foundation reaction 
The equation of plate bending will then 

( D  + n )  f w  - 2tv2w + kw = p .  (19 )  

The pa rame te r s  k ,  t ,  and n can be determined from the minimum condition 
of the potential energy, which now will depend on k ,  t. n: U = U ( k ,  t. n), while 
f rom the condition of equilibrium we obtain the relationship F ( R ,  t, n)  = O .  
We obtain a s  a resul t  instead of ( 1 4 )  t h ree  equations with th ree  unknowns. 
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ON THE SOLUTION OF THE PROBLEM OF STRESS 
CONCENTRATION AROUND A CIRCULAR HOLE IN 
A SPHERICAL SHELL IN THE ELASTIC-PLASTIC 
DOMAIN 

V .  V .  Vasil e v  
(Kiev) 

The numerical  solution proposed for the problem of the axisymmetrical  
elastic-plastic s t r e s sed  and strained s t a t e  around a reinforced circular  
hole in a thin spherical  shel l  is based on the theory of small  elastic-plastic 
deformations and the method of elastic solutions 111. 
equations a r e  written in displacements and a r e  integrated by the method of 
finite differences. It is assumed that the shell  mater ia l  is work-hardening 
to an a rb i t r a ry  extent. 

The differential 

Without dwelling on the s ta t ic  and geometrical  equations of the problem 
1 2 1 ,  we only remind one that the tangential displacements a r e  neglected 
in the formulas for  the curvature  variation, and therefore the shearing 
force is neglected in the equilibrium conditions in the direction of the 
tangent to  the meridian 131 .  

laws of the theory of small  elastic-plastic deformations. Using the r e -  
lationship between the intensity of the s t r e s s e s  and the s t ra ins ,  written 
with the aid of I l ' p s h i n ' s  function wi 11 1, one obtains the following ex- 
pressions for the meridional and circumferential  components of the 
s t r e s s e s  a t  an a rb i t r a ry  point through the shell  thickness: 

The physical equations of the problem a r e  obtained by start ing from the 

EW [(2--)e2--((1-22v)e,-(l. +v)e,l. u2 = - (e,  + ye,) - - E 
1- VZ 3 (1 -v') 

where 
- 9  

3 v + ( l  - 2 ~ )  W I  
e, = - pi (e,  + e,), pi = 

3(1-v)-2(1-2v)w[ 

e,. e,, e3 a r e  components of the tensile s t r a ins  in  the directions of the 
tangents to the meridian and parallel ,  and of the normal  to  the middle 
surface,  E is the modulus of elasticity, and v is the coefficient of t r ans -  
verse deformation. 
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In the range of small  elastic-plastic deformations, v i nc reases  f rom 
a value equal to the Poisson r a t io  to a value near  0.5 / 5  J .  
very difficult to allow for  the variability of Y .  At negligible plastic de-  
formations i t  is therefore  s impler  to a s sume  that v is equal to the Poisson 
ratio,  and a t  developed plastic deformations to the condition of incom- 
pressibil i ty of the mater ia l .  
a r e  considerably simplified. 

The meridional and circumferential  normal  forces  T,. 7.. the bending 
moments GI. G?,  and the meridional shearing fo rces  Q,, a r e  determined by 
the formulas 

It is however 

In the la t ter  ca se  the physical relationships 

where 

J J J 
-u.5 -0.5 -0.5 

In these formulas E ~ ,  E,. x,, +, a r e  the tensile s t r a ins  and curvature-variation 
of the middle surface; h is the shell  thickness; D is the flexural rigidity; 
'f is the meridional angle (see figure); 71 is the r a t io  of the shell  radius  R 
to the thickness; t is the relative coordinate along the shell thickness. 

of two ordinary differential equations is obtained: 
When the problem is formulated in displacements, the following system 

m,,u + m,, u' + mlp u'' + n,, W' + R4 D-'X + Q,=O, 
m, u + m,, u'+ nM w + n,, w'+ nzl W" + n, w'"-w'" + R' D-'Z+ + %=O, 

m,, = - 12 q2 (ctg2 'p + v ) ,  m,, = 12 q2 ctg p, m, = 121'. 

n,, = 12 ( I +  Y) qx, m, = - % Ctg 'P, mn = - 
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n , , = - 2 ~ l ,  n 2 , = - ( 2 - - ) c t g y - c t g S ' p ,  n , , = l + ~ + c t g ' y ,  
nZ5 = -2 ctg y, 
O , = R ' D - ' [ c t g y  ( A T , - A T , ) ) + A T ; ] ,  

8,= R' D-' (A Qi + ctg 'pA Qz - ATl - A T2),  

where u, w a r e  components of the displacements of the middle surface in 
the direction of the x ,  z axes of the mobile xz coordinate system (figure); 
X, Z a r e  components of the surface load intensity. 

FIGURE. 

The expressions Q,, 51, contain the nonlinear te rms  of the equations and 
a re  used in solving the problem by the method of elastic solutions 11 1 a s  
components of the fictitious load. 

in an elastic formulation by the method of finite differences reduces to 
solving a system of linear algebraic equations. When the differential 
equations a re  approximated by equations in finite differences, a uniform 
step of the independent variable 'p is used, and the approximate expressions 
for the derivatives by 'p a r e  written in central differences with an e r ro r  of 
the order of the step square. 

The solution of the differential equations of the boundary-value problem 

J 2. 

We shall now consider the elastic-plastic state in a shell weakened by 
a large circular hole, and loaded by a uniform pressure of intensity p.  
The hole is reinforced by a thin elastic ring of rectangular c ross  section 
and of small  dimensions compared with the hole radius. The effect of the 
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internal pressure  on the lid is equivalent to a vertical load PO, transmitted 
to the ring and distributed uniformly over a circle passing through the 
centroid of the ring section. 
considered at  'p = 'po a r e  / 4 /  

The boundary conditions for the shell edge 

Qlcos yo - Tl sin 'po + Po =O, 
where GI, T,, Q, a r e  the bending moment and forces in the section of con- 
nection of the shell and ring; rl ,  rf a r e  the a rms  of the forces TI, Q, relative 
to the center of gravity of the ring c ros s  section; 
of inertia of the ring c ross  section relative to the horizontal axis; F k  is the ring 
section area; €k is the modulus of elasticity of the ring. 

from the hole. 

'p, = 0.1380 rad.  
duralumin. 

pressure  p = 4.25 kg/cm2, which produced s t resses  near to the limit of 
proportionality ( U. = 1300 kg/cm2) in the shell far from the hole membrane. 
In order  to elucidate the influence of the supporting-ring rigidity on the 
concentration of s t resses  about the hole, the shell was calculated for 
several  values of the ring rigidity, with a considerable variation of the 
flexural rigidity. 
rigidities was also investigated. 

state of the shell in the connection section with the ring for the two extreme 
cases  only: the case of a shell reinforced by the least  rigid ring (Ik=0.539. 

R", F k  =2.08. R', p =0.132 R ,  rl =0.704. R, rI =0.793. IO-*R) and the 
case of a shell reinforced by an infinitely rigid ring (/I= F e = w .  p =0.138 R, 
pi - r2 =O). 

The values of the s t resses  in kg/cm2 on the outer, middle, and inner 
surfaces of the shell a r e  given in the following table. 

l e  is the principal moment 

A membrane state of strain is assumed to exist at  a sufficient distance 

The calculation was conducted for a shell with R = 1 7 0  cm, ti = 0.3 cm, 
The shell was made of A.Ur6 alloy 161, and the ring of 

The elastic-plastic state about the hole w a s  investigated at an internal 

A reinforcing ring of infinite flexural and tensile 

We shall give here  the values of the s t resses  for the elastic-plastic 

T A B L E  

E 

0.5 
0 

-0.5 

Case 

0 ,  

2020 
1330 

-900 

1 

0 2  

1230 
1520 

860 

Case 2 

1430 

The resul ts  of the calculations have shown that the increase in the ring 
rigidity is accompanied by a decrease in the local disturbance of the s t ressed 
and strained state, caused by the presence of the hole. Thus, with the in- 
c rease  in the flexural rigidity of the ring the plastic region at  the place of 
connection of the shell with the ring becomes elastic-plastic, until i t  finally 
disappears at  an infinitely rigid ring. 
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The coefficient of s t r e s s  concentration, i. e . ,  the ratio between the 
maximum s t r e s s  intensity and the membrane s t r e s s  intensity, is equal to 
1.5 in the elastic-plastic state considered; when the problem is solved in 
an elastic formulation, this ratio turns out to be equal to 2.5. With the 
increase in the ring rigidity the coefficient of concentration drops, be- 
coming equal to 1.1 for a ring of infinite flexural and tensile rigidities. 
It follows that the concentration of s t resses  can be considerably reduced 
by reinforcing the hole with a ring of large rigidity. 

s t ressed and strained state is restricted and bears a local character in 
both the elastic and the elastic-plastic states of the structure. A con- 
siderable deviation from the fundamental membrane state of the shell was 
observed in the plastic and the elastic-plastic regions. These regions 
propagated in the case of the ring of lowest rigidity (from among those 
examined) in the meridional direction along the shell a t  a distance from 
the section of connection with the ring corresponding to a meridional angle 
of about 5". The s t ressed and strained state in the elastic region of the 
shell is near to a membrane state. 

The study showed that the propagation of the zone of disturbance of the 
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SOME PROBLEMS OF CALCULATING L A R G E - P A N E L  

E L E M E N T S  A S  THREE-DIMENSIONAL SYSTEMS 
EDIFICES AND EDIFICES MADE OF VOLUME 

B . S .  V a s i l ' k o v  
(Moscow)  

The increasing emphasis on multistory buildings made from large panels 
and volume elements has made i t  necessary to develop methods for their 
calculation a s  three-dimensional systems. Standard brick buildings, and 
large-panel buildings in particular (and their volume elements), undergo 
considerable s t ra ins  and s t resses  under the action of temperature varia- 
tions, seismic effects, wind pressure,  and also nonuniform settling (when 
the foundations a r e  laid on yielding soil). 

developed on the basis of the following three trends of the theory of struc- 
tures  and the theory of elasticity: 

a) on the basis  of the theory of calculation of thin-walled three-dimen- 
sional systems 11, 21; 

b) on the basis of the theory of compound bars; 
c) on the basis  of the theory of elasticity of an anisotropic body and 

anisotropic plates. 
We consider in this paper the calculation of buildings by the methods of 

the theory of calculation of thin-walled three-dimensional systems. These 
methods a r e  based on the theory of shells and the variational method, 
created and developed by Prof.Vlasov, Corresponding Member of the AN SSSR. 

The general method of calculation proposed here  takes into account the 
s t ra ins  of the t ransverse compression of the longitudinal and lateral  walls 
121,  in addition to the shearing strains and the longitudinal elongations 
taken into account in the general variational method of Vlasov. 

prismatic body of multiconnected section, built in the general case on a 
yielding foundation. 
plates of reduced thickness 8 , ,  at longitudinal extension-compression, F2, 
at shear in their own plane, and B31 a t  transverse compression. 

be longitudinal elements, o r  stringers,  which work only in the longitudinal 
direction at extension-compression. 
special reinforced-concrete belts or beams of prestressed framework, 
stiffening the building in the longitudinal direction. 
special reinforced-concrete belts o r  frameworks in the longitudinal 
direction, the panels of the w a l l s  and ceilings in buildings made from la rge  
panels a r e  considered a s  longitudinal s t r ingers  of reduced a rea  bF, , 

Methods of calculation of buildings as three-dimensional systems can be 

1. Method of calculation. The building i s  considered (Figure 1) a s  a 

Its  vertical and horizontal sides represent continuous 

At the intersection between the different faces of the building there can 

These elements can represent 

In the absence of 
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calculated allowing for  their actual rigidity and for the joints between 
them when subjected to longitudinal strain.  

FIGURE 1. 

The reduced thicknesses 61 r , 82 r , 83 of the faces of the building body 
a re  likewise determined allowing for the actual behavior of the walls and 
ceilings in the elementary strain states of tension-compression in the 
longitudinal and lateral  directions and shear.  In the case of large-panel 
buildings and buildings made from volume elements these thicknesses must 
be determined allowing for the yielding of the joints which connect the 
panels bearing the longitudinal walls and the panels of the ceilings between 
s tor ies  and the transverse walls. 

The computing scheme is presented in Figure 2.  

Rigid foundation 

- X  

FlGURE 2. 

The system of differential equations for calculating the building box a s  
a three-dimensional system is established allowing for the joint response 
under strain of the system building + elastic foundation, with the elastic 
foundation considered a s  an elastic layer /1,3/ of finite height A,,. 

Instead of 
Winkler's hypothesis we use a more accurate geometrical hypothesis 11, 31,  
which allows for the foundation rigidity not only in compression, but in 
shear a s  well; the tensile strains along the height of the elastic layer h, 
a r e  assumed to be constant, and the longitudinal displacements of the 
elastic foundation a r e  everywhere taken a s  equal to zero. 

The underlying layer is assumed to be absolutely rigid. 
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The scheme of an n-story building with three longitudinal bearing walls 
is given in Figure 1, the computing schemeofan is-story building with 
three longitudinal bearing walls and an elastic-foundation layer of height 
b , ,  in Figure 2. 

of the n-story building considered, allowing for the s t ra ins  of wall pressing, 
the shears,  and thelongitudinal elongations, 
system of differential equations w a s  obtained on the basis  of Vlasov's 
general variational method 11 1, allowing in addition for  the transverse 
s t ra ins  121. There a re  in this system of ordinary differential equations 
three groups of fundamental unknown functions, which depend on the one 
variable x only. To the f i rs t  group of unknowns belong the longitudinal 
displacements of the r ibs  at  the intersection of the walls with the ceilings 
(along the l ines of intersection of the vertical plates with the horizontal 
ones) 

The system of differential equations which describe the s t ressed state 

is given in the table. The 

TABLE 

To the second group of unknowns belong the horizontal displacements 
of the building in the planes of the floors (in the planes of the horizon- 
tal plates) 

v, ( X ) , .  . .. V" ( x ) .  

To the third group of unknowns belong the vertical displacements of the 
longitudinal r ibs  of the building 

wo(X), . . ' t  wn ( x ) ,  Wn+X ( x ) , ' . ' ,  WZnfl ( X ) .  WZn+Z ( X ) , * * ' ,  W 3 n + l ( X ) -  

The longitudinal displacement u ( x ,  s) a t  an a rb i t ra ry  point (x. s)of the 
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cross  section of the building considered is represented in the general 
case by the expansion 

3r + p  

u ( x ,  s)= 2 u1 ( x )  :! (s ) .  (i=o,i,. ..,an+2). (1 1 
0 .  

where [Jl ( x )  a r e  the unknown longitudinal displacements of the building 
body ribs; 
displacements between the r ibs  of the building body in both the horizontal 
and the vertical directions; s represents the contour coordinate of the 
building c ross  section, coinciding with z for the vertical elements of the 
building (the wal ls) ,  and with y for the horizontal plates (ceilings). 

With this selection of the unknown longitudinal displacements Ui ( x )  the 
functions C1 (s) have a very simple form: 
from zero only along the straight portions of the contour of the building 
cross  section connected by joint i. 
portions the function Cl (s) varies linearly, becoming equal to unity at  the 
i-th joint of the building cross  section. In all the other joints and portions 
of the cross-sectional contour the function CI (s) is identically zero. 

The diagrams of the functions b ( s )  for the building considered a r e  given 
in Figure 3. 
unique and depends on the selection of the unknown functions Ul (x). If any 
3n+2 independent magnitudes a r e  taken a s  unknown functions Ui ( x ) ,  to each 
such magnitude will correspond a definite l inear combination of independent 
functions 51 (s). The functions ;1 (s) thus obtained will likewise be continuous 
on the entire multiconnected contour, and will be expressed along separate 
par ts  of the cross-sectional contour of the building body by a linear diagram. 

We can select a s  functions C1(s), corresponding to the first  state, func- 
tions which satisfy the law of plane sections. The other 3 L - 1  t e rms  of 
expression (1 ) will then determine the deviation of the longitudinal dis- 
placements from the law of plane sections (deplanation of the building 
cross  section). 

The horizontal displacements v ( x .  y) at an arbi t rary point (x,)’! of the 
c ross  section of the building considered a r e  represented in the general 
case by the expansion 

CI (s) a r e  the functions selected for describing the longitudinal 

each of the functions C1 (s) differs 

Within the l imits of each of these 

The method sei-ected for forming the functions Cl(s) is not 

I, 

V(X, y ) =  V , ( X )  li(Y), ( i = O , I  ...., n) ,  ( 2 )  
0 

where V, ( x )  a r e  the unknown horizontal displacements of the building 
ceilings (the horizontal plates of the building box); ( v )  a re  previously 
selected functions of distribution of the horizontal displacements in the 
plane of the building c ross  section. 

The system of functions q t ( j )  ( t =  0, I .  2 . - . . ,  n )  defines the strained state 
of the building in the horizontal direction in the cross-sectional plane. If 
the interstory ceilings a re  inextensible in the horizontal direction (in 
direction Oy), the deformation of the cross-  sectional contour caused by 
the horizontal displacements is determined by the set  of functions VI ( x ) ,  
whose total number is equal to the number n of ceilings in the building. 
The functions Ti ( y )  a r e  determined from a consideration of the elementary 
horizontal displacements of the building c ross  section in the cross-  
sectional plane at  VI = 1 and V, = 0 ( k  # i). 
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a 

C 

b 

d 

FIGURE 3. 

The function qi (y)  is constant within the l imits  of each ceiling (is in- 
dependent of y )  and corresponds to the horizontal displacement of the 
ceiling in the cross-sect ional  plane. 
for  the building considered a r e  given in Figure 4. 
for  forming the functions q i (y ) i s  not unique, but depends on the selection of 
the unknown functions VI  ( x ) .  

The diagrams of the functions 7, ( y )  
The method considered 

I I 
/ / / / / / I f / / / / / / / '  

FIGURE 4. 
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If we select as unknown functions Vi (2) any n mutually independent 
magnitudes, to each such magnitude will correspond a definite linear 
combination of independent functions ql ( y ) .  
will likewise be continuous and constant over each ceiling (horizontal plate) 
of the building. 

The vertical displacements w (x ,  z )  at an arbi t rary point ( x ,  z )  of the c ross  
section of the building considered a r e  represented a s  expansions 

The functions qi (y) obtained 

3n+2 

W ( X ,  Z )  = WI ( X )  T i  ( 2 ) .  (i SO,], . . . ,  3n+2), ( 3 )  
0 

where WI ( x )  a r e  the unknown vertical displacements of the r ibs  of the 
building box, yt ( 2 )  a r e  previously selected functions of distribution of the 
vertical displacements between the r ibs  of the building box in the vertical 
direction (along the z axis). 

When the compressibility of the w a l l s  in the vertical direction is 
allowed for, and when the above-defined functions W I  (x) a r e  used, each 
of the functions T l ( s )  differs from zero only on the straight portions of the 
cross-sectional contour connected by the i- th joint. 
each such portion the function ~ i ( r )  varies linearly withz, attaining the 
value unity at  the joint. 

Within the l imits of 

FIGURE 5. 

The function i i  (z) is identically zero at all other joints and portions of 
The diagram of the functions the cross-sectional contour of the building. 

ri(t)for the building considered is given in Figure 5. 

and depends on the selection of the unknown functions WI(X) . 
magnitudes, to each such magnitude there will correspond a definite linear 
combination of independent functions I i  (2).  The functions T I  (z) obtained will 
likewise be continuous on the entire multiconnected contour, and on separate 
par ts  of the cross-sectional contour will be expressed by a linear diagram. 

The method selected for determining the functions Ti ( 2 )  is not unique 

If we adopt a s  unknown functions Wi (w) any 3n+2 mutually independent 

The constants B, C, K, L in the table have the following values: 
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where E is the modulus of elasticity at extension-compression of the 
material of the wal l s  and ceilings; 
ness of the w a l l s  and ceilings at  extension-compression; 
ratio; 

culated by the formulas 

G i s  the shear modulus; 6 is the thick- 
v is the Poisson 

1, is the distance between the transverse walls of the building. 
The coefficients of the first  group of equations of the table a r e  cal- 

aik = c i  ik ds; C l , h  = ci LA dS; t r k  = 1 c ; ? k  d y ;  s S 

The formulas for calculating the coefficients of the second group of 
equations of the table a r e  

f i k  =Sqirl.dY; gft  = 91 T k  8, dz; mli, = 7; S ”  s 8, dz. ( 6 1  

The coefficients of the third group of equations of the table a r e  cal- 
culated by the formulas 

The coefficients s% and t% allow for the strain of the elastic layer of 
the foundation and are  calculated by the formulas / I /  

Here E,, and v,, a r e  elastic constants of the foundation material and 6, is 
the width of the building base. 

Example of calculation. A s  an example of the method of calculation 
we give below the calculation of a building at bending by the beam scheme 
with a design span 1 = 27.3 m. This example is also useful in estimating 
the influence of the pressing of the longitudinal walls along the building 
height on the stressed and strained state of the building in the longitudinal 
direction. 

variation of the reduced thickness at  shear and at  pressing of the building 
wall 6 and of the influence of the load distribution along the height. It was 
assumed that the longitudinal forces a r e  taken only by the floors, con- 
sidered a s  stringers along the building height. 

The panels of the longitudinal walls being connected with each other 
and the ceilings at  the corners only, they were assumed to respond only 
to shearing strains, with a reduced thickness a,, and to tensile-compressive 
s t ra ins  in the vertical plane, with a reduced thickness 8,. 

In the example considered the reduced thickness of the panels a t  shear 
and the reduced thickness at extension- compression along the building 
height were taken a s  equal to each other and a s  equal to 17.3 cm in the 
f i r s t  variant of the calculation, and to 1 cm in the second variant. 

2. 

We analyze the stressed state of this building a s  a function of the 
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FIGURE 6. 

The strain of the transverse walls was not allowed for in the given case, 
since the calculation was conducted in the longitudinal direction under the 
assumption of equal deflection of all the longitudinal walls of the building. 
Figure 6 presents diagrams of longitudinal normal s t resses  5 (kg/cm2) 
for the middle c ross  section of the building: 

a t  a reduced thickness a = 17.3 cm and a uniformly distributed load over 
the building height; 

a t  a thickness 6 = 1 .O cm and a uniformly distributed load over the 
height; 

a t  a thickness 8 = 1 .O cm and a load applied along the upper stringer of 
the building only; and, finally, 

a t  a thickness 6 = 1.0 cm and a load applied along the lower stringer of 
the building only. 

The following conclusions can be drawn from the results: 
1) the longitudinal normal s t resses  at  a reduced thickness of the longi- 

tudinal walls 6 = 17.3 cm and auniformly distributed load along the building 
height deviate very little from the law of plane sections for the entire 
building; 

2) at  a thickness of the longitudinal walls 2 = 1 .O cm and a load uniformly 
distributed along the building height the longitudinal normal s t resses  de- 
viate considerably from the law of plane sections, but the deviations display 
an antisymmetrical pattern; 

3) when the load is applied along the upper or the lower stringer of the 
building only, a considerable deviation of the longitudinal normal s t resses  
from the law of plane sections is observed, and the diagram of longitudinal 
normal s t resses  has a strongly displayed nonsymmetrical pattern; 
cordingly, the pressing of the building walls along i ts  height is to be taken 
into account when calculating buildings in the case of nonuniform settling 
of the foundation. 

ac- 
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ON ONE SOLUTION OF THE THEORY OF BENDING 

V.V .  V l a s o v  
(Moscow) 

The general relationships for the displacements and the s t resses  de- 
termined by the method of initial functions 11, 2, 3 /  a r e  

u = Luu u, -I- LuvV, -!- . * f +LUXX,, 

v = L vuu, + L V V V ,  + . * -+LvxXo, 
. . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . .  

rxy = CU Uo + Cv V, +. . .-f- Cx X,,. 

Here, following 111, the le t ters  X, Y ,  Z designate the components of the 
s t ressvector  -cXz, ryr ,  a,; 
to the actual displacements u, v, w : I/ = Gu, V = Gv. W = Gw, where G is the 
shear modulus. The values of these six functions at  z = G, i. e., the initial 
functions, a r e  designated by the subscript zero. 

Thus, the 
operators Luu and L u v  a r e  written in symbolical transcendental notation a s  
follows: 

the le t ters  LJ, V, W a r e  the magnitudes proportional 

The formulas for the operators L u u , . . . ,  CX a r e  given in 111. 

where v is the Poisson ratio. 
in the form of se r ies  it is necessary to expand the trigonometric functions 
in ( 2 )  in formal power ser ies ,  to replace a, p and f by dtdx ,  dldy, d2/dxZ+ da /dyz ,  
respectively, and to differentiate the initial functions in accordance with (1 ). 

mensional plate subjected to arbi t rary surface normal loads Z* ( x ,  y) applied 
along the boundary planes of the plate z = & h/2 and antisymmetrical relative 
to the middle surface of the plate t = 0 (Figure 1 ) reduces to determining the r e -  
solving function F ( x ,  y)from the following nonhomogeneous differential equa- 
tion in partial derivatives of an infinitely high order: 

In order to reach the representation of (1 ) 

It was shown in / 1 /  that the problem of the equilibrium of a two-di- 

h 
2 ( 1 - v )  7 c o s T 7 ( h y  - s inhy)F=Z' .  ( 3 )  

The initial functions W,, A',,, and Yo a r e  determined by the following formulas 
through the function F ( x ,  y): 

w - - 1 + c o s h 7 -  4 ( 1  h~ - Y) s i n 6 7 1  F ,  4 [ ( 4 )  
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X,=- Ir aTs inhIF,  Yo- - sin IiyF. ( 4 )  
h 

4 ( 1 - v )  4 ( 1  - v )  (cont'd) 

The remaining initial functions U0, V,, and 2, a r e  identically zero, since 
the state of equilibrium of the plate is considered a s  completely antisym- 
metrical  relative to the middle surface z =  0. 

If the plate is subjected to the action of one shearing load X* ( x ,  y) or  
Y* ( x .  y ) ,  the equation for the second resolving function F ( x ,  y) can be ob- 
tained in the same way. This equation will be identical with ( 3 ) ,  except 
for the right-hand part, in which 2' will be replaced by X' or Y'. 

Methods for obtaining particular solutions of ( 3 )  have been described 
in 1 3 1 .  We can for instance represent the load Z' ( x .  y) in the form of a 
polynomial se r ies  in x .  y with definite coefficients, and the function F ( x .  y) 
as a similar se r ies  with unknown coefficients. 
se r ies  in ( 3 )  and equate the coefficients before the similar te rms  on both 
sides of this identity. This gives u s  all the unknown coefficients, and as 
a resul t  the function F ( x ,  y) is completely determined. 

W e  next substitute both 

i 
I- 
t 

FlGURE 1. FIGURE 2. 

We shall now find a particular solution for a uniformly distributed 
normal load q = const, i.e., Z' =9/2  (Figure 2 ) .  The plate will be assumed 
to be in a state of plane strain in plane x z .  To find this particular solution 
of ( 3 ) ,  where in thegiven case a = y L d / d x ,  it i s  sufficient to find a particular 
solution of the equation 

h3a4F F 6 ( 1  - V) 9. 

Such a solution i s  

By formulas ( 4 )  and (1 ) we then find the displacements and s t resses  cor- 
responding to this solution 

G u = - ! - L x z  - 4 ( l - ~ ) ~ + 4 ( 2 - v )  XZ 

4 h  I 
2 (1  + v)  2' , + (1 - v ) 2 2 -  3 F] ( 5 )  
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( 5 )  
(cont'd) 

A particular solution can also be obtained in the form of trigonometric 
ser ies .  By representing the given load Z' ( x , y )  in the form of a double 
Fourier ser ies ,  and the function F ( x ,  y) in the form of a similar se r ies  
with unknown coefficients, and by substituting both ser ies  in (3), we again 
determine the coefficients of F ( x ,  y ) .  The particular solution in double 
trigonometric se r ies  has its independent importance, since it is the general 
solution of the theory of elasticity in double trigonometric se r ies  141. In 
the case of plane strain we obtain a solution in simple trigonometric ser ies ,  
belonging to Feylon and Rivisre and corresponding to the antisymmetrical 
problem considered. 

The particular solutions do not satisfy the boundary conditions at  the 
la teral  surface of the plate. In order  to satisfy these conditions i t  i s  
necessary to obtain the general solution of the homogeneous equation 
corresponding to ( 3 ) ,  and corresponding to homogeneous static conditions 
at  .z = t h/2.  

It is easily seen in particular that the arbi t rary biharmonic function 
F ( x ,  y) is a solution of the homogeneous differential equation corresponding 
to ( 3 ) .  
termined by this function. 
( 4 )  as ser ies  we obtain 

We shall now find the expressions for the initial functions de- 
By representing the differential operators in 

w -  I----- ' - [  8 ( 1 - v )  

h2 h2 
4 (1 - v) B Y Z F >  ay?F, V, =- x, = - -- 

4 ( 1  - Y )  

from which we find 

F = W, + 3 - 2 v  hZ;z,CF. 
8 ( 1  - v )  

The substitution of (7  ) in ( 6 )  yields 

where, in accordance with ( 6 ) ,  W ( X .  y )  is an arbi t rary biharmonic function. 
The substitution of relationships ( 8 )  in the general relationships of the 
method of initial functions yields finally 
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We have now reached the actual displacements a, v, w and have introduced 
the flexural rigidity D. 

Relationships ( 9 )  represent the well-known solution of the theory of 
elasticity 13,  5 /  determined by a biharmonic function and corresponding 
to the problem of equilibrium of a plane plate with homogeneous static 
conditions on planes z = L- h/2,  when the plate is loaded on the lateral  
surface by antisymmetrical loads relative to the middle surface of the 
plate. 
group of terms, with the exception of the expressions for the shearing 
s t resses  .exz and T ~ ~ ,  which contain te rms  of the fundamental group only. 
In the case of thin plates the second group of terms can be neglected 
compared with the f i rs t  group, and we obtain the Kirchhoff theory for the 
case of the homogeneous problem. A t  the same time, the two groups of 
te rms  taken together give a rigorous solution for the displacements and 
s t resses ,  which satisfies all  the relationships of the three-dimensional 
problem of the theory of elasticity. 

arbitrariness must be removed by means of the boundary conditions on 
the lateral  surface of the plate. 
two independent boundary conditions must obviously be formulated on each 
edge of the lateral  surface, to be represented a s  known functions of the 
coordinates x ,  y of the lateral  surface of the plate. 

the biharmonic function w, is 

A l l  the formulas of ( 9 )  consist of a fundamental and an additional 

The biharmonic function w, has remained so far arbitrary.  This 

A s  in the theory of bending of plates, 

In the case of plane strain of the plate in plane xz the general solution for  

w, = c, + c*x + c,x2 + C,XS, 

where Cc a r e  arbi t rary constants. 
Substituting the expression for w, in ( 9  ), we obtain 

u = - 2 (C, + 2c3x + 3C4x2) - ~ _ _ _  2 ( 1  - v )  

By adding solution (10 )  to the corresponding particular solution which 
h/2  satisfies the given static boundary conditions on the plate planes L = 

we can, remaining in the class of solution ( l o ) ,  determine the stressed 
and strained state of the plate in the case of plane strain at any non- 
homogeneous static conditions at the plate planes z = +- h / 2 .  
the problem of the equilibrium of a plate supported at the edges n = 0 and 
x = a and acted upon by a uniformly distributed surface normal load Z*= q/2 .  
Take the sum of solutions ( 5 )  and ( 7  ) (general solution of the nonhomo- 
geneous problem). 

Consider thus 

The arbi t rary constants a r e  determined from the 
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conditions of plate support. 
the general solution of the nonhomogeneous problem we obtain the required 
formulas for the displacements and s t resses  

By introducing the values of the constants in 

We have described the method of obtaining solutions for the two-dimen- 
sional problem of the theory of elasticity corresponding to problems of 
equilibrium of flat plates with arbitrary static conditions on planes z = + h / 2 ,  
with the boundary conditions on the lateral  surface of the plate satisfied in 
the Saint-Venant sense. It should be noted that we have thus obtained all 
the solutions of the theory of elasticity in polynomials, corresponding to 
the antisymmetrical state of equilibrium of the plate relative to plane z = 0. 
We use here  the direct  method of obtaining these solutions. 
class of solutions can likewise be obtained in the case of the axisymmetrical 
problem of bending of a plane circular plate 13, 6 1 .  

The solutions of the one-dimensional problems of bending of plates a r e  
obtained from the exact solutions by neglecting the secondary terms, whose 
order (h/u)* is small  compared with the order of the fundamental terms, 
taken a s  unity. The latter follows in particular also from the solution (11 ). 
Starting however from ( 9 )  it is possible to find a solution of the boundary- 
value problem in the Saint-Venant sense in the three-dimensional case a s  
well. 
problem of bending of plates. 

and subjected to the action of a normal uniformly distributed load z" = q/2 
(Figure 3). 

A similar 

For thin plates these solutions correspond to the two-dimensional 

Consider a s  an example a rectangular plate supported along the contour 

a 

a b 

FIGURE 3. 
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z = _+ h/2 a, = q/2; 7- = T~~ = 0, 

x = O  and x = a  w o = M r = O ,  (12) 
y = b12 W ,  = M y  = 0. 

The solution is obtained in this case by supporting two solutions: solution"I", 
determined by formulas (1 1 ), and solution "II", determined by relationships 
(9) ,  wherethe biharmonic function w: is representedby the ser ies  

A,,, and B,  here a r e  arbi t rary constants a s  yet. 

and s t resses  in the plate which satisfy the boundary conditions (12)  a t  
z = 
a s  to satisfy the boundary conditions along the edges y = 3z b/2 as  well. 
thus represent the expressions for the deflection wi and the bending moment 
,M: by the following trigonometric ser ies :  

By adding the two solutions we obtain expressions for the displacements 

h/2, x = 0 and x =a.  The constants A,,, and B, must be determined so  
We 

= I: amsinamx, M;= 6, sin amx, 
m-I, 3. 5, ... m-1, 3, 6.. .. 

By substituting y = bl2 in the formulas for wa and M! and equating the sums 
wL+ w! and M: + M; to zero we obtain for each value of m a system of two 
algebraic equations relative to A,,, and B,,, .  

Having determined from here the constants Am and B, we find the re-  
quired state of equilibrium of the plate. 
tained in particular for the deflection of the middle surface of the plate w0: 

woe LL n (x' - 2ax* + a ~ )  + - 3 - 8-3' x ( a - x r ) h a -  

The following expression is ob- 

2 4 0  [ 10 1 - v  

It is easily seen that relationship (14) differs from the similar relation- 
ship for the deflection determined by the Kirchhoff theory / 7 /  by the 
presence of additional te rms  of order  (h/a)* compared with the fundamental 
terms, whose order  is taken a s  unity (a and b a r e  magnitudes of the same 
order).  
c lass  of solutions ( 9 )  rigorous solutions of the problem of bending in t r i -  
gonometric se r ies  for any nonhomogeneous static conditions on the plate 
planes z = 2 612, if  the given normal or shearing load can be represented 
in the form of a polynomial or  trigonometric ser ies .  

By the method exposed it is obviously possible to obtain in the 

By neglecting in 
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these ser ies  the te rms  of order (hla)' we obtain in the case of a normal 
load the corresponding solution of the Kirchhoff theory. 

basis of the general relationships of the method of initial functions. 
should then neglect in differential equation ( 3 )  and in relationships (4 ) ,  
( l ) ,  ( 9 )  all the te rms  of order  (h/e)2 and higher compared with the fun- 
damental terms, whose order is equal to unity; in other words, one should 
preserve in the nonhomogeneous equation ( 3 )  only the biharmonic operator, 
and in relationships ( 9 ) ,  where the initial function wr satisfies a nonhomo- 
geneous biharmonic equation, only the first fundamental group of te rms ,  
In fact, al l  the other neglected te rms  contain a s  a factor hZn, where n is an 
integer equal to or larger  than unity, and the order of the derivatives in 
these te rms  is likewise equal to 2n.  When solving in ser ies  this leads a s  
a resul t  of the differentiation to the factors (h/u)*" (n = 1, 2, 3;..). 

It  is also possible to formulate the Kirchhoff theory a s  a whole on the 
One 

BIBLIOGRAPHY 

1 .  V1 a s o v ,  V. Z .  Metod nachal'nykh funktsii v zadachakh teorii upru- 
gosti (Method of Initial Functions in Problems of the Theory of 
Elasticity). - Izvestiya OTN A N  SSSR, No. 7. 1955. 

2. L u  r e ,  A. I. K teorii tolstykh plit (On the Theory of Thick Plates). - 

3. L u r '  e ,  A. I. Prostranstvennye zadachi teorii uprugosti (Three- 
Dimensional Problems of the Theory of Elasticity). - GTTI. 

4. V l a s o v ,  V.Z. and N.N.  L e o n t '  e v .  Balki, plity i obolochki na 
uprugom osnovanii (Beams, Plates, and Shells on an Elastic 
Foundation). - Fizmatgiz. 1960. [Translated by IPST, Cat. 

- PMM, Vol. 6, NO. 2, 3. 1942. 

1955. 

NO. 1453. TT 65-50135. ] 
5. L o v e ,  A. Mathematical Theory of Elasticity. - Dover Publications, 

6. V 1 a s o v ,  V. V. Primenenie metoda nachal'nykh funktsii k raschetu 
New York. 1944. 

tolstykh plit (Application of the Method of Initial Functions to 
the Calculation of Thick Plates). - "Issledovanie PO teorii 
sooruzhenii", Vol. 10. 1961. 

T i m o s  h e  n k 0, S. P. 
1959. 

7. Theory of Plates and Shells. - McGraw Hill. 



STRESSED-STRAINED STATE OF A TOROIDAL SHELL 
A T  BENDING, APPLICABLE TO CALCULATING 
BELLOWS 

A . N .  V o l k o v  
(Moscow) 

This paper is devoted to the study of several  particular cases for which 
i t  is possible to develop a simple algorithm of the calculation of a closed 
toroidal shell with two edges, one of which contains a singular line, sub- 
jected to a "wind-type" load. The development of a method for calculating 
toroidal shells is of interest both for i t s  own sake and for calculating 
bellows-type shells. 

However, i t  seems advisable to us to amplify the existing studies in several  
points. 

Many papers have been devoted to the solution of this problem 11, 2, 3 1 .  

I. S t a t e m e n t  of  t h e  p r o b l e m  a n d  d e r i v a t i o n  
o f  t h e  r e s o l v i n g  e q u a t i o n  

Consider the torus quadrant represented in Figure 1; the two torus 

edges correspond to 0 = 0 and 8 = x. 
2 

R*= 
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A s  known, the radius of curvature I?,- 3c on the line 0 0. 
causes the peculiar difficulties in calculating a torus, both in the axisym- 
metrical  problem and in the problem considered here. 

represented in Figures 2, 3, and 4. 

This is what 

The problem formulated wil l  be solved only for the types of end loads 

f 
X I: 

Y 4 

Y 1 'J 

J 

"1, t 
FIGURE 2. FIGURE 3. FIGURE 4. 

We shall use a method similar to the one used in / 4 /  for the axisym- 
metrical  problem, i. e., the method of the so-called standard solutions, 
consisting in reducing the system of equations to one equation of the same 
order and the same singularities. Many papers have been devoted to this 
subject 1 5 ,  61, While this method has many advantgages, at the same 
time it imposes definite restrictions on the problem stated. 

The present paper is based on the equations given in Gol'denveizer's 
treatise /?' I .  
and displacements a r e  taken over from this treatise. 
we shall not give the fundamental equations and relationships here, but 
shall only indicate their number in 171. 

in the form (12.6), ( Z O . l l ) ,  (23.3), (24.1.) of part 1 of / ? / .  For loads of 
the so-called "wind" type we can represent all forces, moments, slopes, 
strains, and s t ress  functions in the form TI = t,cos e,G, = g,cos p, etc. 

The coefficients depending on the coordinate 8 only will be designated 
by tl, t2, h, n,, s,, S, for the forces, and by g,, g,, /I,, A, for the moments. 
These coefficients for the displacements, slopes, and s t ress  functions 
will be designated by the same letter,  but with a tilde above it, such as  

A l l  the symbols, and the sign rule for the forces, moments, 
For brevity's sake 

The system of seventeen initial independent equations can be represented 

- - 
7 2  = 71 cos 8, % = ~ c o s e .  v = v s i n  6. 
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The substitution of this expansion, corresponding to the "wind-type'' load, 
in the initial system of equations yields a system of equations in ordinary 
derivatives for the homogeneous problem, namely: 

equilibrium equations 

d 
dB 
- ( R2 sin e t , )  - R1s1 - R, cos et, - R, sin en, = 0 ;  

equations of compatibility 

elasticity relationships 
2Eh - - 

(E, + 0 % ) ;  t, = __ 
1 -- 0 2  

2 ~ h 3  - - 
g , = -  __ (% + 0x1); 

3 (  1 - 0 2 )  

s1 + SI = 0;  
h, + h, = 0. 

- -  - 
Introduce the s t r e s s  functions 'p. 9, v . The relationship between the 

s t r e s s  functions and the forces  is given in (13.7) of pa r t  1 of /7/ ;  these 
relationships t ransform the first three equations of (1 ) into identities. 

{,, c, through the slopes 
T ~ ,  -11, 6 ((19.4) of pa r t  1 of / 7 / ) ;  the first three continuity equations of ( 2 )  

- - -  - - -  
We shall  exp res s  the s t r a ins  5, x ~ ,  d'), Ti'), - - -  
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a r e  then transformed into identities. 
equation we write an integrable combination, representing the condition of 
equilibrium of a finite portion of the shell, limited by the two lines 
8, = const; O2 = cons!. which in a finite form is written a s  follows: 

- h, cos e - g ,  + [sin e (R, + r, sin e) - rotos e (1 - COS e)] ti + 
+ [cos 8 (R, + r,, sin e) + r, sin e ( I  - COS e)] n, + 

+ slr0(i -case) + c, =o. 
A similar  relationship can be written instead of the fourth equation of 

Instead of the fourth equilibrium 

( 4 )  

continuity on the strength of the static-geometric analogy (( 30 .3 )  of par t  1 

We thus obtain a system of six equations with six unknowns, four of 
of 171) .  

which are found algebraically, and the other two from two differential 
equations, whose structure is symmetrical according to the statical- 
geometrical analogy 171 and which a r e  easily reduzed to one complex 
resolving equation (8 ) . 
pressed in the following way through the two fundamental functions $, ?%: 

c -  The unknown functions i ,  V, 7,, S a r e  finally ex- 

In relationships ( 5 )  C,-..C, a re  arbi t rary constants, which a r e  deter- 
mined from the conditions of equilibrium of the torus par ts  represented 
in Figures 2, 3, and 4. 
multiplied a r e  found by the formulas 

The functions by which the arbitrary constants are 

n o  ' dedede; 
0 0  (R, + cOse R,) sin e s (R, + RJ sin 0 

(6) 

3 (1 -a*) ER? cos JJ 
"' = h (R, + R,) sin e 

X3r dede; 
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The coefficients with subscripts 'p have the same structure a s  the co- 
efficients with subscripts V: 

de; 1 
(R, + RJ  sin e 

The coefficients with subscripts 7, have the same structure as the co- 
efficients with subscripts ii. - 

The main unknowns 7 and 7, a r e  found from the resolving equation, 
which coincides in structure with the resolving equation for the axisym- 
metrical  problem / 4 / .  

p = ( l  + a s i n e ) ;  

1 
(R2 + R,) sin e x 

de + EhR' [ (R,  + OR,) (R,  + 
R, sin 0 

4EhR: f2 = - -- case 
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fm)- RT (R, Cos'e - R, sinZ 0) 1 dede; ( 1 0 )  
R,sin e ,f,f (R, + R,) sine (cont'd) 

0 0  
h XI = 

- dedede; cos 8 1 

0 3  

dede; 4 V m  R:(R, cos2 D - R, sin* 8 )  cos 0 

(R ,  1- R,) sin e R2 sin 0 
n o  

x3== -7 

11. S t u d y  o f  t h e  p a r t i c u l a r  c a s e s  r e p r e s e n t e d  
i n  F i g u r e s  2, 3, a n d 4  

In the case C # 0, C, = C, = C, = 0 (Figure 2) we have 

4 3 ( 1 - o Z ) R :  
tl = ; I P I (0) cosx e (xJ, + C, + X) Im 4 (~4; 

/zz (R, + R,) 

ChZ (R, + Rl) 
t * = -  l2  ~ RIRz I p 12 u ~ i  (e) sin e ( X , C ,  + C, + X) Im 1: (pq,); 

4 3(1-  n, = - _ _  
-x (R,+ R,)RZ 

-~ 
(R,  + R,) sin 0 

h cos6 
g, = - - ~ i ~ ~ ~ ~ ~ l ( ~ ) [ ~ , C ~ R e l ~ ( p ~ ~ ) -  

R11/ 3(1 -0') 

-- (x, C, + sin ec, + sin ex) Im 1; (pu,)] - sin ax - sin BC, + C,. 
The arbi t rary constant C, is determined from the equilibrium conditions 

of the shell represented in Figure 2. 
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In the case C, # 0, Cl= C, = C, = 0 (Figure 3) we have 

sin 0 ti = - -- I p I A (0) [( fzC, + 2Ehro sinz 0 Y) Im 1, (pu,) + 
R, 

ctg e -+ x2Cz Re I, (pu,)] - e PEhr, Y - - - x2,C,; 
R2 Rz 

The arbi t rary constant C, is determined from the condition of equality 
of ti at 8 = "12 to the given value X .  

In the case C, # 0; C, # 0; C, = C, = 0 we have 
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The arbi t rary conditions a r e  determined: C, from the condition of 

equality of the shearing force at  0 = 

condition of equality to zero  of the bending moment at the edge 6 = 5. 
The values of I p I (meaning the real  par t  of p )  appearing in formulas 

( 11) -( 13), and the values of uo, Im lo (pu,), Re 1, (puo), their derivatives, and 

the magnitudes A(0) =-,-+ correspond to the values obtained in 1 6 1 .  

We have spoken only of the forces and moments for brevity, although i t  is 
easy to obtain formulas for the displacements and s t ra ins  also. 

to the given value Z, and C, from the 

2 

2 

1 

U O l / P U ,  

B r i e f  c o n c l u s i o n s  

The method proposed for calculating a toroidal shell subjected to a 
"wind-type" load in the case of an edge coinciding with a singular line is 
correct for E < 1. 
bellows. It should be emphasized that the presence of an edge coinciding 
with a singular line introduces a considerable distortion in the stressed- 
strained state of the shell in the region near to  this edge. 
stressed states near this edge become mixed, and their separation is no 
longer possible. Thus, the state of pure bending s t r e s s  (Figure 2) near 
0 = 0 includes a membrane s t r e s s  state which is dampened rapidly; on the 
other hand, the state of membrane s t ress  (Figures 3, 4) at the edge 6 = 0 
becomes a moment state, which likewise i s  dampened inside the region. 
These properties a r e  specific for the given problem. 

in Figures 2, 3, and 4, it becomes possible to give a solution to the more 
complex problem of the connection of two toroidal shells with an annular 
plate or cone, i. e. ,  to the problem of the stressed-strained state of 
bellows- type shells. 

problem of the stability of bellows according to Euler. 
to that end a r e  not necessary. 
interest, and a r e  not given here  in view of the brevity of the exposition. 

This case is of practical interest  in the calculation of 

In addition, the 

Having obtained the solutions for the problems represented schematically 

With this static problem solved, i t  is likewise possible to examine the 
Additional studies 

These problems a r e  however of independent 
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CONTACT PROBLEM FOR FOUNDATIONS SUBJECTED 
TO BENDING STRAINS 

1.1. V o r o v i c h  and V .  V .  K o p a s e n k o  
(Rostov - on - Don) 

The paper deals with the action of an elastic axisymmetrical punch on 
The friction forces 

An approximate solution 
a layer of finite thickness h supported along a ring. 
between the punch and the layer a r e  neglected. 
i s  obtained, correct for h not smaller than the diameter 2a of the contact 
zone. 

1. STATEMENT O F  THE PROBLEM AND 
DERIVATION OF THE FUNDAMENTAL 
INTEGRAL EQUATION 

Let an elastic punch having a base of shape z = E (p) penetrate into an 
elastic layer supported along a ring of finite thickness e .  The punch is  
loaded by a force P acting along the axis of symmetry. We f i rs t  assume 
that the pressure p , (p )  between the punch and the layer is known, and that 
the pressure distribution 
Consider the solution of the problem of equilibrium of the layer under the 
action of the forces given on the boundary planes. 
relationships a r e  given in 111. 
on the basis of these relationships: 

under the supporting ring is likewise known. 

The corresponding 
The following formulas can be obtained 

a a  

" a a  
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In these formulas W l ( q )  is the displacement of the punch points under the 
action of the pressure pl(p). 
the region of contact is small, so that the punch can be considered a s  a 
semispace; WZ, and W ~ I  a r e  the compression and bending displacements 

1.espectively of the layer points under the punch at z =  -; W'a is the dis- 

placement of the layer points under the support at z = - '' -- q1 and q2 a r e  

the Fourier-Hankel transforms of the pressures  p1 (p) and p,(p) 

In the calculation of Wl(q) it w a s  assumed that 

h 

2 '  

mi - 1 
.p, and p, a r e  the outer and inner radii  of the supporting ring; Kd=- 

mLG1 ' 
where m,, G, andm,, G, a r e  the elastic characterist ics of the punchand layer,  
respectively. 

The following relationships a r e  easily obtained for q1 and qn: 

Note further that i f  e is considerably smaller than p,. , the form of p2(p) 
cannot sensibly influence the problem solution, It is therefore possible 

P to take po (p) in (1.6) a s  constant and equal to 
x ( P i  - P:) * 

The condition of contact between the punch and the layer dictates the 
following relationships: 

-Wz.s+Wa+Wz~+ Wi=a-E(qah 941, (1 .7)  

% = o .  9 > 1 ,  (1.8) 

where 6 is the total displacement of the punch under the action of the 
force P. Since 

= - $1 4, ( t )  t J o  ( t q )  dt, 

and using (1.1) -(1.6), formulas ( 1 . 7 )  and (1.8) can be represented a s  
follows: 

q1 (t) tJo ( t q )  dt = 0. q > 1. j (1.11 
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Here 

(1.13) 

The problem formulated has thus been reduced to solving the dual in- 
tegral equations (1.10) and (1.11). 
(1.10) and (1.11) a r e  equivalent to the relationship 

It is further known / 2 /  that equations 

This relationship can be considered as  an integral relative to q l ( p ) .  
It will be assumed below that 

E (p) = A,p". 

Since in addition 

1 

y J o  ( u y )  dy - sin u 
U 

formula (1.14) can be represented in the form: 

P s inp  sin p 
2 X  P n t l  P 

4, ( p )  = - -- - T 2 ~ -4- 

where 

s sint stnp S ( g ,  t)  =-- - cospvcosvtdt. 
t p o  

(1.16) 

sin p Since the right-hand part  of (1.15) contains te rms  of the type - 
P '  

the pressure p,(p)  will be nonregular in the general case. 
two cases a re  considered below. 

Accordingly, 
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I. The punch shape is such that the s t resses  under it a r e  not bounded; 

11. The s t resses  in the region of contact a r e  bounded; in this case the 
in this case the problem is to be solved starting directly from ( 1 . 1 5 ) .  

radius of the zone of contact i s  unknown, and has to be determined from 
the relationship 

which ensures the regularity of the pressure.  
Allowing for (1.17) the equation for q l @ )  becomes 

(1.17) 

(1.13) 

where 

R ( p , t )  = COSPV (COS t -  COS vt )  dv. s 
2. 
AND STUDY OF THE PROBLEM 

APPROXIMATE SOLUTION OF EQUATION (1.15) 

Consider f i rs t  case ( I ) .  
following operatorial form: 

where 

Equation ( 1 . 1 5 )  can be represented in the 

~1 (PI = 4i r  ( P )  + A (41). (2.1 1 

n sinp 
ql0(  p )  = 2%.!? - T __ __ 

P n + 1  P 

We shall solve (2.1 ) by successive approximations by the scheme 

41"' = q,o@) + A [SI"-"]. (2.2) 

If we consider the space of the functions C 10, w )  (continuous and bounded on 
the semiaxis), then the following inequality is satisfied in this space: 
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In the derivation of this inequality it was taken into account that P i s  ex- 
pressed in te rms  of q, on the strength of the equilibrium condition of the 
punch, and that +, f, and S@,t) a r e  given by formulas (1.1 3) and (1.1 6 ) .  

It follows from (2.3) that if  K ,  = 1, then A (4,) will be the operator of 

approach at  - < 0.77. a 
h 

We can proceed in the same way in case (11). 

Here equation (1.15) can be written in the following form: 

41 (PI = 40 ( P I  + B (43). (2.4) 
where 

(2.5) 

Operator S(qJ turns out to be the operator of approach when the following 
inequality is fulfilled: 

5' 3 x  [ 26 + 9.3 ( f )  1 (;>"< 1. (2 .7 )  

In the case K3 = 1 operator B(q,) will be the operator of approach of 

a 
h 

-- 0.53. 

The integral equation (1.15) can thus be solved by successive approxima- 
tions when the layer thickness is not very small. 

3. STUDY OF A PUNCH WITH FLAT BASE 

We shall calculate the successive approximations for aI under the 
assumption E = 0. We have 

(3.1 1 



where 

B = (1 - 
[ (72-+)-  1 1 

5 
&(I, t )  = (1 - $ 2 ) - " a t 2  

+ 5 ( 3 0 -  f -$-?)I etc. 
225 28 

In order  to simplify the use of relationships (3.1), (3.2) it is possible 
to use asymptotic representations of the right-hand par ts  of (3.1). (3.2) 

a t  large ($), The following approximate formula is obtained: 

(3.3) 
where 

l p =  T*-Pp--1!?.7, A 4 =  T,-P4-258, A s =  T,-Po-I0900, 
and .. - 

(3.4) T . = ~ [ l - - J , ( t l , ) ] ) ( t ) t ~ d t .  P" = ( ' J o ( t f o ) f ( t ) t " d f ,  ',==. PO 
0 0" 

Formula (3.3) gives an exact representation of the first  seven te rms  of 

the expansion of o Z  in a power ser ies  in . The subsequent approxi- 

(+) and above. The mations ut*), 0;3), etc., only refine the te rms  in 

following approximate relationships for A, a r e  obtained for 1, > 5: 

(3 

! 3.5 

Formula (3.3) gives the s t resses  with a maximum e r ro r  which do not 

exceed 3 %  when 40.4 and lo <15. Curves of a, a s  a function of 7 

have been plotted in Figure 2 for different values of I , .  A s  seen from 
these curSes, a redistribution of the contact pressures  over the region 
of contact is obtained at  bending: the contact pressures  drop sharply a t  
the center of the region of contact, and increase in the boundary ring, 

(3 
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which i s  easily explained by the influence of the bending. 
large values of lo negative pressures  can appear in the central par t  of 
the region of contact, and a separation of the punch can take place. 

Thus, when (T) = 0.47 the pressure in the zone of contact becomes equal 

to zero when 

ring, whose inner radius depends on 1, and - . 
treated by US. 

Figure 3 represents curves of t h e  contact pressure at  different h .  
Figure 4 represents  the pressure a t  the middle of the zone of contact a s  
a function of the supporting ring radius for different h .  

A t  sufficiently 

1, = 15. For large 'lo the zone of contact will represent a 

This case was not ( 3  

FIGURE 1. 

z 
FIGURE 2. 

a.5 1.0 

FIGURE 3. 
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4. TUDY OF 

1.5 

1.0 

0.5 

0 

FIGURE 4. 

PUNCH O F  S H A P E  E(p) = A,p“ 

The following ser ies  expansions by the powers of 

2 r 1 - 7  

this case for the contact pressure: 

a== - - (1  - q 2 ) - ’ L  
ar 

K 0.5 iz - 0.0278 a4 ( - ; )* + 0.000835 A,, (+y - - - - L  2 R  X 

+ 12 0.001 11 i6 + 9 4  0.000222 1.. 

(4.1) 
+ T - -  K -. a -- 7 33n 457n 5.09n 

: ( h ) [ n . f 3  (?) ( ~ % f n t 3 f s s 1 0 2 n ) ] ] *  n + 3  

where i,, L4, A,, a r e  given by relationships ( 3 . 5 ) ,  and 

x (-- l ) ” ( l - q ~ ) s .  

The connection between the force and the radius of the contact zone is 
given by the relationship 

where T i s  defined by ( 1 . 1 6 ) .  
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Formulas (4.1), (4.2) give the expansion with an accuracy up to 

They a r e  best used in the following sequence: we s ta r t  from a given value 
a of the zone of contact, and then determine T from ( 1 . 1 6 ) ,  
and the contact pressure from (4.1). 
relationships given above. 

case with an accuracy of 3%# for l o<  15 and 60.4.  Curves of the 

contact pressure  at  different values of 1, a r e  given in Figure 5 .  
stress drop at  the center of the contact zone is observed here  too. We 
did not succeed in establishing whether a drop of the contact pressure to 
zero at  q = 0 and a separation of the punch a r e  possible for the given 
value of n, since the formulas derived a r e  insufficient, and asymptotic 
expansions with higher-order approximations a r e  necessary. 

f from (4.2), 
The case n = 2 was studied by the 

The contact pressures  were determined in this 

(3 
The 

0.3 

0.2 

0. I 

FIGURE 5. 
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CALCULATION OF A CYLINDRICAL SHELL 
REINFORCED BY ELASTIC STIFFENERS 
UNDER THE ACTION OF A CONCENTRATED 
FORCE 

S . I .  G a l k i n  
(Novo sib i m k )  

1. The problem of the stressed-strained state of a circular cylindrical 
shell reinforced by stiffeners, with the end stiffener more  rigid than the 
other ones, was treated in 111. 
arbi t rary system of shearing and axial forces, the solution can be r e -  
presented according to /1/  in the form (Figure 1) 

When the shell edge is loaded by an 
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I 

The second expression of (1)  is correct at  all k >  1. At k = 0 i t  is to 
be replaced by 

Here: 
inertia of the stiffeners; 
E,  6 is the modulus of normal elasticity of the end stiffener; G is the 
modulus of shear of the sheathing; 
displacements of the sheathing in the shell section by the k-th stiffener; 
cbk a re  fluxes of shearing forces in the k-th portion of the shell, located 
between frames k - 1, k .  
Figure 1. 

6, k a r e  the thickness and radius of the shell; I is the moment of 
I ,  is the moment of inertia of the end stiffener; 

a r e  moduli of normal elasticity of the sheathing and the stiffeners; 

U k ,  Vk a re  longitudinal and tangential 

The remaining symbols a r e  understood from 
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C,, Fn, D,, B, a r e  coefficients of the Fourier ser ies ,  with C,. F,, de- 
termined from the ser ies  expansions of the flux of shearing forces at  the 
shell edge k = 0, and B,, D, from the ser ies  expansions of the axial forces 
per unit length at  the shell edge. 

equation 
The symbols PI,, P3, in expressions (1)  designate the roots of the algebraic 

which satisfy the conditions I PI,, \ > 1, I > 1, 
The following symbols have been used here: 

(7  1 C 
R 

'IL , d = - .  , c=-  E d2n2 
A ~ n = c n ~ ( n z - l ) * ,  - - *  h 3 " = -  

ER'6 2 -  G 6 

The solution given was obtained under the following assumptions. It is 
assumed that the sheathing behaves as a thin shell acted upon by membrane 
s t resses  subjected to axial rk (T) and shearing @ k  iv) forces; the Poisson 
ratio of the sheathing is taken as  equal to zero; the stiffeners have a finite 
flexural rigidity in their plane and a zero flexural rigidity out of their plane. 
The stiffeners a r e  assumed to be continuously connected along the contour 
with the sheathing; the radius of the neutral axis of the stiffener is equal 
to the radius of the middle surface of the sheathing. 

state of a circular cylindrical shell reinforced through equal intervals by 
elastic stiffeners. Thus, the axial forces per unit length appearing in the 
sheathing over the section of location of the k-th stiffener, and the bending 
moments in the section of the 12-th stiffener, a r e  determined by the formulas 

The functions uk, v,, @k define completely the s t ressed and strained 

Solution (1 ) makes i t  possibie to study the stressed and strained state of 
a circular reinforced cylindrical shell for different cases  of loading of the 
shell edge, including the action of concentrated forces. It is sufficient 
to find the expansion coefficients C,, F,, Bn, 0, of the given functions in 
Fourier ser ies .  

centrated axial force P at point ? = 'po. 

force in a Fourier se r ies  is, a s  known 

2. Consider thus a shell whose edge k = 0 is loaded only by a con- 
The representation of a concentrated 
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Series (9) converges at all points except point 'p = 'po. 

The fluxes of axial forces acting on the shell edge can be obtained from 
expressions ( 8 )  and (1) by substituting k = 0. 
formations the expression for the axial forces per unit length acting on the 
shell edge becomes 

A f t e r  the necessary trans- 

The comparison of the coefficients in se r ies  ( 9 )  and ( 1 0 )  yields 

P P 
.R xR Mz = PR COS 'pp; M y  = PR sin 'po; Bn = -sin nyo; Dn = - -COS nTo. ( 11 ) 

The following expressions for the fluxes of axial and shearing forces 
a re  obtained on the strength of (1 1 ): 

The bending moments in the stiffeners will then be equal to 

Series (1 2 ) converges very slowly. I ts  convergence can be improved 
by noting that at  

n + m  p i n + - ( 2 + V 5 ) ,  p s n + - m .  

Therefore we add to and subtract from (1 2 ) the term 
m 

- (2 + P, 2 cos (P- ?oh 
"=I 
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m 
1 taking into account that 2 cos n (9 - = - - for all 'p J. I++, . 
2 n-1 

The expression for T k  becomes, after certain transformations, 

x cos n (IP - yo). (15)  
The s t ressed state of a reinforced shell loaded a t  the edge by a con- 

centrated axial force is described therefore by formulas (13), (14), and 
( 1 5 ) .  Formulas for the shell displacements Uk, Vb canbe similarlyobtained. 

Er 
Eo10 

If we write in expressions (13), (14), and (15) =- =1, we obtain the 

corresponding formulas for a shell reinforced all over by stiffeners of 
identical rigidity . 

Er 
If we substitute c+oo in ( 5 ) ,  and v3n-tm, - = 1 in (13), (14) ,  and( l5 ) ,  

we obtain formulas for a shell reinforced all over by stiffeners absolutely 
rigid in their plane. 

Z O f O  

These formulas are:  

[ l  - (- l)-k (2 

where Bc,, designate the roots of the algebraic equation 

p. + 1 = 0, e; - 2 ("2 -I- % n )  

I.,-- X3n 

satisfying the condition I Blnl > 1. 

a concentrated force Q tangential to the contour. 
3.  

The representation of this concentrated force in a Fourier se r ies  is* 

We can similarly obtain a solution for a shell loaded at  the edge by 

* The necessary calculations for this case of shell loading were conducted by t h e  engineer Lyashenko 
under the author's guidance. 
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The comparison of the coefficients of se r ies  (18) and ( 2 )  yields 

M b p  = QR; Py = - Q cos yo; P, = Q sin 'po; 

Q c - -cos ncp,; F, = 3 sin n 'Po. 
- r R  =R 

The following expressions for the fluxes of shearing and axial forces 
a r e  obtained with the aid of (19): 

-4- cos (7 - cpo) + 

The bending moments will be 

(F3n- 1)1B3;r(k+1)lsinn(~>). 
(21) 

Er 
-%IO 

If we write -- = 1 in expressions ( 2 0 )  and ( 2 1 ) ,  we obtain, after 

suitable transformations, the corresponding expressions for a shell re- 
inforced by stiffeners of equal rigidity. 

and ( 2 1 )  reduce to 
In the case of stiffeners absolutely rigid in their  plane, expressions ( 2 0 )  

A s  easily seen, these expressions correspond to the elementary solution 
for a cantilever shell-beam subjected to bending and torsion. 

Curves of the distribution of the axial forces per unit length over 
the sections in the case of loading of the shell edge by a longitudinal 
concentrated force applied at point yo = 0 have been drawn in Figures 2, 
3, and 4. 

The calculation was conducted for a weakly reinforced shell of para- 
meters:  
&lo of the end stiffener. 
distribution of the axial forces per  unit length at the different sections of 
the shell; the dotted line represents the curve of distribution of the a d a l  
forces plotted on the basis of the calculation of the shell a s  a cantilever 
beam in a state of bending strain. 

4. 

c = 0.1X10-7, d = 0.064, for three different values of the rigidity 
The continuous l ines represent the curves of 

It is seen from these curves that: 
a) in the f i rs t  portions of the shell ( k  = 1, 2) a high concentration of 

s t resses  is observed near the point of application of the concentrated 
force p = 0. The concentration decreases slowly with the increase in the 
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distance f rom the edge; 
shell diameter (corresponding to section h = 3 0 )  the maximum s t r e s s e s  
exceed by a factor of 2 to 2.8 (depending on the rigidity of the end stiffener) 
the values of the s t r e s s e s  calculated by the elementary formulas  of strength 
of materials;  

b) the pa r t  of the shell  contour which is in a s ta te  of s t r a in  increases  
with the increase of the distance from the loaded edge. 
distance from the edge equal to the shell diameter,  the p a r t  of the contour 
which is in a s ta te  of s t ra in  has a central  angle of 90 to 120" (depending 
on the rigidity of the end stiffener); 

increase in the rigidity of the end stiffener does not considerably reduce 
the maximum normal  s t r e s s e s  in the corresponding sections of the shell. 

thus, a t  a distance from the edge equal to  the 

Thus, at a 

c) when the shell  edge is loaded by a longitudinal concentrated force, the 

T,R 
P 

4.8 

40 

3.2 

2.4 

1.6 

08 
K =31 

- 0 . 8 1  15 -30 - 1 

=i,O 

"i -- --I. 
-r 
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FIGURE 2. 



FIGURE 4. 

I I 1 I 
FIGURE 5. 

Curves of the distribution of the fluxes of shearing forces over the shell 
section for the case of edge loading by a concentrated force tangential to 
the contour have been plotted in Figures 5, 6, and 7. The calculation was 
conducted for a weakly reinforced shell having parameters  c = 0.1 X10-7, 
u = 0.064. The dotted line represents as before the curve of distribution 
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of the fluxes of shearing forces, plotted by calculating the shell as a 
cantilever beam subjected to bending and torsion. 

- 8 5 L i 5  - 30 - 45 - &I -75 - 90 - (05 -i20 - (35 -450 - i65 - ‘P 

FIGURE 7 .  

FIGURE 8. 

FIGURE 9. 
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It is seen from the curves given that the increase in the rigidity of the 
end stiffener has a considerable influence on both the pattern of distribution 
of the fluxes of shearing s t resses  over-the shell sections and themagnitude 

of the maximum stresses .  

centration of the s t resses  is observed in the extreme portion k = 1, a s  
can be seen from Figure 9. 

stiffeners ( C  = 2.5X10-4, c = d =  0.5). 

the stiffener, the state of strain of a shell loaded a t  the edge by a con- 
centrated force tangential to the contour propagates more uniformly over 
the shell. 

El  
Thus, a t  -- = 0.447X10-3, no noticeable con- 

Eo4l 

Figures 8 and 9 show similar curves, plotted for shells with more rigid 

It is seen from these curves that, with the increase in the rigidity of 

BIBLIOGRAPHY 

1. G a 1 k i n  , S. I. Napryazhennoe i deformirovannoe sostoyanie karka- 
sirovannoi tsilindricheskoi obolochki s usilennym krainim shpan- 
goutom (Stressed and Strained State of a Reinforced Cylindrical 
Shell with More Rigid End Stiffener). - Izvestiya Vysshikh Ucheb- 
nykh Zavedenii, seriya "Aviatsionnaya tekhnika" (in print). 

334 



PROBLEMS OF THE THEORY OF PNEUMATIC 
SHELLS  

G . A .  G e n i e v  

(Moscow)  

Closed pneumatic shells a r e  being used extensively lately a s  bearing 
elements of building structures and special-purpose structures.  
such shells a r e  designed from very extensible materials, one of the main 
problems of their calculation is the determination of the deformations and 
displacements of the shell surface. 
considered: 

acquires when inflated (by increasing the internal pressure up to the rated 
value). 

2 .  
shell surface under an external load. 

This report  deals with the €irst of these two problems. 
We shall consider the problem of determining the geometrical shape of 

a closed singly connected pneumatic shell of revolution made of a strongly 
extensible ideally elastic material under a statically increasing internal 
pressure.  

The initial shape of the shell surface (corresponding to zero excess 
pressure) is considered a s  given. We shall consider i t  to be such that 
only tensile s t resses  appear in i t  under the action of the internal pressure;  
this condition is imposed on the strength of the fact that pneumatic shells 
made from soft material  cannot take compressive s t resses ,  which cause 
local buckling. We consider a momentless state of s t r e s s  of the shells - 
the values of the tensile s t resses  a r e  constant through the thickness. 

The differential equations of state of shells of revolution made from an 
ideally elastic material  a r e  

When 

Two different problems a r e  usually 

1. The determination of the geometrical shape which the shell surface 

The determination of the deformations and displacements of the 

The axis of revolution is the coordinate axis Z. 

o . ~ J ~ T - ' P  (1 + p"t-2)05[1 - 2~ + Y p  ( 1  + p' i-' )0.5 ( p f  - d i j  (F.2 + i z ,  l.s 1 

0 . 5 + ~ - ' ~ ( 1  +$ t - 2 ) n . 5 [ 2 - y - p ( l  +-pZ t-2)o,5(Pf--j <)x 
x (pz + tz )-'.SI -p-- o I p + l = o ;  

- (pot, - p&) ($ + i ; ) 4 5  (p' + C')O.5+ 1 = 0; ( 1 )  

( 2 )  

x (p1+ i p  ) - 1 . 5 ~  + - I = 0. ( 3 )  

O S $ . ( - ' p ( l  +;* ~-')""y3-p(l  + E 2  t - ' ) " . " (p~-p i) x 

Equations (1 ) and ( 2 )  relate the geometrical expressions of the meridional 
and circumferential s t ra ins  through the displacements with their physical 
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expressions through the s t resses  and forces, found from the equilibrium 
conditions for the deformed shell surface. 

Equation ( 3 )  determines the variation of the shell thickness caused by 
deformation of i ts  surface. 

In equations ( l ) ,  ( 2 ) ,  and ( 3 ) :  

+ = 4 is the ratio of the excess internal pressure to the modulus of 

elasticity of the shell material; 

the ratio of the thickness of the deformed shell a t  an arbi t rary point of its 
surface to the initial thickness (a t  9 = 0); 

E 
8 (Yo) 

80 
Y is the Poisson ratio; y = 'I ( ~ p ~ ) =  -is 

a r e  the dimensionless rectangular coordinates of the meridional section of 
the initial shell surface; 

a r e  dimensionless rectangular coordinates of the meridional section of the 
deformed shell surface; 'pa is the angle between the normal to the meridional 
section of the shell surface at  an arbitrary physically fixed point and the 
z axis. 

The dots in (1 ), (2), and ( 3 )  designate differentiation by 'po. 

The functions po (po), C, (v0) a r e  known. 
The functions p(rp,), { ( y o ) ,  -r(y0) have to be determined. We shall assume 

that 
to (0) = io (IT) = 0. ( 4 )  

It follows from the condition of symmetry relative to the z axis that 

The functions p and i ( y o )  must satisfy the following conditions a s  
well: 

( 6 )  

p (0) = p (c) = 0 

c (0) = i (n) = 0 - 
where 'po determines, on the meridional section of the shell, a point whose 
displacement in the direction of the z axis is equal to zero. The displace- 
ments of the points of the meridional section of the shell in the direction of 
the r and z axes a r e  respectively equal to 

(7  1 'u = 'u (Yo) = I P  (190) - Po (cpo)l$l , 

= u (Po) = IC (Yo) - CO (%)I so I 
We shall consider the problem of the deformation of a shell whose 

initial surface is formed by the rotation of an ellipse relative to one of i ts  
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major axes, i. e . ,  represents an ellipsoid of revolution. We have 

:8)  p, = (a?, cos2 41, -+ pi sin2yo) -05 p?, sin qo , 
r -  *o - (a: cos' q, + P.', sin? ' P , , ) - O . ~  cos yo 1 

where a, = 3 and Bo= 4- a r e  dimensionless semiaxes of the ellipsoid. 

I axis coincides with the direction of the semiaxis a,, and the r axis with 
the direction of the semiaxis b o .  
s t resses  in the shell is 

The 

The condition of absence of compressive 

60 6, 

po 4 20%~. ( 9 )  

We shall look for a solution of system (1 ), ( 2 )  in the form 

( 1 0 )  1. p = (a2 cos'y + p' sin' y) -0.5 p2 sin y 
I = (a'  COS'^ + 8' sin2 y) -0.5 a' cos y 

Solution ( 1 0 )  s tar ts  from the assumption that the shell surface remains 
an ellipsoid of revolution in the process of deformation, and that only the 
values of the semiaxes and their ratio change with the increase of the 
internal pres  sur  e. 

a b 
and p = 

00 00 
In ( 1 0 )  a = a re  dimensionless semiaxes of the deformed 

ellipsoid; 'p is the angle between the normal to the meridional section of 
the deformed shell surface at an arbi t rary physically fixed point and the 

z axis; yo= :. Obviously 
- 

'p = 'f (yo). ( 1 1  1 
Relationship (11 ) is unknown and must be determined. 
Introduce the following designations: 

( 1 2 )  I- ~ = ~ ( y , ) = s i n ~ . s i n - ~ y ,  
K = K ( q )  = (a2cos2y + Ij2sinzy)'J.6 
KO = KO (yo)  = (a: cos* 'p, + Iji sin2 y0)0.5 

Using (8 ) ,  (10) .  and ( 1 2 ) ,  system (l), ( 2 )  can be written in the form 

1, ( 1 3 )  
0.5+~-'p'K-'( 1 - 2 v  -t y a - - 2 K 2 )  - a-2 p,:Kyp'K-36+ 1 = 0 

0.5$~- 'p*K- '  ( 2  - Y - a-?K*) - &ZK,I~'/(-'T + 1 = 0 

where the function 'I = ~ ( y ~ )  is determined from ( 3 )  and ( 1 0 )  by the ex- 
pression 

7 = 0.5 + [0.52 - 0.5+vgzK-'(3 - a--2Ya )I 06. ' (14 )  

x Obviously, for points yo = 0 and yo = -, always y = 'po= 0 and 'p = 'po = $ . 
By separating the variables in the f i r s t  (differential) equation of 

2 

system ( 1 3 )  and integrating it, and by writing the second (algebraic) 

equation of system ( 1 3 )  for the characterist ic point 9 = 'po = I. we obtain 

a system of two equations for determining the unknowns a and fI : 
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I 0.56.1-1 (+) (2 - v - a-2 B') 2 - p,'p+ 1 =o 

A m - I  ( Z - - X ? , - V Y ) - ( ~ - - ~ . ~ , ) V ( A ~ - I )  
. . -_ 

(2  - XL--V)* 0.56 m 0-7- - 

Y 

where in the second equation 

' 

( 1 9 )  

Relationship (1 1 ), which determines the displacements of the physically 
fixed points of the shell surface, can be found from the first equation of 
system ( 1 3 ) :  

P The ratio X = 7 approaches unity with the increase of 6 ,  i. e. ,  the 

surface of the ellipsoid becomes more and more spherical. 
proved that the function 

It is easily 

has a maximum, which determines the limiting internal pressure.  It 
follows from (15)  and (1 6 )  that the limiting values of the parameters 51) and i 
( q m  and A,) a r e  respectively equal to 

limiting pressure is reached. 
The values of X, for ellipsoid surfaces at 

a r e  usually very near unity, and relationships ( 1 9 )  can be written in the 
form 

A t  

Am- 1 ( I  - v ) - 2 v ( A m - 1 )  0.5$,p0 = - . ~- -~ 
h* (1 - v ) 2  

I 

In the general case the value of X, i s  determined with the aid of the 
f i rs t  relationship of system ( 1 5 ) .  
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FREE VIBRATIONS OF CIRCULAR CONIC SHELLS  

V . G .  G o d z e v i c h  
(Sveydlovsk) 

It was established by the experimental and theoretical studies of 
numerous authors 11, 2, 3 /  that to f ree  nonsymmetrical vibrations of 
shells of zero  curvature there generally corresponds a multiwave pattern 
of deformation. 
with la rge  index of variability in both principal directions a s  initial equa- 
tions of the problem of f ree  vibrations of a shell of zero curvature 141: 

Based on this, i t  is possible to use the equations of shells 

where 

where 'p is a s t r e s s  function; w is a function of the normal displacement; 
x and p a r e  curvilinear coordinates of the middle surface; L3 i s  the Lam6 
coefficient; w is the frequency of the natural vibrations; R,  is the principal 

Eh' radius of curvature; D = - __ . 
12( 1-+?) 

In the case of a circular conic shell (figure) 

B = x . s i n  x0, R , = x t g x , .  ( 3 )  

In the case of a closed circular conic shell we shall  look for a solution 
to (1  ) in the form 

W(1.p) = W(X) cos me, F ( X . 8 )  = @(X) cos mP. (4) 
Equations (1) can then be written in the form 
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FIGURE. 

Equations ( 5  ) a r e  solved by the Galerkin method, by approximating the 
unknown functions Cym) and W(a) by the ser ies  

m 

Wc.) = 2 C. sin a, (a - %). 
n-1 

Only the kinematic boundary conditions a r e  satisfied by these re -  
presentations 1 5 1 .  The smaller the angle %, the more  accurately the 
static conditions will be satisfied. 
boundary conditions only approximately, under the assumption that the 
Poisson rat io  is equal to zero on the curved contour 131 .  

Galerkin method. 

approximation: 

Functions ( 6 )  satisfy the static 

Multiplying equations ( 5  ) by a', we solve the system obtained by the 

The following equation for the frequencies is obtained then in a f i rs t  

( 7 )  

e?. - ____ h' ). 
( h  - 1 2 1 2  (I--.+*) 

Using equation ( 7 )  it is possible to find the frequencies of natural 
vibrations of conic shells at  any number of half-waves in the longitudinal 
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direction ( n = l .  2 , . . . )  and a sufficiently l a r g e  number of half-waves in  the 
t r ansve r se  direction (2m =4. 6, ti,..-). 

We shall now find the spectrum of frequencies of natural  vibrations to  
\vhich corresponds a multiwave pattern of deformations in the t r ansve r se  
direction, with only one half-wave in the longitudinal direction. These 
frequencies can be found directly f rom ( 7 ) ,  by taking n =  1. 
approach to the solution of this problem will however be of interest .  

Since our aim is to form the frequency equations a t  different indices 
of the function variability in the longitudinal and t r ansve r se  directions,  
the f i r s t  t e r m  in differential operator  A ( 2 )  can be neglected. 
(1) reduce then to 

A different 

Equations 

Such equations, in the absence of iner t ia l  forces ,  were  used by Gol'den- 

By solving equations ( 8 )  by the Galerkin method, we obtain the following 
veizer  / 4 /  a s  equations of the nondegenerate edge effect. 

frequency equation in  a f i r s t  approximation: 

The lowest frequency is obtained for a, ='al and 111 determined f rom the 
condition 

In the second approximation we s t a r t  f rom the expressions 

d)(%, = A ,  sin a, ( a  - al) + A, sin 2 4  (a - a l ) ,  

W(=) = C, sin a, (a - a,) + C, sin 2 a, (a - aJ. 

W e  then obtain the second frequency equation: 

m4 1-a, zl=--' 
Ehsin4x, 2 
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(13) 
(cont'd) 

The resul ts  obtained were checked experimentally by subjecting a 
number of conjcal shells to special tests on an electromagnetic vibrostand. 
A comparison between the experimentally determined frequencies and the 
values obtained by formulas (7 ) ,  ( 9 ) ,  and ( 1 2 )  for the same shells is given 
in  the table. 

-. 
TABLE . 

Experimental result B y  formula (7)  By formulas(9) and( l2)  
W *  cyclesfsec 

.- 
o* cyclesfsec 

. . ~ .. . .. 

1 -%25 cm.  2,=0.22, h d . 2 5  cm 

m [  o* cyclesfsec 1 
Shell No.  1 x0 =16',- 

3 372 
1 450 
5 567 
6 700 

321 
305 
531 
826 

323 ( + 40) 
390 (+ 73)  
575 (- 56) 
819 (-197) 

Shell No. 2 zo =6', 1 r 2 3 6 c m ,  a,=0.62. h=0.25 cm 

3 245 250.5 
4 2i6 266.4 
5 377.5 374 
fi 510 529 

256 
262 
368 
521 

Shell No. 3 x o  =I? 40 I =92.5cm, R,=O,  h=0.25 cm 

2 315 306 308 (+7)  
3 357,s 289 288 (+145) 
4 440 466 465 (-61) 
5 555 719 720 (-216) 
6 700 1034 1034 (-721) 

Shell NO.  4 xo =70' 30', I =52.5 cm, a,=O, h=0.25 cm 

3 247 
4 203 
5 286 -~ 
6 342 

251 294 
189 192 
210 207 
275 272 

.. ~ ~- -~ .-_~_ . - __  . .___ 
N o t  e: The correction introduced by the second approximation (12) is indicated 
between parentheses with the corresponding sign. 

It is seen from the table that formulas ( 7 )  and ( 9 )  give almost identical 
This ought to be expected, since the calculations were conducted results,  

for n = 1. 
of 1 0 %  to the first one ( 9 ) .  
between them and the calculated values l ies  in most cases  between 2 and 16% 

shell has been used by other authors as well 1 5 ,  S i .  

The second approximation ( 1 2 )  gives a correction of the order  
A s  to the experimental results,  the divergence 

The Galerkin method for determining the free  vibrations of a conic 
They, however, used 

1524 342 



different equations as initial equations. 
equations of the semimembrane theory of shells,  
contain no information on experimental studies. 

Thus, paper / 6 /  is based on the 
The papers mentioned 
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CLINGING OF PANELS UNDER THE ACTION OF 
RANDOM FORCES 

V . M .  G o n c h a r e n k o  

(Kiev) 

This paper deals with the vibratory motion of f l e ~ b l e  shells under the 
action of random forces. Problems of this type a r e  essential f i r s t  of all 
for the theory of shell stability. It is known that in many cases the shell 
has several  stable equilibrium conditions in the load range between the 
upper and lower cri t ical  values. The transition from one such state to 
another one is possible under the action of any kind of perturbing factors; 
this is a case of buckling which cannot be expected on the basis of the 
classical theory. 
rections into the ordinary methods of stability calculations, and it can be 
of interest  in this respect to know the probability characterist ics of such 
a buckling, obtained on the basis of the statistical data on normal per- 
turbations. 
restricted by suitable devices, and the buckling is not destructive, but 
the frequency transitions to a perturbed state under the action of a time- 
dependent load can turn out to be dangerous from the point of view of 
accumulation of fatigue damages. Such a load frequently displays a purely 
random pattern (such is the case with acoustic and aerodynamic fatigue). 
It is necessary in this case to determine the statistical characterist ics of 
multiple buckling (such a s  the average number of bucklings during a fixed 
time interval). 
lation; 
possible situation. 

approach to the statistical theory of stability of shells was developed in the 
papers of Vorovich 111 and the author 12-41. 
possible one. 

b ,  thickness h ,  elastic constants E and Y ,  with edges p = 0, b (the co- 
ordinate p is measured along the cross  section arc)  hinged to fixed r ibs .  
The panel is subjected to a uniformly distributed lateral  pressure q (t). 

Restricting ourselves to the case of panels with small curvature 
parameter 

Hence i t  is necessary to introduce considerable cor- 

No l e s s  interesting a re  the cases when the deflection is 

Such phenomena a r e  usually considered in a linear formu- 
the case of small deflections is however far  from being the only 

The theory of Markow processes is used in solving the problem. This 

It is however not the only 
Some other possibilities were considered in 1 5 1 .  

1. Consider a lengthened shallow cylindrical panel of radius R ,  width 

bz 
Rh 

k=--, 
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we assume / 6 /  that the deflection is approximated sufficiently accurately 
by the expression 

4 w = h Csin - . 
b 

The stochastic equation of motion is obtained by the ordinary methods in 
the form 

Here p is mass per unit a rea  of the middle surface, 3* is a dimensionless 
parameter of the total potential energy 

The coefficient p p-' can be expressed through the decrement A and the 
frequency m of natural l inear vibrations about the undeformed state 

W A  
pp-1  - . 

x 

It is easily seen that 

( 1 . 5 )  

We shall represent the load in the following form: 

q = .Mq + E (t), Mq = const, ( 1 . 7 )  

where M q  is the constant part  of the load, and t i t s  disturbances, re -  
presenting a centered stationary random process of known spectral  density 
f ( ~ ) .  Formula (1.4) can now be written in the form 

1 dV 4 
t = - p p -  t - -+-  E (f), 

dC rrhp 

V =  2Eh' 3* (MA). 
6' (1  - v'Jp 

Our object is the study of the random process C (t), which can be con- 

In the general case such a 
sidered a s  caused by the passage of process E ( t )  through the inertial non- 
linear system, described by equations (1.8). 
problem is exceedingly complex and has an obvious solution only if 
certain assumptions a r e  made relative to E (f). 

Introduce into consideration the correlation time /7/ of the disturbances E (f): 



If condition Q(< T is satisfied, where T is the time constant characteriz- 
ing the period of variation of t (for instance the period of natural vibrations 
T = ~ z w - '  ), then c and form a two-dimensional Markowprocess. Numerous 
r ea l  random interactions have a small  correlation time: the acoustic pressure 
of the jet-engine jet, the pressure of the turbulent atmosphere, etc. This case 
is of considerable importance, and w e  shall res t r ic t  ourselves to i t .  

At 1.- < M 1 <Ai where A- and Ai a r e  the lower and upper critical 
values respectively, the panel has three equilibrium states C,, C2, C3 (C,< 
<C2<C3). States C, and C, a re  stable, and state C, unstable. Assume that 
a t  the initial moment t = 0 the panel was in the undisturbed state t,, and 
that it then started to perform random vibrations under the action of 
disturbances E (t) ,  attaining a t  some random moment t* the state C, and 
passing into the vicinity of state C3 by overcoming the potential barr ier  
H =  V (CJ - V (Ll). 
the random magnitude t.. 

This problem is solved by Kolmogorov' s equations, satisfied by the 
probability p (t,  x ,  x ,  y, y) of th? transition during t ime t from the state C 
c = x to the state i = y ,  C=y .  
problem similar to our own was made in papers 12, 31; 
case considered is 

2. 

Our problem will be the study of the characteristic of 

x, . .  . .  
The f i rs t  application of these equations to a 

their form in the 

d t  

Here f is thevalue of the spectral density of the disturbances E (t), cor- 

We shall first determine the mean value of M t ,  = M. It is a function of 
responding to the frequency W. 

the initial values c = x ,  1 = X 

( 2 . 3 )  

Differentiating ( 2 . 2 )  by time, myltiplying by t ,  and integrating, we easily 
obtain the equation which M ( x ,  x )  satisfies (cf. /2,3, 8 1 ) :  

" dM 
d x  (2.4) 

The solution of equation ( 2 . 4 )  represents a very difficult problem; we shall 
accordingly solve i t  at  this stage under some simplifying assumptions. 

It is known 11, 2 1  that when we a r e  interested in large-scale information 
on the variations of C, and transient effects of the order of T" = pp-1  can be 
neglected, C ( t )  can be approximately treated a s  a Markow process,  
transitional probability p (t, x ,  y)  satisfies in this case the simplified 
equations 

The 
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d V  dp ? d 2 p  dp =_  T" - - +us.- .  
at d x  dx ax2 

The equation fo r  M ( x )  is likewise simplified to 

d V  dM P dzM T" - - + QT" __ = -1. 
dx' dx d x  

- (2.7) 

Equation ( 2 . 7 )  diverges substantially from (2.4) only in the region M ~ T , .  
The fact that for  r e a l  A T" r ep resen t s  no m o r e  than several  tensof periods 
of natural  vibrations makes i t  possible to a s s e r t  that equation (2.7 ) is 
sufficiently accurate  for  studying the stability of shells.  

In addition to ( 2 . 7 ) ,  M ( x )  must a lso satisfy the boundary conditions 

M (- W) =z M (La) =O. (2.8) 

The ordinary differential equation ( 2 . 7 )  is easily integrated. The follow- 
ing expression is obtained after the determination of the integration con- 
stants f rom conditions (2.8):  

P 

M ( x )  = (a  T:)-' I d a  Jexp [ (a~)-* [ v (8)- v(K)] da) .  (2.9) 
x - -m 

The integral  in ( 2 . 9 )  is calculated in the general  ca se  by numerical  
methods. The situation is more  convenient when the disturbances E ( t )  
can be considered a s  weak, i. e . ,  when the condition aTH&H is fulfilled. 
It is possible then to calculate the integral  by Laplace 's  method / 9 / :  the 
integration interval is contracted up to the vicinity of the extreme points 
tl. 
ser ies .  

C2, where the function V is represented by  th ree  t e r m s  of a Taylor 
Simple calculations lead to the r e su l t  

(2.10) 

It was assumed h e r e  that C = C, at t = 0. 

FlGURE 1. 
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Figure 1 gives the resul ts  of the calculations conducted by (2.10) for 
an aluminum panel a t  k = 10; hb-' = 0.5X10-2; 
situated in the field of acoustic radiation 1101. 
correlation t ime of this radiation showed that i t  does not exceed 6.3X 
sec, which is considerably less than the period of natural vibrations 
(7 .8X10-3 sec). 

It is seen from Figure 1 that a sharp drop of the clinging time, down 
to fractions of a second, occurs at  a certain value M A = l , .  A t  MA>& 
the panel motion displays the pattern of vibrations about three equilibrium 
statesC,, I,, C,: 
interest  not from the point of view of the theory of stability of shells, but 
for studying the accumulation of fatigue damages. 
(2.10) a r e  of interest  in this respect too. 
them the number Nof bucklings per unit time: N =  M-' . 
more that these formulas a r e  correct  only for N(<zT'; 
give an overestimated resul t  141. 

increase of Mk above the lower critical value the number of bucklings 
increases, reaching a maximum at a value of M i  near the cri t ical  load of 
"equal energies" 161. The panel then s ta r t s  to "linger" in the vicinity of 
the disturbed equilibrium state C,, which leads to the decrease of N. The 
calculations for this portion of the curve a r e  likewise conducted by ( 2 . 1 0 ) ,  
with the following alterations: instead of14 use HI = V(C,)- V(CJ and instead 

h = l.6mm, X, = 18,A-<O, 
The assessment of the 

The condition UT" < < H i s  likewise fulfilled. 

A s  already noted, the consideration of such cases is of 

Formulas (2.9 ) and 
It is possible to determine from 

We s t r e s s  once 
a t  N > z ; '  they 

The variation of N as  a function of M h  is shown in Figure 2. With the 

FIGURE 2. 

3. The random magnitude t ,  is completely described by i t s  distribution 

For weak disturbances ( a t  ax, 6 
function p ( A t ) ,  which represents the probability that at  least  one buckling 
will take place during the time interval A t .  
<If) and small  values of A t  the function P (At)  was determined in 131: 
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x exp [- ( m H ) - ' H ] .  ( 3 . 2 )  

Formula ( 3 . 1 )  corresponds to approximation (2.1),  ( 2 . 2 ) ,  and formula (3.2) 
to approximation ( 2 . 5 ) ,  ( 2 . 6 ) .  We shall give here  additional considerations 
relative to their l imits of applicability. 

The distribution densities p (I, C) and p (t. C. i ) satisfy equations (2.5) and 
( 2 . 1 ) .  
and p (O,C, C)  = 8 (C-Cl)8(f)  pass  over into the stationary distributions 

According to these equations the initial distributions p (0. C ) = 8  (C-Cl) 

In the process of this transition a par t  of the systems of the ensemble given 
by the distribution density pass from the vicinity of C, to be vicinity of C3. 
The function / J ( A t )  was determined a s  follows: 

jA t 
n 

P ( A t )  = - ( 3 . 4 )  

Here j is the s t ream of this diffusion per unit time and n is the number of 
systems of the ensemble in the vicinity of C, . 

Two important assumptions were made in the calculation of j and n: 
ensemble density in I, was assumed to be small  compared with the 
density in C,, and n was calculated by the equilibrium distribution ( 3 . 3 ) .  

We shall now examine the correctness of these assumptions. 
We note f i rs t  1 1 1 1  that at small  disturbances the stationary ensemble 

the 

( 3 . 3 )  i s  near microcanonical: at the end of the relaxation time T all the 
systems of the ensemble assemble near the absolute minimum V ( C ) .  At 
Mi<)., (io i s  the critical load of "equal energies") such a point is C,; 
atMX >io, i t  is C, . 
equilibrium distributions ( 3 . 3 )  follows from here.  
distribution is established in the vicnity of C, in the course of a very short  
t ime T, << Mt,. The ensemble density b C, remains negligibly small, at least  
for A t S M 1 , .  
vicinity of C1 in the course of time T ~ ,  after which the ensemble systems 
jump over the potential bar r ie r  during t ime T,. The ensemble density in 
C, i s  negligibly small only for A t  <Mt,. 

The value of T* i s  found from the obvious relationship 

The following pattern of the establishment of the 
A t  MA<)., an equilibrium 

At M i  > A, an equilibrium distribution i s  established in the 

M t ,  = f t j ( L )  d t .  ( fj ( t )  dt)- '  . 
V u 

( 3 . 5 )  

The s t ream j ( t )  decreases with time from the maximum value io found in 
12,  4/ to nearly zero. Since the equilibrium state in the vicinity of C, is 
established almost instantaneously, the form of the distribution does not 
vary subsequently, and i t  is easily shown (cf. 171, pp. 479-490) that the 
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s t r e a m  through ';t dec reases  by the exponential law 

j ( t)  =.io e-d. 
By definition 

E j o  = j o  e-.', j (t) = j o e ' 4 ,  

(3.6) 

(3.7) 

where E is the a p r io r i  e r r o r .  
after the corresponding calculations: 

The substitution of (3.7) in (3 .5)  yields, 

T~ = M Iln € 1 .  (3.8) 

In conclusion, in the case  Mh<Ao the expression Jo A t  n-l r ep resen t s  
the probability of finding the panel a t  moment A t  i n  the vicinity of point 
, if  A t * 5  Mi,. If Mb >lo.  this takes  place a t  A t  (< Mt:$ I In E 1. 
The probability indicated coincides with P ( A t )  ( the  probability of at l ea s t  

one buckling) i f  the probability of r e v e r s e  bucklings can be neglected. In 
the case Mk>A, this is possible f o r  A t  (< M t ,  I In E 1, when the ensemble 
density in C, is small .  

At M l < h ,  this fact  is already unsufficient, since r e v e r s e  bucklings are 
realized much m o r e  easily.  
These inequalities fix the boundaries of the region of applicabilityof (3.2 ). 

In this ca se  P (At )= j ,A tn- l ,  i f  A t C M t , .  
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ON THE BEHAVIOR OF FABRIC SHELLS UNDER 
LOAD 

V . N .  Gordeev 
(Kiev) 

This report  deals with some pecularities of the behavior of fabric shells 
- systems made from two families of intersecting flexible threads. 
a system can be realized structurally from two families of ropes, two 
families of bars  o r  wire bundles from fabric, and so  on. 

the shell material  will be considered a s  compact and resisting only to 
forces acting along the threads. 

Such 

Since in rea l  structures the flexible threads form a s  a rule a dense net, 

The shell will be examined under the following simplifying assumptions: 
1. 

2. 

3.  

The relative elongations of the material  a r e  negligibly small com- 
pared with unity. 

The horizontal displacements of the shell points a r e  so  small that 
they can be neglected when studying the equilibrium of a shell element. 

The rotations of the elements of the shell during its deformation 
a r e  so small that the squares of the angles of rotation can be neglected 
when studying the equilibrium of the elements, and the higher powers of 
these angles when studying the geometrical relationships. 

While the first of these assumptions is fairly general, the two others 
considerably restr ic t  the class of problems considered. For example, 
assumption 2 is realized in the case of shells shallow relative to the 
horizontal plane, i f  each thread has at least  one point fixed in the longi- 
tudinal direction, and assumption 3 requires a sufficient rigidity. Similar 
requirements a r e  made relative to building structures,  in which the 
rigidity is of considerable importance for the normal functioning of the 
roofing . 

The assumptions made a r e  thus applicable to the study of shallow 
fabric shells, such a s  a r e  used in building. 

A system of differential equations describing the behavior of a tissue 
shell under a static load was obtained on the strength of these assumptions. 

A .  GEOMETRICAL EQUATIONS 
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B. STATIC EQUATIONS 

9 + P,H, cos y. - PzHz + A,A,q, sin x = 0;  (3 )  au, 

+ P,H,cos r. - PIH, + AzAlq, sln x =0: 
dU, (4) 

C. PHYSICAL EQUATIONS 

The system i s  written in a,, at coordinates. The coordinate l ines of 
this system a r e  obtained as projections of the threads of families 1 and 2 
on the horizontal plane. 
i s  thus obtained in the horizontal plane. 
system a r e  A, and A,,  and the angle between the positive directions of the 
coordinate l ines i s  x .  

a functions of u, 2nd u 2 .  
the threads of families 1 and 2 with the corresponding coordinate l ines.  

A curvil inear oblique-angled system of coordinates 
The Lam6 pa rame te r s  of this  

The shell  surface is determined by giving the vertical  coordinate z a s  
C, and C, a r e  the cosines of the angles made by 

The system of equations contains seven unknown magnitudes: 
H13 H2 a r e  projections on the plan plane of the forces  in the threads of 

famil ies  1 and 2 respectively per unit variation of the coordinate. 
system of s t r e s s e s  is convenient since an equal number of threads is 
situated between two coordinate l ines,  independent of the value of the 
second coordinate. 

respectively.  

coordinate axes.  

Such a 

E,,  E* a r e  relative elongations of the threads of families 1 and 2 

lu,. 'u, a r e  projections of the displacements of the shell  points on the 

zp) i s  the vertical  component of the displacement. 
The loads per  unit a r e a  of the shell  plan a r e  represented by their  

.El, E? a r e  moduli of elasticity of the thread mater ia l  for  families 1 and 2 

F,, F ,  a r e  the a r e a s  of the threads pe r  unit variation of the coordinates 

H:, Hi a r e  p r e s t r e s s e s  of the threads for  families 1 and 2 respectively 

The following symbols a r e  a lso used in these equations: 

components ql. q2. and q in directions u,, u,, and L. 

respectively.  

for families 1 and 2 respectively. 

in their  projection on the plan plane. 
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The solution of the nonlinear system of differential equations (1 ) to ( 7 )  
is very difficult, all the more so since the linear system obtained by 
neglecting the nonlinear te rms  has no solution at  all in certain cases,  and 
in other cases is satisfied at different values of the unknown functions. 
Some results can however be obtained by considering the linear system. 

We shall consider several  classes of surfaces. 
Let the fabric shell have the form of a transfer surface, defined by the 

equation 

z = z1 (u,) + z 2  ( u z ) ;  ( 8 )  

and let the threads be projected on the horizontal plane in straight lines so 
that A, = const, A, = const, x = const. We also assume that C,=: Cz=l, 
and we restr ic t  ourselves to considering a vertical load. System (1 J to (7)  
with neglected nonlinear terms becomes then of the forni 

EZF, Here el and a r e  eliminated, Gl= ; GI= - . 
We shall f i rs t  examine which is the prestress  which the shell shape 

A1 A, 

allows. It is thus necessary to solve equations (1 1 ) and ( 1 2  j for q =0, 

The solution of the system of equilibrium equations contains the arbi t rary 
H,  = H:, H,=&:. 

constant KO 

@ = K o A , ~ z ( ~ z ) ;  &=-K0A,Zi (4). (13) 
It should be noted that not for  all shell shapes can a solution of the equi- 
librium equations containing an arbi t rary constant be found. 
of such a solution means that no s t ressed state different from zero can 
exist in the unloaded shell. 

Assume now that q# 0. 

The absence 

By substituting in (1 2 ) the solution of equations (1  1 ) 

4 = F ,  (%I; H, = Fl (4). (14) 

we conclude that i t  cannot be satisfied under an arbi t rary load. 
necessary that the load satisfy the condition 

It is 

q = w (4) 2; (4) +'PI (4) 4 (41 ,  ( 1 5 )  

where F, (a), Fa ( ~ ~ 1 ,  F, (uJ, 'pa (uz) a r e  arbi t rary functions. 

res t ra ints  of the shell allow the possibility of existence of arbi t rary 
s t ra ins  (14) on the contour. 
the shell on a rigid contour 

Naturally, in order  that (15 )  be satisfied it is necessary that the edge 

Thus, in the case of a complete restraint  of 

q = o ;  v1=0; w =o; 
u, = 4; VI =o; m =o; (16 )  
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ut =o; vz =o; w =o; 
u2=u,; v,=o; w =o 

these conditions are  fulfilled. 
r ep resen t s  a quadrangle formed by the coordinate l ines.  

It is assumed h e r e  and below that the contour 

Consider a different c a s e  of edge conditions: 

u,=O; v,=o; w=o;  
4=q; v,=o; w =o; 
u , = o ;  TJs=0; w =o; 
ua= a,; Ha = H, (4); w =O. 

In this c a s e  H2 cannot b e  expressed by an a r b i t r a r y  function of %, but 
will b e  equal to 14, (u,) in  accordance with the edge conditions. The  c l a s s  
of loads taken by the shell  without considerable deformations will then be 

It was naturally taken into account h e r e  that the edge condition H,= Hz (u,) 
sat isf ies  (13), since otherwise the shape of the unloaded shell  would differ 
f rom (8 ) . 

If 'I,=o; v,=o; w =o; 

u,=o;  v,=o; w =o; 
/A,=%; H , =  HI (u,) w=O; 

uz = a,; H, = H,(u,); w =0, 

then the last a rb i t r a r ines s  drops out of the load expression, f rom which i t  
follows that in  this  c a s e  any load will cause considerable displacements 
and cannot be considered without allowing for  the nonlinear t e r m s  of the 
equations. 

by ( 1 5 ) .  When the shel l  is loaded in accordance with (15 ) ,  the general  
solution of equations (11 ) and ( 1 2  ) contains one a r b i t r a r y  constant K :  

Consider once m o r e  the edge conditions (1 6),  which are not contradicted 

for  the determination of which we use  equations ( 9 )  and ( 1 0 ) .  
stituting in  them ( 1 3 ) ,  ( 2 0 ) ,  and ( 2 1 )  and integrating twice allowing for  
( 1 6 ) ,  we obtain two algebraic equations with two unknown constants, one 
of which is K .  

By sub- 

By solving this system we obtain 

where 

The s a m e  re su l t  could have been obtained by a m o r e  general  and clearer 
method as well. The fact that the fo rces  determined f rom the equilibrium 
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equations contain one indeterminate constant indicates that the system 
considered is statically indeterminate. 
of forces.  
for which we write the equation 

We shall calculate i t  by the method 
We select a s  redundant unknown the indeterminate constant K, 

a,, K + +1,) -0. (23) 

The coefficients of this equation a re  easily determined by Mohr's 
formula, which is in the given case 

H l ( i ) :  Hz(L) a r e  s t resses  in state ( i ) ;  H l ( h ) ;  H z ( ~ )  a r e  s t resses  in state ( k ) .  
The integration is extended over the entire shell surface. 
A great advantage of this method is that i t  makes it possible to assess  

the influence of the supporting structures on the shell behavior. It is 
necessary, therefore, when determining the displacements by Mohr's 
formula, to extend the integration over the supporting structures.  It is 
thus possible to allow for the boundary conditions, which frequently a r e  
difficult even to formulate. 

Consider now fabric shells having the shape of a surface of revolution: 

z = z (UJ. (25 1 
The threads of the first  family form the meridians, and those of the 

second family the parallels (Figure 1). 
C, 2 C,Y 1 .  

Write A, = const; A, = b 4 ;  cosx =O; 
The linear part of system (1 ) - (7  ) reduces then to 

s z / ( u l )  +A,bu,q =O. GL, I ( 2 9  

U 

FIGURE 1 

It is assumed that the shell is loaded by a vertical load only; E, and 
E, a r e  eliminated just a s  in equations ( 9 )  -( 1 2  ); 
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The solution of the homogeneous equations (28 )  and ( 2 9 )  contains one 
a rb i t r a ry  constant just  a s  in the preceding case: 

This means that the shell  of revolution allows p r e s t r e s s  in the form 
(30)  and (31 ) .  The solution of (28)  being 

Hl = Fl (u,) + f 2  (uJ; H, = % f'; (ul). ( 3 2 )  
b 

where F, (u,) and F2 (u,) a r e  a rb i t r a ry  functions, we conclude that a t  boundary 
conditions allowing ( 32 ) the shell  can take, without considerable deformations, 
a load of the form 

where gi,(u,) and 'p2(n2) a r e  likewise a r b i t r a r y  functions. 

form of ( 3 3 ) .  
unknown. 
The s t r e s s e s  in the shell  under a unit value of the pa rame te r  will then be 
represented by formulas (30)  and (31 ) .  The s t r e s s e s  in some "primary" 
system under a load of the form of (33 )  will be  equal to  the particular 
solution of the system of equations (28 )  and ( 2 9 ) :  

Let u s  calculate a shell fastened on a rigid contour under a load of the 
The problem is statically indeterminate. with one redundant 

We select  a s  redundant unknown the indeterminate parameter  K .  

0, 

The value of the parameter  K i s  determined from equation ( 2 3 ) ,  whose  
coefficients can be  calculated by ( 2 4 ) .  
in a general  form, since the expression obtained is very bulky. 
much s impler  to  form equation (23 )  in each specific case .  

a s  generatr ix  (F igu re  2): 

The re  is no need to determine i t  
It is 

Consider as an example a surface of revolution with a logarithmic cu rve  

h 
z =  R.Inu.  

In - 
r 

Take: A, = r ;  b = r .  The values of the coordinates will vary then within the 
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following limits: 

R 
r 

l < u , < - ;  O < u * s 2 x .  

Let  the shell  be rigidly fastened on the outer and inner contours. 
required to determine the stresses appearing under a uniformly distributed 
load of intensity q (in addition to the initial s t r e s s ) .  

It is 

FIGURE 2. 

A s  already noted, this problem is statically indeterminate, and has  one 
The s t r e s s e s  in the "primary" system under a unit redundant unknown. 

value of the redundant unknown a r e  
- 6 =us; H z = L  ( 3 7 )  

H,=Bq$; H z = 3 B q ~ : ,  ( 3 5 )  

The s t r e s s e s  caused by the load are 

where 

Using formula (24 ) ,  we determine the coefficients of equation ( 2 3 ) :  
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after which we obtain 

The unknown forces a re  obtained by the formula: 

f l  =- Bqu?+ku,; 

Hi = 3Bqu: + R .  

It is seen from the examples given that the l inear formulation makes it 
possible to determine the stressed state of a shell subjected to the action 
of special types of load. 

When considering an arbitrary load i t  is necessary to use nonlinear 
equations, but the methods considered here  do not lose their interest. In 
fact, it is possible to remove from the arbi t rary load the part  which allows 
a linear solution of the problem. The corresponding solution represents a s  
a rule an essential part  of the solution of the nonlinear equations. 
therefore expedient to determine the linear solution, and then the correction 
to it; the approximate methods used a r e  much more  efficient in determining 
this correction than in determining the complete solution. 

It is 
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APPROXIMATE CALCULATION OF LINKED THICK 
CYLINDRICAL SHELLS AND PLATES  

F .  A .  G o k  h b a u  m 
(Moscow) 

Thick cylindrical shel ls  linked to c i rcular  plates have recently been 
An example applied to  the production of p re s ses  and other equipment. 

of such a s t ruc tu re  is a hydraulic cylinder with bottom made of p re s t r e s sed  
reinforced concrete.  
of compound s t ruc tu res  of this type in two stages: 
dr ical  shell and the circular  plate a r e  considered separately,  and then 
the s t r e s s e s  and displacements in the two elements when linked a r e  equated. 

It is convenient to divide the approximate calculation 
f i r s t  the thick cylin- 

1. CALCULATION OF THICK CYLINDRICAL S H E L L S  

In the calculation of the thick cylindrical shell  we shall  make use of 
the solution of the axisymmetrical  problem of the theory of elasticity for  

a shallow cylinder. 

C = -, and the functions proportional to the displacements and s t r e s s e s  

u,. U, = a,, U, = T r z ,  +.=up, us = a,. We define also the u--- . -u u--  

following symbols: Pfl = -, k = 5, 'I = p-1, A=k-  1. 
O i "  ro 

mate  computing formulas  / I ,  2 / .  
l a t e r a l  surface of the shell; al l  the magnitudes corresponding to this su r -  
f ace  will be called initial magnitudes, and will be designated by the super-  
scr ipt  O. 
expressed in this  c a s e  through four initial functions, i .  e . ,  two functions 
of the displacements and two functions of the s t r e s s e s  on the external 

We introduce the dimensionless coordinates p~ -1, ro 
2 

ro 
E E 

l -  (1 - j -v )  I' *- ( I + . )  
a n  

The method of initial functions will be used in the derivation of approxi- 
We take a s  initial surface the external 

The unknown displacements and s t r e s s e s  in the shell will be 

surface of the 
known ones is 

where La, a r e  

shell. 
accomplished by means of l inear  differential operators:  

The transition from the initial functions to the un- 

4 

a" = 2 L n m  a; ,  (1 1 
m-1 

the differential operators  given in Table 1. The operators  
are expressed through the functions T I .  
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T A B L E  1 

2n-multiple operators ( n  =I - v.) 

I 

2 

3 

4 

5 

6 

-B 
1 
3 -2v 
P'-4n 

(1-29) b 
-8 
--B 

1 

28 
Fa-(3-2v) 

p'8"(3--2v) 

4n--( 1 -t p')p2 

--P 

-2n+p1 

-( 1 - 2 V ) B  

Ba 

1-2v 

3-2.. 

- -4n+@' 

P 
-2v-p* 
--B 

1 

0 
1 
1 

-4n 

-B 
0 
0 
1 

B 
43-27)  

-1  

4n-p2/r' 

0 

-2n 

0 

6 
I--% 

1 

-4n 

-1 
-2v 

0 

4 

1 
0 
0 

-B 

-4n 
1 
1 
0 

1-2v 
--e 
--P? 

ir 

1 
0 

2n 
-B 

1-2v 
0 

0 

-P 

-2(2-v) 
B 
1 
0 

where J o =  J o ( p P ) ,  .d= Jo(P) ,  J 1 = J l ( p p ) , J f  = J ,  (8) a r e  Bessel  functions of the 
z e r o  and f i r s t  order ,  No = No (pp),  NA = No (p), Nl = Nz (pp) N: = N,  ( p )  a r e  
Neumann functions of the ze ro  and f i r s t  o rde r .  It should be  taken into account 
that inthe given case  these functions have a meaning a s  operational s e r i e s  only 
and r ep resen t  a symbolic notation of differential ope ra to r s  of infinitely 
high order .  

Since we a r e  considering a hydraulic cylinder, the calculation of this 
s t ructure  for the case  of internal p r e s s u r e  is of greatest  interest .  The 
external initial surface is not loaded in this  case,  and therefore two initial 
functions out of the four a r e  identically equal to zero: 
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Instead of the other two initial functions i t  is possible to introduce one 
resolving function and to  expres s  through it  the unknown displacements 
and s t r e s ses :  

u,, = (Lnl  c 2  - Lnr ,  G I )  F. ( 4 )  

The supe r sc r ip t s  k mean that these operators  must  be taken at  p -- k .  The 
resolving function F is determined from the condition that the s t r e s s  u3 at 
the shell  surface p = k is equal to the internal p r e s s u r e  q(C). 

( 5 )  
h k  

(L31 L ~ z -  L L L ~ I )  F=-qq(!) .  

The shear ing s t r e s s  u4 is identically z e r o  on both the internal and the 
external surfaces  of the shell .  

In o r d e r  to  obtain approximate computing formulas i t  is necessary to 
expand the cylindrical functions in the operators  into power se r i e s ,  and 
then to expand the expressions obtained in Taylor s e r i e s  by the powers of 
P .  By neglecting then the t e r m s  of o rde r  7 and h compared with unity, we 
obtain the following formulas  for the f i r s t  approximation: 

The function F is determined from the ordinary fourth-order differential 
equation 

The substitution of p*F f rom ( 6 )  into ( 7  ) reduces the l a t t e r  to the differential 
equation of the moment theory of cylindrical shells.  

In a second approximation we neglect the t e r m s  of o rde r  1 2  compared 
with unity, and we obtain the more  accurate  theory of cylindrical shel ls .  
The resolving equation in the second approximation will be of o rde r  eight, 
and the e r r o r  will be of the o rde r  of the square of the relative thickness of 
the shell  compared with unity. 
be of o rde r  twelve, and the e r r o r  will be of o rde r  l . 3  compared with unity. 

make  it possible to  satisfy two boundary conditions on each of the shell 
ends. 
conditions for  the s t r e s s e s  a r e  satisfied with an accuracy of up to the 
s t r e s s e s  created by the bending moment and the shearing force.  
the formulas  of the second and third approximations i t  is possible to 
satisfy,  with an accuracy sufficient for  practical  needs, the boundary 
conditions a t  the ends of a thick cylindrical shell. 

In a third approximation the equation will 

The solution of equation ( 7 )  contains four a rb i t r a ry  constants, which 

When a thin cylindrical shell is linked to a plate the boundary 

Using 
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2 .  APPROXIMATE CALCULATION O F  A THICK 
CIRCULAR PLATE 

In the calculation of a thick circular  plate we shall  make u s e  of the se t  
of homogeneous solutions for a continuous cylinder with an unloaded l a t e ra l  
surface and axisymmetrically loaded ends. The method for obtaining such 
solutions h a s  been exposed in 1 2 1 .  

The homogeneous solutions c m  be obtained in the following form: 
( 1 C v ) r O  r r , J l + . ) r O  [ - 2  ( 1 - V ) J J ;  - + I @ :  u ; =  [ -2(1 - v ) J o J ; - ~ ' p ] c b ,  

EBZ E!? 

1 1 
or= - 12 ( 1 -  V )  J,J: -t- 3 - pp CP; ~ z =  - [~p - ZJ, J : ]  CP, 

PP' B 
where 'p = BIJoJA-kp J ,  J i ] ;  $ = [J IJ :  - P J O J ! ] .  ( 9 )  

Here, a s  in the preceding case,  the Bessel  functions r ep resen t  a symbolic 
notation of the differential operators .  

The function ct, must  be determined from the ordinary differential equa- 
tion of infinitely high o rde r  

whose general  solution can be written in the fo rm 

When (11) is substituted in the left-hand pa r t  of ( l o ) ,  the symbolic Bessel  
functions entering in the equation a r e  reduced to ordinary Bessel  functions 
of the argument ~, determined from the equation 

The transit ional equation obtained for  determining tn h a s  an infinite number 
of complex conjugate roots.  
v = 0.15 for  a reinforced concrete plate and at  v = 0.30 for  a s teel  plate, 
a r e  given in Table 2. 

The f i r s t  three roo t s  of the equation, a t  

T A B L E  2 

Roots pA e'? of the homogeneous solutions 

Y =0.30 
~. 

v=o.  15 I , I 

Y 
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The a rb i t r a ry  constants in the solution a r e  determined from the boundary 
conditions a t  the plate edges. By using the f i r s t  group of four roots  i t  is 
possible to satisfy two boundary conditions on each edge; the second and 
third groups of four roots  make i t  possible to satisfy the boundary conditions 
a t  the edges with an accuracy sufficient for  practical  purposes.  

3 .  EQUATING THE DISPLACEMENTS AND STRESSES 
IN THE CASE OF A LINK 

The solution for a thick cylindrical shell  and a plate used in  the calcula- 
tion contain a rb i t r a ry  constants, which have to  be determined from the 
conditions of linking of the elements by the ends. 
method leading to a system of algebraic equations for determining the un- 
known a rb i t r a ry  constants can be used for calculating the link. 

The method of orthogonalization satisfies this requirement.  W e  shall  
t r e a t  the orthogonalization of the displacements and s t r e s s e s  to a system 
of functions p". In this ca se  to any function, such a s  the displacement o r  
the s t r e s s ,  t he re  corresponds a numerical  sequence, whose t e r m s  r e -  
present  definite integrals of the form 

In this connection any 

Such a sequence will be called in what follows the sequence of the 

It is easily seen that i f  al l  the moments of any two continuous functions 
moments of the function f (p) and will be designated by Lftp)]. 

in the interval 0~ p 41 a r e  equal, then these functions a r e  identically equal. 
It can be shown also that the moment of the continuous function f ( p )  de- 
c r e a s e s  with the inc rease  of i t s  order .  

in the linked elements, i t  is sufficient to require  the term-by-term 
equality of the moments of these functions. 
one equates not all the moments, but only some of them and in this ca se  
the assessment  of the calculation e r r o r  is of great  importance. 
u se  for that a s ses smen t  polynomials with unit moments of the form 

Thus, instead of equating the displacements and s t r e s s e s  themselves 

In an approximate calculation 

We shall 

( n + k + l ) l  " ( m + n + l ) ! ( k + m ) l  ~ nm (-1)"': . 
Pi  = (n- -k) l (k l )*m-o 2 ( m + k + 1 ) 1  (n-m)! (ml)' 

The superscr ipt  n r ep resen t s  the degree of the polynomial, and the sub- 
sc r ip t  k i t s  o rde r .  The main property of polynomials with unit moments 
is that the moment of o rde r  k of the polynomial P i  is equal to  unity, and 
the other moments of this polynomial up to the moment of o rde r  n a r e  
equal to  zero.  

interval 0 < n 4 1  can be approximately represented a s  a finite sum 
Any function F continuous o r  piecewise continuous and bounded in the 
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where 

The approximation can be realized with any required accuracy, the e r r o r  
of the approximation being determined by the number of moments used. 

Consider as an example the approximation by polynomials of the function 

The approximation will be  realized with an accuracy of up to four moments 

y ( x ) = $  (13+60x-210 2+1402). 

With an accuracy of up to  s ix  moments we shall  have 

1 y (x )  z3j (37 -210 x + 1890 XD - 5380 2 f6930xC -2772 x"), 

Curves of the function y ( x )  and of i t s  approximation by polynomials a r e  
represented in the figure. 

coincides with the exact value is equal to the 
number of moments with which the approxima- z- tion was conducted. The difference between the 
function y ( x )  and i t s  approximations has the 
shape of a curve intersecting the axis a t  several  
points. In the linked elements, i f  we equate 

c r e a s e  rapidly with the distance from the l ine 
of connection, i t  being known that s t r e s s e s  whose 
diagrams are bounded by curves intersecting 
the axis a t  many points posses s  a high degree 
of self- equilibration. 

The number of points in which the approximation 

P 3 w  - - -  - 
P the s t r e s ses ,  the e r r o r  of the solution will de- 
I 

Approximation Of the 
functiony(x)by polynomials with 
unit moments. 

Let the calculation of the connection between the thick cylindrical shell 
and the plate be conducted with an accuracy of up to th ree  moments; 
other words, instead of requiring the exact equality of the displacements 
and s t r e s s e s  a t  the link, we equate only th ree  moments of each function. 
Designate the magnitudes corresponding to the cylindrical shell  by the 
superscr ipt  c ,  and those corresponding to  the plate by  the superscr ipt  n .  
The conditions of monolithic link will then be 

in 

[ u % - [ d ] r ;  [ (d) ' Ir  = [(&:)'I3. 
The subscr ipt  3 means that the sequences of moments contain three t e r m s  each. 
The s t roke designates derivatives of the ver t ical  displacements by the radius.  
Equating the moments of the derivatives of the vertical  displacements simplifies 
the calculation, since in this ca se  the shell  and plate can have different coordi- 
nate axes.  In this case only the shapes of the surfaces  of the shell  and plate will 
coincide in the link, andnot the vertical  displacements; this  has  however no 
effect on the distribution of the displacements and s t r e s s e s .  
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When calculating with an accuracy of up to three moments, third- 
approximation formulas a r e  formed for the shell, and three homogeneous 
solutions a r e  used for the plate. 
s t resses  will contain unknown arbi t rary constants, which enter in the 
functions 0 and F. By equating term by te rm the moments in the link, we 
obtain a system of twelve l inear algebraic equations with twenty-four un- 
known arbi t rary constants. 
by equating the moments of the s t resses  a t  the ends of the shell and plate 
to the moments of the external load. 
constants, i t  is possible to calculate the displacements and s t resses  at 
an arbi t rary point of the shell and plate. 

t imes by using the method of forces. 
a system of functions pn is wholly justified, since the f i rs t  t e rms  of the 
sequences of moments of s t resses  and displacements acquire the clear 
meaning of the usual concepts of the method of forces: bending moment, 
shearing force, radial  displacement, and angle of rotation. 

When calculating a link by the method of forces, each of the elements 
must  be calculated f i r s t  for  the unit moments of the s t r e s ses  in the link 
and for the external load. 
link between the shell and plate wil l  be written in the form 

The moments of the displacements and 

The remaining twelve equations can be obtained 

Having determined the arbi t rary 

The order  of the system of algebraic equations can be lowered four 
In this case the orthogonalization to 

The sequence of moments of the s t resses  in the 

[u.z]=Mi. Mz, Ma,... ( 2 1  ) 
[ ~ i z ] =  Ti, rz, r a n * - .  

It i s  easily seen that the f i rs t  terms of the sequences a r e  approximately 
equal to the bending moment and the shearing force. 

The resultant of the normal s t resses  a, is identically zero, since the calcula- 
tion of the link is realized only on a load self-equilibrated in the link surface. 

By equating the sequence of moments of the radial displacements and 
the derivatives of the vertical displacements we obtain a system of 
algebraic equations relative to the unknown moments of the s t resses  in 
the link. 
displacements due to the external load wil l  appear. If the problem i s  
solved in a f i r s t  approximation, with an accuracy of up to the bending 
moment and the shearing force, we obtain two equations with two unknowns. 
These will be the ordinary canonical equations of the method of forces.  

to calculate the s t r e s ses  and displacements a t  any point of the shell and 
plate, since each of these elements was calculated beforehand for the unit 
moments of the s t resses .  

In the right-hand par ts  of the equations the moments of the 

Having determined the moments of the s t resses  in the link, it is easy 
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SOME THEORE TICAL AND EXPERIMENTAL 

OF CURVED PANELS IN A GAS STREAM 
E . I .  G r i g o l y u k ,  R . E . L a m p e r ,  and 
L . G .  S h a n d a r o v  
(Novosi b i r sk )  

INVESTIGATIONS OF SELF-OSCILLATIONS 

Many papers have been written on the subject of the self-oscillations 
of cylindrical shells and panels in a supersonic gas stream, both by Soviet 
(Bolotin, Movchan, Shveiko, etc.) and by non-Soviet (Miles, Hedgepeth, 
Voss, etc.)  authors. In particular, the flutter of a supported shell was 
studied i n  detail by Shveiko 11 1, who studied the case of relatively long 
shells (with ratio of length to radius larger  than two). 

The present paper i s  devoted to the peculiarities of the calculation of 
short shells and shells reinforced by elastic stiffeners, and to the first  
experimental resul ts  of the study of self-oscillations of cylindrical panels 
in a supersonic pipe obtained by Shandarov. 

shell. 
problem. 
can be written in the following form as  a function of the displacements of 
the middle surface of the shell: 

It is difficult to obtain an exact solution of the equations for a reinforced 
We have accordingly used variational methods for solving this 

The potential and kinetic energies of the shell and stiffeners 

n = n  (P. v, w, 
T =  T (&). 

The shell is considered a s  shallow, and the inertia in the direction 
lying in the shell surface is neglected. 
possessing tensile rigidity, torsional rigidity, and flexural rigidity in 
their plane. 
in  se r ies  whose te rms  satisfy the support conditions 

The stiffeners represent f rames 

The displacements of the middle surface will be developed 

jux N Jux ky 
I- 1 1 R  

N 
u = 2 ~ , / ( t )  cos -cos- ; v = ~ , ( t )  sin - sin* ; 

I R  I-' 
j X X  

N 
w = z  Wj(t)  sin - c o s 9  ( I ,  R a r e  the length and radius of the shell). 

I R  I" 1 

W e  impose the restriction k >2 on the number k of waves in the cir -  
cumferential direction, i. e . ,  we do not consider motions such as  general 
bending of the shell (k = 1) and axisymmetrical motions (k -0) connected 
with displacements of the ends a s  a whole. The coefficients of the se r i e s  
can be considered as generalized coordinates, and we can form the 
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equations of motion - Lagrange equations of the second kind: 

The generalized forces  have the excess  aerodynamic p r e s s u r e  
A P = A , - + A 2 - - g  dw d w ,  

Ox 

Depending on the form of the coefficients, this expression corresponds 
to the two-dimensional stationary theory or  to the l inear  variant of the 
piston theory. The solution of the equations of motion will be looked for 
in the form of harmonic oscillations, assuming the frequency of oscilla- 
tions to be  complex. 

calculations we obtain the following algebraic system of homogeneous 
l inear  equations: 

By introducing dimensionless pa rame te r s  and performing several  

LI (Vi, Wn, a, 6, Q,  E l * , + . . )  =0: 
Mi ( V n ,  w,. . .) =o. 

(J=l, 2.. .N) 

In this system the parameter  a character izes  the p r e s s u r e  and velocity 
of the supersonic s t r eam,  8 is the damping, Q is the frequency of oscilla- 
tions, €[*is the rigidity of the stiffener a t  bending in i t s  plane. Note that 
the system of equations has exactly the same  form for any number of 
st iffeners (equal and equidistant from each other and f rom the ends): the 
only difference will be in  the numerical  values of the coefficients. 

The next step is to determine the cri t ical  pa rame te r  a above which 
exist  values of 51 corresponding to unstable motion (ImQ<O). 
examined both a nonreinforced shell  and a shell reinforced by one f r ame .  

In the case  of an unstiffened shell  a coa r se  solution can be obtained by 
represent ing the displacements in the form of two t e r m s  (the number of 
waves in the circumferential  direction and of half-waves in the longi- 
tudinal direction is a rb i t r a ry  in each t e rm) .  

W e  have 

The condition for  small  influence of the damping 6 is, for  s teel  shells: 

Therefore,  the damping need be taken into account only in  the case  of 
Without allowing very thin shells subjected to longitudinal compression. 

for the damping i t  is possible to find the values of the minima abp by 
sorting out the possible values of the number of waves in the circumferential  
direction and the number of half-waves in the longitudinal direction. The re  
are two such minima, the f i r s t  corresponding to  short  waves in  the cir- 
cumferential direction and long waves in the longitudinal direction, and the 
second to  long waves in the circumferential  direction and short  waves in 
the longitudinal direction. 
second for  short  shells. 

The f i r s t  is smaller  for long shells,  and the 
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It was established by Shveiko that in the case  of long shells two t e r m s  
a r e  sufficient for  an approximate solution, and four give a practically exact 
resul t .  In the case  of short  shells, however, in which two fo rms  with 
frequencies lying in the region of very dense frequency spectrum a r e  
allowed for  in the two-term approximation, the influence of the neglected 
f o r m s  can be  very considerable. The basic  character is t ic  of the calcula- 
tion of short  shells is thus the necessity to take into account a l a rge r  
number of terms,  which leads to a higher-order determinant: 

lal, I =O 
for  n = j, 

The calculation of such a determinant was programmed and ca r r i ed  
out on the digital computer of the Computer Center of the Siberian Division 
of AN SSSR. The 
f i r s t  consisted in the direct  determination of the frequencies Q at  given a. 

By sorting out the a i t  is possible to obtain an idea on the variation of the 
frequencies in the s t r eam and to find aPp.  
calculations involved, only a few examples were calculated by this method. 

value Qkp by successive approximations. 
for a l l  the t e r m s  except those corresponding to the two-term approxima- 
tion, cer ta in  a(0) and QW), and we find a ( ] )  and 9'). The p rocess  is re-  
peated until the assumed and the obtained values coincide with the accuracy 
required.  
of several  hundreds of cases  calculated on the computer, there  were some 
ten cases  in which the p rocess  did not converge. 
obviously depends on the selection of a\O) and QW. 
methods i t  is possible to solve the probem in full. 

The calculation was conducted by two different methods. 

In view of the length of the 

The second method consists in determining ahp and the corresponding 
We substitute in the determinant 

No rigorous proof of the convergence of the method exists.  Out 

The method efficiency 
By combining both 

The r e su l t s  obtained by the two methods coincide satisfactorily.  
The r e su l t s  of the calculations, represented in the form of curves  and 

su r faces  passing through the calculated ahp, corroborate  that the second 
minimum of akp will be the sma l l e r  for a short  shell. 
shell  with radius/thickness ra t io  500, the f i r s t  minimum becomes sma l l e r  
for  lengths l a r g e r  than 1.3 radii. 

stiffened by a f r ame  i t  is absolutely necessa ry  to take a l a r g e  number of 
t e r m s  in the s e r i e s  expansions of the displacements.  It is unfortunately 
difficult to u s e  h e r e  an efficient method of successive approximations, 
since i t  is not c l ea r  which fo rms  and frequencies a r e  to be  considered as 
fund am ental. 

The calculations by the direct  method of the frequencies in the s t r eam 
of a shell  with unponderable frame having a l a r g e  tensile rigidity and z e r o  
torsional rigidity show the following. 

1. Certain fo rms  of instability have upper and lower values of aap;  the 
instability is replaced again by stability. 

2 .  The inc rease  in the flexural rigidity of the frame is not always 
accompanied by an increase in the cr i t ical  speed. 

In the case  of a 

In o rde r  to descr ibe satisfactorily the form of oscillations of a shell 
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3. It is necessa ry  to conduct the calculation in  a wide range of k, since 
i t  is very difficult to find the values of k character is t ic  for  the minimum 
ako a t  a rb i t r a ry  frame rigidites.  

responding to c lose frequencies.  

quadrant with sharpened inside edges and milled cavity. 
was fastened a panel with radius/thickness r a t io  of 2250. 
was connected to a pusher and an a i r  cylinder by means of which extension 
and compression of the panel were realized. 
pression were controlled from the control board.  
on a special  bench under vibration conditions close to the vibrations of a 
pipe. 

4. The damping must  be taken into account a t  f r a m e  rigidit ies co r -  

The experiments were  conducted with a model representing a cylinder 
Above the cavity 

The back edge 

The extension and com- 
The model was calibrated 

The calculations were subsequently converted to pipe conditions. 

0 

I 1  
1 “ I  I I  1. -1 I 

FIGURE 1 

After the model is installed in the pipe, the panel is extended by s t r e s s e s  
-300  kg,’cm2 for  the passage of the start ing jump. 
tense vibrations until supersonic conditions a r e  reached; after the passage 
of the s tar t ing jump the vibrations a r e  interrupted. 
acter is t ic  s tages  are observed with the variation of the longitudinal fo rces  
in the panel: 1) negligible local vibrations; 
running waves, embracing the l a r g e r  pa r t  of the panel. The appearance 
of these vibrations is taken as beginning of the self-oscillations; 
oscillations of the ent i re  panel, accompanied by deep nonlinear deforma- 
tions; 4) static buckling. 

The t e s t  r e su l t s  for  batches of 2 3  panels each show that the beginning 
of each of these s tages  has a probabilistic character,  apparently linked 
with the quality of the specimens.  
static buckling with the r e su l t s  of the t e s t s  of 15 panels for  s ta t ic  buckling 
on a vibrostand corroborates  the conclusions of Rolotin and Shveiko / 2 /  
on the stabilizing influence of the supersonic s t r eam.  

When comparing the r e su l t s  of the experiments and the calculations 
conducted with 1 6  terms of the series, one should specify that the conditions 
of support  of the calculations do not correspond to the experimental con- 
ditions of support (building in along all edges). 

A f i lm was shot of the experiments; i t  contains sequences for s eve ra l  
panels, and the mean values of the load a r e  given in the captions. 

The  panel suffers in- 

The following char-  

2) vibrations of the type of 

3) intense 

The comparison of the data of the 
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ON THE LARGE DEFLECTIONS AND STABILITY OF 
REINFORCED CONCRETE SHALLOW FLEXIBLE 
SHELLS ALLOWING FOR THE CREEP OF CONCRETE 

G.S .  G r i g o  r y  an 
(Yerevan) 

We shall consider a body made of reinforced concrete bars,  plates, 
and shells a s  a sandwich (figure), made of an isotropic concrete layer 
and two isotropic symmetrical reinforcing faces fastened reliably to each 
other (without possibility of sliding along the surfaces of contact). 

FIGURE. 

Let: a) the faces behave elastically, and the concrete layer have a 
linear creep, with equal Poisson ratios of the elastic and inelastic par ts  
of the deformation and equal modulus of elasticity and measure of creep of 
the concrete at extension and compression; 

b) the generally used assumptions of the theory of calculation of flexible 
plates and shells 111, based on the commensurability of their deflections 
with the thickness, be correct.  

The connection between the s t ress  a (C) and the unit elongation e (f) at 
axial extension-compression of the concrete, allowing for the creep, is: 

The resolving equations of the corresponding elastic shells preserve 
their form when the creep of concrete is allowed for; 
to replace in them the modulus of elasticity of the concrete E by the 
elastic operator E 12 ,  3, 41. 

it is only necessary 
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5 2. 

The fundamental equations of shallow flexible reinforced concrete shells 
allowing for the c reep  of concrete, on the strength of $1  and for* 

Pa = Pb= P (2 .1  1 
become 

where 

E a ,  Pa are the modulus of elasticity and the Poisson r a t io  of the faces; 
P b  is the Poisson r a t io  of the concrete layer .  
explained in the figure and in 111. 
(5.27) and(5 .28 )  of 111. 

through w by relationships obtained from the well-known formulas of the- 
theory of elastic shells (cf . for  instance 111, p. 234) with D replaced by D 
in accordance with (*). 

symmetr ical  shells 

The remaining symbols a r e  
Equations ( 2  ) correspond to equations 

The bending and twisting moments and shearing forces  a r e  expressed 

W e  s imilar ly  obtain for reinforced-concrete shallow flexible axi- 

where 
+ = - p ( l  - ~ * ) - ' E - ' T ~ ;  F = r [T , ( e+  8 )  + Q ] ;  

C, D a r e  operators  (*I. 
151. In 
the case  of a shallow spherical  shell  subjected to a load normal to the 
middle surface,  equations ( 3 )  reduce to 

The remaining designations a r e  the same  a s  in 
Equations ( 3 )  correspond to equations ( 1 9 )  on p. 263 of 151. 

corresponding to equations (59 ) on p. 282 of 1 5 1 .  

(2.4) 

A t  pa # pb a l l  the fundamental equations for reinforced concrete shells given below become somewhat 
different: no basic difficulties appear, however. 
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§ 3. 

Following /5/ ,  we assume* 

9 = ($ - P) 2' (4 (3.1 1 
By performing calculations similar to those performed in / 5 /  we reduce 
system (2.4), in the case of a shell simply supported.along the contour, 
to the following operatorial relationship: 

( a ,  + n2y,) ( 1  - K*) y1-t (0, + a,yJ ( 1  - K! : )  yT + 
+ 05y1 + a d ?  + + q u  = 0, (3.2 1 

where yo is a load parameter and u s ( s =  l , . . . ,  7) a r e  constants. 
corresponding to a one- layer (homogeneous) concrete shell we shall have 
instead of ( 2  ): 

In the case 

(al + 02y1) (1 - K")y, 4- ( " 4  -I- ad',) ( I -  K")d f yo=(J, (3.3) 
where a, (s = 1, . . ., 4) a r e  constants (somewhat different from those in ( 2  )).  

Relationship ( 3 )  corresponds to the cubic equation ( 6 3 )  on p. 284 of / 5 /  
The problems of determining the deflections of double-curvature panels 

rectangular in the plan and of lengthened cylindrical panels at uniformly 
distributed lateral  load a r e  likewise reduced to operatorial relaticnships, 
differing from ( 2 )  and ( 3 )  by the values of the constants only, on the basis 
of the f i rs t  approximations of the solutions of the corresponding elastic 
problems (treated in 111, chapter VI). When using the second approxima- 
tions the problems reduce to systems of two operatorial relationships, 
similar to ( 2 )  and ( 3 )  and containing each two unknown functions of 
time, etc. 

§ 4. 

Following Maslov- Arutyunyan' s linear theory of creep of concrete 
17, 81,  we represent the kernel of integral equation (1.1)  in the form** 

1 
K (t,7) = T ~ ( T )  E- D (T) eq@) J dz, (4.1 ) 

where 

(4.2 

(4.3 

where T, Co, A, a re  empirically determined parameters.  
Taking (1 ) through (4 )  into account, (3.3)t can be reduced to the 

Paper /5/ dealt  with the  elastic problem; here, in view of the presence or creep, the unknown constant C 
has been replaced (following /6/) by an unknown function of t ime Y, (t) .  

* *  We have assumed for simplicity's sake only tha tEb = const. 
in the  case E b  = E b  (t) as well. 

appear, however. 

T h e  same method of derivation can be used 

t If we start from (3.2), the formulas obtained w i l l  be more cumbersome. No other complications w i l l  
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following system of differential equations: 

-- dyl - yz; *z = Y (t,  y,, y,). 
dt  dt  (4.5) 

(4.6) 
By assuming for t fixed values which a r e  successively increasing and 

close to eachother~,<tl<tz<.-.<tn<...,weobtainfrom ( 3 . 3 )  and(4.6) ,  
taking (4.1 ) through (4.4) into account, the following approximate formulas 
(on the basis  of Bogolyubov-Krylov's method / 9 / ) :  
a t  t = ~ ,  Sa0 = .V 1:. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  
and the following algebraic equations: 
at  t = T 1  

9 0  + ~ 1 o  +(az+a4)~1; + any,: = 0; 
at t = t l  

(4.7 1 

--c(t,. 4]YI:]  + y : q  = o  (4.9 1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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where 

Once system ( 5 )  or  ( 7 )  through ( 9 )  is solved, the determination of the 
design magnitudes of the shell presents no difficulties. 

$ 5 .  

The creep of concrete leads to the increase of the displacements of 
reinforced-concrete structures with time under a constant load. 
on the value of the load, this process can, in thin-walled structures after 
a certain time, lead to the loss  of stability (buckling) of the original equi- 
librium form. 

motion / l o / ,  it is possible without solving system (4.5) to determine the 
maximum of all values ~ , , = 9 ~ ~ ,  for which the corresponding particular 
solution of system (4.5) will be stable at  anyt>.r,, i. e . ,  to determine the 
cri t ical  value of the load parameter under conditions of creep. By taking 
in the final results values of the parameters caused by creep of the material 
equal to zero, we can obtain the critical value qo = 90* of the load parameter 
in the case of elastic behavior of the material. 

Depending 

W e  shall show that, on the basis of Lyapunov's theory of stability of 

Let 

(1 - K*)Y;= Ys. (5.1) 

then (3.3) reduces to 

( 1 - K*) y, = P, 
where 

(5.2) 

(5.3) 

On the strength of (4.1) through (4 .4) ,  ( 2 )  can be rewritten in the form 

YO+ TYZ = p +  q'P, (5.4) 
where 

(5.5) 

(5 .6)  
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W e  obtain from (1 ) 

w h e r e  

R e w r i t e  ( 8 )  a n d  ( 1 0 )  in the  form 

w h e r e  

R e w r i t e  (4) i n  t h e  form 

w h e r e  

(5 .9)  

(5 .10 )  

( 5 . 1 1  ) 

( 5 . 1 2 )  

( 5 . 1 3 )  

( 5 . 1 4 )  

( 5 . 1 5 )  

( 5 . 1 6 )  

( 5 . 1 7 )  

( 5 . 1 8 )  

( 5 . 1 9 )  

(5 .20 )  

(5 .21 ) 

(5 .22)  
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To the given fixed value of the load pa rame te r  

c 

G'o 6 qar (5.23) 

l e t  there  correspond the par t icular  solution of system ( 5 )  and (20) 

Y I ( 0  = f 1  (i): Y a  ( t )  =fz(t). (5.241 

Assuming that solution (24 )  is stable according to  Lyapunov, we 

Following Lyapunov and transforming the system of equations ( 5 )  and 
determine q,, . 
(20 )  to new variables 

X I  (f) = ys ( t )  - f. ( t ) ,  ( s  = 1,2), 

where x , ( t )  a r e  the disturbances,  we write 

(5.25 

dx, -= ___ MI ( t %  j ,  + 4. -___- fz + 4 Ml (t. fl. f 2 j  , (5.26 
dt M (f, f L - t  4) M ( t ,  fl) 

The problem of the stability of the particular solution (24 )  of the system of 
equations ( 5 )  and ( 2 0 )  is equivalent to the stability problem of the tr ivial  
solution x1 = .y2 = 0 of system ( 2 5 ) ,  ( 2 6 ) .  
we r ewr i t e  ( 2 6 )  in the form 

By singling out the l inear t e r m s ,  

where p 1  ( t )  and y 2  ( t )  a r e  determined by the well-known formulas 

(5.27) 

(5.28) 

(5.29 ) 

The subscr ipt  0 h e r e  designates that af ter  the differentiation one is to 
write x1 = sz = 0. 

problems i t  is sufficient to consider values of t l a rge r  than any a rb i t r a r i l y  
l a r g e  T and to replace the examination of the initial values of the functions 
nr by the examination of their values corresponding to  t =  T " .  

In accordance with this, we shall  consider in all subsequent calcula- 
tions in this  section t to be l a r g e r  than an arbi t rar i ly  l a rge  T .  

A s  known, the growth of the displacements in conditions of creep is 
dampened a t  t + 00 in stable reinforced-concrete s t ructures  / l I / .  
fore,  taking (24 )  into account, we can write 

A s  was shown by Lyapunov ( / l o / ,  p.  56), "when solving stability 

There-  

f, ( t )  = fl = const. 

f2W = 0. 

We have in this ca se  
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(5.34) 

(5 .35)  

Thesubsti tutionof (32 )  through (35 )  in ( 2 8 )  and ( 2 9 )  yields 
PI ( 4  = 0, (5.36) 

A ( t )  = p  = 'I ((1 fee,) [a,%+ (a$%- a,a,)(l - P)fi] - 
- (a1 + azfi) [QI f (a,  + 2a4)fi-k 2 a A  1 { [(%% - W d X  

( l - K * ) f ; -  a ,q , ]+(%+azfi)  1% +(Uz+2a,)fi+2a,f~]}.-' (5.37) 

It can be shown that a t  t > T the nonlinear addition X in  (27 ) l ikewise does 
not depend explicitly on t .  
t r ivial  solution x, = x, = 0 of the system of differential equations 

The problem is thus reduced to  studying the 

(5.38) 

where the right-hand p a r t s  do not contain t explicitly; 
problem is reduced to the problem of the stabil i ty of steady motion. 

in other words, the 

In accordance with Lyapunov's well-known theorem, a t  

P > O ,  (5.39) 

the trivial solution of sys t em (38 ) is unstable, independent of the l i nea r  
addition X. 
the t e r m s  which do not contain x,  are equal to zero.  
(cf. / l o / ,  pp. 100 to 118), and taking 

Note that all the t e r m s  in the expansion of Xcontain x l ,  since 
Following Lyapunov 

z1 = x,; z e= - px ,  + x,, (5.40) 

we reduce sys t em (38 ) to the form 

X ( Z , ,  E ) ;  3. = pz, +z. 
dz 
dt d t  
-=  (5.41) 

Taking 

pz, + = 0, 

we obtain 

2 --L. (5.42) 

Substituting (42 )  in  the right-hand p a r t  of the f i r s t  equation of sys t em (41) ,  
we note that i t  becomes identically zero,  whence, in  accordance with 

P 1- 
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Lyapunov's theorem (cf. / l o / ,  p.118), we conclude that for 

P < O  (5.43) 

the t r ivial  solution of system (38 ) is stable. 
( 3 9 )  and stabil i ty for  (43 ) ,  qol must  obviously be determined f rom the 
condition 

Since we have instability for 

p = o .  (5.44) 

F r o m  here,  allowing for  (37 ), we obtain 

+ ( 1  + ECO) (ala3 - aZQ4) (1  - K*)f3. 
Here  f L p  designates the value of fl a t  qo = qol. 

L e t  
(1  - K * ) f :  = fJ. 

(5 .45)  

(5.46) 

Since we a r e  considering the c a s e  t> T, we can wri te  approximately 

'p (.) - co. (5.47) 

Substituting (47 ) in (46), differentiating by t ,  and taking into account that 

f1' = fj= 0, 
we obtain 

(5.48)  

(5.49 ) 

We obtain in the s a m e  way 

On the strength of (24 ) ,  (49 ) ,  and (50 ) ,  the initial equation (3 .3 )  can be 
rewri t ten in the form 

(5 .51 )  

On the s t rength of ( 4 6 )  and (49) ,  ( 4 5 )  can be rewri t ten i n  the fo rm 

+ (ala3 - %$%)&]. (5 .52)  

which was obtained direct ly  f rom (3.3) ,  and the second corresponding to the 
boundary of the stabil i ty region. 

By equating the left-hand and right-hand p a r t s  of (51 ) and ( 5 2 )  we obtain 

We have thus obtained two cubic equations (51)  and (52) ,  the f i r s t  of 
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whence, taking into account that 

w e  obtain finally 

If the roots  of equation (53)  a r e  real ,  the system will buckle a t  a 
sufficiently l a r g e  value of q o .  
(51)  or ( 5 2 )  we can determine.the upper and lower values of qo,. 

creep has  thus been solved. It is very important, however, that we can 
also determine the cri t ical  load qo*, by taking C,, = 0 in (51) ,  which 
corresponds to  the case  of absence of c reep  in the mater ia l .  This equation 
will be designated by (51' ) .  
(in a f i r s t  approximation by the Bubnov-Galerkin method) is to obtain the 
cubic equation (51 ' ) ,  to differentiate i t  by f l ,  and to equate the expression 
obtained to zero; this yields a quadratic equation coinciding with (53) .  The 
roo t s  of this equation a r e  substituted in (51 ' )  (provided they are real), and 
qov is obtained a s  a resul t  /1, 5 / .  

theory of stability. 
directly on the basis  of Lyapunov' s theory of the stability of motion; 
m e r i t s  attention in the author 's  opinion. 

applied in calculations using the second, third, e tc . ,  approximations in the 
Bubnov- Galer kin method. 

By substituting the (real) roots  of (53 )  in 

The problem of determining the cr i t ical  load qm gnder conditions of 

The modern procedure fo r  determining qo* 

Such a method for obtaining equation (53 )  is not based directly on the 
In the above calculations equation (53) was obtained 

this 

The method expdsed for  determining qol and qoe can obviously also be 
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STRESSED STATE OF A CIRCULAR THICK DISK IN 
A FIELD OF CENTRIFUGAL FORCES 

V .  T .  G r i n c h e n k o  
(Kiev) 

S I .  SOLUTION O F  THE PROBLEM 

The r igorous solution of the problem of the s t r e s sed  s ta te  of a c i rcular  
thick disk in a field of centrifugal forces  necessitates finding a solution of 
Lame ' s  equations 

which sat isf ies  the boundary conditions: 

a t  z = h  U , = T , ~ = O ;  at r = l  o,=T,=O. (1 .2)  

We use  a cylindrical  system of coordinates(r. L), with the plane L = 0 coin- 
cidingwith the middle plane of the disk. The following s y  -bols a r e  used in the 

m formulas: M = -, where m is the Poisson ratio; p is the density of 
m -2 

the disk material;  
related to  the radial  u and the axial w components of the displacement 
vector by the relationship 

o is angular velocity; e is volumetric expansion, 

I d  dw 
r dr dr 

O = - - ( u r )  + -- . (1.3) 

To obtain a solution of (1.1 ) with a degree of a rb i t r a r ines s  sufficient for 
satisfying the boundary conditions (1 .2), we u s e  a method inspired from 
Lame ' s  paper on the parallelepiped. Such an approach to the solution of 
tridimensional problems of the theory of elasticity for regions bounded by 
perpendicular su r f aces  has  lately been developed in 1 2 - 6 1 .  

elegance of this approach not only from working out the solution, but a lso 
from obtaining numerical  resul ts .  

plane z = 0, we r ep resen t  the problem solution in the following form: 

The specific problem considered h e r e  can, in our  opinion, show the 

On the strength of the symmetry of the displacement field relative to 
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where 

Do, Bo, D., B,, A i ,  Cia re  a r b i t r a r y  constants, to be determined so as to  

satisfy the boundary conditions ( 1 . 2 ) ;  
h 

of the equation J1 (A) =O. 

law: 

kn = n 2 (n=l,  2. a * ) ,  A; a r e  roots  

The following expressions for the s t r e s s e s  a r e  obtained f rom Hooke’s 

1 D, 3m -2 m 
~ o ? = =  - --Bo+ - A r * +  - C +  

m--2 j - 1  2 m - 2  

3m - 2  4 m-I  
10 ( k n  r )  +- - 1, ( k ,  r )  ] 1 cos knz, -- 

k,r m m 
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The boundary conditions for the normal s t r e s s e s  yield the following 
relationships between the integration constants: 

The boundary conditions for the shearing s t r e s s e s  yield in turn the 
following relationships: 

A j h j =  - C, 2 __- [ mi' 
( 1 . 7 )  

Using the expansions 

and relationships ( 1 . 7 ) ,  w e  obtain from the f i r s t  equality of ( 1 . 6 )  

Similarly, using the expansions 
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w e  obtain from the second equality of (1.6), allowing for (1.7): 

De -- B,=O, 
2 

(1.11) 

The simultaneous solution of the f i rs t  equations of (1.9) and (1.11) yields 

( 1 . 1 2 )  

Introducing new variables, defined by the relationships 

16A 
m-2  

(-1)" Bn 4 kn J1 (k , )  = - ~n - * 
4 h s h 3 1 h  = - 16A 

ci Jo (Ai) Y i m - 2 '  

we transform the system of equations (1.9 ) and (1.1 1 ) to the following form: 

1 - 2  
A/ 

sj y j =  5 Xn 
,,=I ( k i  +i:)2 + J '  

m k: (1.13) 

/=I (kln+).?)Z ' 
A a  xn ZYJ 

where 

$ 2 .  STUDY O F  THE INFINITE SYSTEM (1.13) 

System (1.1 3 ) wil l  be studied by Koyalovich' s method / 8  1 .  
1. On the basis of the theorems of Hobson and Dirichlet relative to 

the convergence of Bessel-function ser ies  and trigonometric series,  we 
obtain from expansions (1.8 ) and (1 . l o )  the following equalities: 

where the functions 'p (i) = ' a re  obviously positive 

definite and do not exceed unity. 
2 m  k; A,, 
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2.  After the function 'p ( i)  has been found it becomes obvious that the 
value K =  2 can be used in the inequality 

3 .  It is likewise easy to show that the inequalities 

( L  for n<f x: 
sj p (j)-$m 

2m 
(m + 1) 25' 

w i l l  be fulfilled if we wri te  1- .~ L =?. 

4. In o r d e r  to fulfill the inequalities 

for  any p ,  we must  take a s  y the l e s s e r  of the two numbers  

50 k, A ,  1: ' 

law of asymptotic expressions applies to system (1.13):  
and y j  tend to  the s a m e  magnitude q with the inc rease  of the index. 
Koyalovich' s theory of infinite systems provides no means for  determining 
the numerical  value of this limit; nevertheless,  i t s  existence itself is of con- 
s iderable  importance in the numerical  solutionof sys t ems  of the form (1.13). It 
indicates in fact that Koyalovich' s limitants, which bound the solution f r o m  
above and below, will become arbi t rar i ly  close with the inc rease  of the 
number of equations "cut" from system (1.13);  i t  follows that the value of 
all the unknowns in system (1.1 3 )  can be determined with any desired 
accuracy by solving a finite system of algebraic equations. This is t rue  of 
the general  ca se  of infinite systems obtained when considering the f i r s t  
and second boundary-value problems for  a c i rcular  cylinder of finite length. 

An additional conclusion relative to the possibil i t ies of the approach 
described follows from the law just  proved about the asymptotic expressions 
for the infinite system (1.1 3 ) .  
s t r e s s e s  shows that the s e r i e s  in them diverge on the angular c i rcumference 
of the cylinder. 

Consider a s  an example the s t r e s sed  s ta te  of a ''cubic" cylinder, i. e. ,  
a cylinder whose thickness is equal to the diameter.  
unknowns of (1.1 3 ) with deficit 3,. , F, and of the unknowns with surplus  
X,, Vj [i. e . ,  the values of the approximations f rom below and above] a r e  
given in the table, together with the value of the e r r o r  i n  70 allowed when 
the middle value between the two is used in the calculations. 
were  calculated using the first nine equations in each infinite system in 
(1.13), which gave an accuracy of 2.5% in the determination of all unknowns. 
For lack of space we do not give h e r e  the bulky but actually elementary 

' 
32 A] SI x 

and 
1 

The fulfillment of the additional inequalities 3 and 4 indicates that the 
the unknowns X, 

__ _- 

An examination of expressions (1.5 ) for  the 

The values of the 

The unknowns 
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calculations involved in the assessment  of the l imitant boundaries in 
successive approximations. 

N 0. 

1 

2 
3 
4 
5 
6 
I 
8 
9 

>9 
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A P P R O X I M A T E  SOLUTIONS OF S E V E R A L  PROBLEMS 
OF STRESS CONCENTRATION ABOUT HOLES IN  
ISOTROPIC A N D  ORTHOTROPIC SHELLS  

A . N .  G u z '  

(Kiev) 

One of the possible approaches to the study of s t r e s s  concentration 
about holes was proposed by Savin 141. 
is represented a s  the sum of the s t ressed state of a shell without hole and 
the disturbances caused by the presence of a hole. 
mentally established that the disturbances a r e  purely local. 
fore assumed in 141 that these disturbances can be described by the 
equations of the theory of shallow shells. 
here  in studying the s t r e s s  concentration about holes in shells. 

The s t ressed state of the shell 

I t  has been experi- 
It is there- 

This approach will be used 

5 1. APPR.OXIMATE METHOD FOR STUDYING THE 
STRESS CONCENTRATION IN ISOTROPIC SHELLS 
ABOUT QUASI-CIRCULAR HOLES 

Consider an arbi t rary isotropic shell weakened by a hole. We shall 
represent  the middle surface in the polar system of coordinates ( r ,  e), with 
the pole coinciding with the hole center.  Following 141, consider the 
plane of variation of the variables r and 0 (plane z ) .  r is the hole contour, 
p i s  the radius of the circular hole which is most s imilar  to the hole con- 
sidered, a and p a r e  curvature lines, x and y a r e  axes of the Cartesian 
system of coordinates, coinciding with the axes of symmetry of the hole, 
J( i s  th_e angle between the radial direction and the direction of the normal 
to r, n is the unit vector of the normal to r (Figure 1).  We assume that 
the function z = w (0 (z=ref8;C = rle'') conformally maps an infinite plane with 
circular hole of unit radius into an infinite plane with hole limited by the 
contour 1'. We shall t reat  holes for which 

The problem reduces /4/ to solving the equation 

v*v2 CP - i 3 p: 4 = O  ( 2 )  

for specified boundaryconditions. The symbols used in ( 2 )  have the 
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following meaning: 

We shall consider the boundary conditions in forces only 

where 0 = w + in T, WJ i s  the deflection, q, is the s t r e s s  function, and n 
and x a re  constants. 

FIGURE 1. 

The problem will be solved approximately, using the method of 
"boundary perturbation" 1 3 1 .  Such a method was used by Lekhnitskii / 2 /  
in solving the problem of anisotropic plates; 
represented through analytical functions of a complex variable. We shall 
proceed here  a s  follows. 
system of coordinates be represented by the Fourier series: 

after the solution had been 

Let the solution of equation ( 2 )  in the polar 

-z 

@ ( r ,  6) =E f i p  ( r )  cos k CJ +f2b ( r )  sin 20. ( 4 )  
k = O  

The possibility of such a representation is suggested by the fact that a 
solution of the form of ( 4 )  was obtained for spheric-d and conical shells. 
Knowing @ ( r ,  e), we can determine T,,. ., Q r ;  T,,. . ., Qn on the contour r a r e  
then determined by the transformation formulas corresponding to rotation 
of the coordinate system through the angle e .  
r = r  (y, e ) ;  0 = 6  (7 ,  E),$=+(:, €)on the contour r. 
of the s t ressed state of the shell on contour r and 0 ( r ,  6) in the entire 
region a s  se r ies  in powers of E :  

- 

Using (1 ), we can determine 
Represent the components 

- m -  m 

T,lr = jj Ei T,?;. . . ; Q , I ~ = ~  €1 QY; (I, e) = 2 E / c p i  ( r ,  e). ( 5 )  
i-0 j i 0  J-0 

The boundary conditions ( 3 )  will be expanded likewise in ser ies  by the 
powers of E .  In order  to determine, for instance, T, r ,  we must determine 
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T,, -.., S,o, through 0 ( r ,  e),  and then use the formulas of transformation of 
the forces corresponding to rotation of the system of coordinates; 
finally obtain 

we 

Tm =f [O ( r ,  e), '#]b - r (1. s); I - E (1, s); 9 - (7, z). ( 6 )  

By substituting ( 5 )  in ( 2 )  and ( 4 )  and equating the coefficients of equal 
powers of E we obtain 

i. e . ,  we can write directly the solution for the j-th approximation. 
order to determine fil), . . ., Q!) we develop in ser ies  by E expressions of 
the type of ( 6 ) :  

In - 

m-0 

where Lit-" a r e  differential operators, with Lie' 3 0. These operators were 
obtained for the zero, first, and second approximations; we do not present 
them here however for lack of space. The following expression is obtained 
for Tslp: 

The only unknown in (7 ) is 4, (p. T), while 0, ( r ,  e )  is already known from the 
preceding approximations. 
r is replaced by p, and 0 by 7. 
for determining the stressed state components in the polar system of 
coordinates, we note that T:' is expressed through 91 ( p ,  y) in the same way 
a s  T, is expressed through @ ( r ,  e) ;  
more accurately 0, ( r ,  e ) ) ,  i t  i s  a solution of ( 2 )  in the polar system of 
coordinates. Formally, therefore, the problem of the successive approxi- 
mations has been reduced to the problem for a circular hole of radius p 
in the C plane. 

concentration about elliptic, triangular, and square holes in plates. It 
turned out that the expansion of the concentration factor obtained by the 
rigorous solution coincides with an accuracy up to P (the problems were 
solved in the zero, f i rs t ,  and second approximations) with the value of the 
factor obtained by the approximation method. 

we obtain even for = 1.5 an e r ro r  of only 6 %  in the f i rs t  approximation, 

and of 2 % in the second approximation. 

0, (p ,  7 )  is to be understood a s  01 ( r ,  e), in which 
Comparing ( 7 )  with the known formulas 

a s  to the function c P / ( p ,  TJitself ( o r  

The convergence of the method was tested on problems involving s t r e s s  

Thus, for an elliptic hole 
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§ 2 .  STRESS CONCENTRATION ABOUT A CURVI- 
LINEAR HOLE IN A SPHERICAL SHELL 

Consider a spherical shell loaded by a uniform pressure and weakened 

We shall assume boundary conditions which 
by a hole of the above-considered shape, covered by a lid which transmits 
only the shearing force / 4 / .  
a r e  a generalization of the conditions adopted in 1 5 1  for an elliptic hole. 
The functions giving the solution in the zero, first, and second approxi- 
mations a r e  respectively: 

Q~ ( r )  = ( c t 0  + i & O ) ~ b "  (rx v 3 )  . ( 9 )  

a--6. 
2 a+ b' 

For an elliptic hole: p = a + b  -; E = - N = l ;  

For an equilateral triangular hole: E =0.25; N =2: 

0, ( r ,  6) = 1 (c:~ + i d y )  r-3 + (c:" + i d23) Hi' '(rx m)] cos 36;  

o ~ r ,  e)= i&'in r +- (c$' + i&')~!," (n V-i)+ { ( c ? ~  + i d 3  r - 3  + 
+ ( ~ 2 ~  + ~ 4 ' )  (r x f?) COS 3 e + 1 (e?+ id:6) r-6 + (CY + 
+ i&?) Hi') ( r x F i )  ] cos 6 0. (11 1 

1 
9 6 

For a square hole: E = + - or  -, N = 3 ,  

Q1(r,  e) = { (c:.*+i&')r-4+(~2' + 
=i&OIn r + (c?' + id?') 
+ ( ~ 2 ~  + i, ail) H Y ) ( ~ X  fX) COS 48 + ( (CY + id?) r-8 + 
+ (c?8+id?8) HE' (n fz) ) cos 8 9. 

H:') (rx v z ) ]  C O S ~ B ;  ( r ,  e) = 

( r x  V X )  + { (c?' + idF4)r-4 + 

(121 

Here fii')(rxv?) is a Hankel function of the f i rs t  kind of order k /1/; c ? ' ,  

&'a re  constants. Consider a s  an example the s t r e s s  concentration about 
an elliptical hole: 

R =250cm; 

Using (81, (91, and (101,  

/1=0.3cm; aLb =10.5cm: 
2 

we obtain in a f i rs t  approximation 

k =4.295 + 12-768 E COS 27. 

v = 0.3. 

(13) 

The advantage of the solution given here  for an elliptic hole over that 
proposed in /5 /  consists in the fact that in the final formula (13)  there 

a - b  appears the parameter e =  __ (only p= a*b is fixed). a f - 6  2 
it possible to calculate easily the concentration factor for an entire family 
of elliptic holes. 

This fact makes 

The resul ts  of the calculations a r e  given in Table 1. 
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n. cm 1 b,cm 1 1 
4,295 
4 .295t0 .613 cos 2 7 
4 295+1.162 cos 2 7 
4 . 2 9 5 t  1.660 cos 2 1 
4.295+2.170 cos 2 7 
4.295+2.554 cos 2 y 

10.5 
I t  0 

4.295 4.295 
4 508 3.628 
5.457 3.133 
5 955 2.635 
6.465 2.125 
6.849 1.741 

11.4 

12.9 

11.7 
12.3 

1 
1.1 
1 .2  
1 . 3  
I .4 
1.5 

TABLE 1 
- 

k 

§ 3.  STRESS CONCENTRATION ABOUT A CIRCULAR 
HOLE REINFORCED BY A N  ABSOLUTELY RIGID 
PIPE SOCKET IN A CYLINDRICAL ORTHOTROPIC 
SHELL 

Consider a cylindrical orthotropic shell loaded by a uniform internal 
pressure p and weakened by a circular hole of radius r, reinforced by an 
absolutely rigid pipe socket. 
and le t  the elastically equivalent directions coincide with the directions 
of the generator and the directrix. 
a s  follows: 

Let the basic s t ressed state be momentless, 

The boundary conditions a r e  written 

( u +  "0)I =o; ( V + q  =o; - d (a1 twO))  =o; 
r - r .  r= ro dr I - r .  

uo, vO. w0 a r e  displacements from the basic s t ressed state.  
was solved by the Ritz method, using the relationships of the theory of 
shallow shells. The displacements, satisfymg the conditions "at infinity" 
141, were selected in the following form: 

The problem 

Six constants were determined irom the boundary conditions, and the 
remaining four from the condition of minimum of the total potential energy. 
A system of four algebraic equations was obtained for determining these con- 
stants; it is not given here for lack of space. Consider a s  an example the shell 

E;  v = 0.3; R = 100cm; h -0.5 cm; ro =5cm. 

The shell is stiffened by ribs in such a way that Ex =2E and EJ = E, and is 
calculated a s  an orthotropic shell. Table 2 gives the maximum values 

of k 21 
the bending s t resses .  

(where po = Rp@h), allowing for the membrane s t resses  and 

Figure 2 represents graphically the distribution 
Po r z r o  
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of & along the hole contour a s  a function of the angle 8 .  
the table that the influence of the orthotropy on R is considerable a t  0 = 0" 
( i t  increases  by 33% in an orthotropic shell), but that the maximum value 
of k increases  by 5 %  in all. 

It i s  seen from 

- orthotropic shell E p 2 E y  ---- isotropic shell 5=0.3 -- --- isottopic plate 5=0.3 

Yj 

FIGURE 2. 

TABLE 2 

0' deg 

0 
1 0  
20 
30 
40 
50 
60 
70 
80 
90 

lsotropic 
plate 

1.60 
1.65 
1.77 
1.96 
2.30 
2.44 
2.67 
2.83 
2.98 
3.02 

Isotropic 
shell 

2.50 
2.50 
2.37 
2.46 
2.41 
2.58 
2.98 
3.45 
3.73 
3.82 

Irthotropic 
plate 

1.82 
1.87 
1.99 
2.20 
2.45 
2.71 
2.96 
3.16 
3.29 
3.34 

)Rhotropic 
shell 

3.32 
3.15 
2.98 
2.83 
2.99 
2.92 
3.06 
3.50 
3.88 
4.00 
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ON THE NONLINEAR VIBRATIONS OF ELASTIC 
SHELLS  UNDER RANDOM LOADS 

M . F .  D i m e n t b e r g  
(Moscow)  

The problem of the random vibrations of plates and shallow shells is 
linked with the problem of estimating the fatigue life of many thin-walled 
s t ructures  loaded by random forces 111. The question of the probability 
density of the extreme values of the deflections and s t r e s ses  in the case 
of nonlinear vibrations was treated in 1 2 1  for the case of a disturbing 
process  of finite energy. 
and the average number of "snap-throughs" of the shell under the action 
of random disturbances is determined. 

described by a system of two equations in partial derivatives; 
inertia forces a r e  neglected. 
ly  distributed random function of all i ts  variables, stationary in time, with 
a zero mean value at  each point. 
reduced to a system of n ordinary second-order differential equations 
relative to the generalized coordinates of the normal deflection. 
hand par ts  of these equations contain the normal generalized forces  Q j ( t ) ,  

whose elements of the matrix of spectral  densities a r e  determined by the 
relationships 

Some of the resul ts  of 1 2 1  a r e  developed below, 

1. The motion of an elastic shallow shell rectangular in the plan i s  
the tangential 

The load q ( x ,  y, t )  is considered a s  a normal- 

Using Galerkin' s method, the problem is 

The right- 

QQjQJ")  = 
d n b h  

(/, k = 1, . . ' ,  n), 

Here Qq4 is the spectral  density of the load, vj a r e  coordinate functions 
of the normal deflection (e .  g . ,  the modes of small  natural oscillations of 
frequencies w j  and norms vi ); p, h ,  a ,  b a r e  respectively the material  
density, the thickness, and the length of the sides of the shell. 

Markow processes  and Fokker-Planck-Kolmogorov equations. 
assumed that the generalized forces Q j  ( t )  a r e  connected with the white 
noises by a system of several  linear differential relationships. 
examine this assumption more closely. 
fulfillment is the possibility of representing the spectral  densities c D Q l Q ,  (uI), 
determined by (1.1 ), in the form 

The shell motion is described in / 2 /  by the theory of multidimensional 
It is 

We shall 
A necessary condition for i t s  
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Here  c j k  a r e  a rb i t r a ry  mutual intensit ies of the white noises; the 
R e  can write cjj = 1, a s t e r i sk  designates a complex conjugate function. 

and then 0 5 cjk Q 1. The functions V j  (iw) a r e  of the form 

(1.3) 
Vi (iw) = ai0 -1- a11 ( i ~ j ) +  . . . + a j s j  ( iw) . i  

bjo + 6ji (iw) -+ . . . + bjrj ( i w )  r j  
' 

where a ,  b a r e  constants. 
The question of representing the principal elements of the ma t r ix  

@ Q ~ Q ~  ( ( 1 1 )  in such a form poses no basic difficulties. Any r e a l  spectrum 
which does not contain discrete  components can be approximated with a 
sufficient accuracy (exceeding the measurement  accuracy) by a fractional 
rational function. A s  to the secondary elements, they do not satisfy in 
the general  ca se  relationships ( 1 . 2 ) .  In many important par t icular  c a s e s  
these relationships a r e  nevertheless fulfilled. 
examples of this.  

We shall  give seve ra l  

a) Qqq (tu, ij9 t2. ql. d = Y (w)  F (5. €,, q2). (1.4a) 

To this type belong the cases  of a load determined and delta-correlated 
in space.  

b)Q, ( w ,  E l ,  5,. q2)= V (u) F ( E l ,  ql) Fs (E2, q2) .  (1.4b) 

To this type belongs the important ca se  of a "wave-type" load, correspond- 
ing to acoustic p r e s s u r e  in a remote field, to passage through a non- 
homogeneous medium, etc.  

(1.2) a r e  not fulfilled for the secondary elements of the matr ix .  Equation 
(2.3) of / 2 /  r ema ins  however approximately c o r r e c t  for  this c a s e  as well, 
since, a s  can be seen from the solution of the l i nea r  problem /l/, the 
pa r t  played by the secondary elements of the spectral  density ma t r ix  of 
the generalized forces  is small  compared with the pa r t  played by the 
principal elements.  

Designate by i the ra t io  of the generalized coordinate f to the thickness. 
We have then in the general  ca se  the ordinary differential equation 

Generally speaking, there  can exist types of load for  which conditions 

2 .  Let the normal  deflection be approximated by  one t e r m  of the s e r i e s .  

d2E d€ 
dt2 dt 
- -I- 2zwo - + d [t + g (:)I = Q ( t ) .  

Here  g (E) is some nonlinear continuously differentiable function. For 
an elast ic  curved panel, taking Karman' s equations a s  initial equations: 

g ( E )  - aE3 + p €2, ( 2 . 2 )  

where a, @ a r e  constants. 
refine the Karman equations, and then the function g (€)becomes more  
complex. 

Let Q ( t )  be an exponentially correlated random process  of spec t r a l  
density 

At very l a r g e  deflections i t  is necessary to 

(2 .3)  
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whereD,, ‘c0 are constants. W e  obtain from (2.1 ) and (2.3) 

where + (t)is white noise of spectral  density D0/2z. 
spectrum be wide-banded (wo r0((l), and the damping small(€ < I ) ;  the 
o rde r  of magnitude of the parameter  ~E/w,T, can be  a rb i t r a ry .  
t e rm in the parentheses before d*i/dt2can then be neglected compared with 
unity, and (2.4) reduces to 

Let the excitation 

The second 

(2 .5)  

Introduce the designations dE/dt = 7, dy/dt = i and form the Fokker- 
Planck-Kolmogorov stationary equation for the common probability density 
of the coordinates, velocities, and accelerations p(E. q, C): 

(2.6) 

The solution of this equation i s  of the form 

P ( 6  4, 0 =Po ( E ,  t) PI (111, (2.7) 
1 1 

D~ (E, i)= -- - exp (w: [ E  + g ( E ) ]  t L ) ~  - 2rcJi,,Co 

Her e 

( 2 . 1 0 )  

A particular ca se  of solution (2.7 ) through (2 .9 )  for the function ( 2 . 2  ) was 
treated in 11 1.  

The probability density of the coordinate p (E) is 

The constant J is determined from the conditions of normalization of 
(2.11).  
of the Fokker-Planck-Kolmogorov equation corresponding to  excitation 
by white noise. 

We shall  now determine the density of the ex t r ema  II (Emn), tz (€,,,I,,), 
i. e.,  the t ime averages of the number of extrema lying within the l imi t s  
f rom E to E + & .  By substituting (2.7),  (2.8),  and ( 2 . 9 )  in Re i s s ’  

Note that the product p (E) p 1  (q) coincides with the exact solution 

3. 
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formula /3/  

where m = ( o ~ T ~ / ~ E ) ' / * .  

spectrum of the function E ( t ) .  The correlation time for the noise of a i r -  
craft  engines is of the order  of sec 161 .  The corresponding values 
of m a r e  usually small. Thus, a t  wo = 100 sec-l, c = 0.025, m = 0.31 6. 
At m>l(narrow-banded process) we can obtain from (3.1) and (3.2) the 
asymptotic relations hips 

The parameter m characterizes the "width" of the 

The following resul ts  given below correspond to the case when g(E) 
An important part  is played by the parameter 

This means that the shell has two stable (0, E,) and 

is determined by ( 2 . 2 ) .  
of asymmetry of the nonlinearity 7 = At >2 the equation dp(E)/dE-O 
has three real  roots. 
one unstable (t,) equilibrium positions 

FIGURE 1. 

Figures 1 and 2 represent curves of the relationships (3.1) and (3.2) 
a t  7=2.l .  ati=I (n*=n+2?r JEo/o,). It is easily seen that the shape of the 
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curves depends strongly on the parameter  nz, although the curves become 
s imi l a r  a t  l a r g e  [/Eo. 
141, for the case  g (E)=at3, on the basis  of different considerations, based 
on the assumption that the process  E ( t )  is narrow- banded, when E <1. 
Actually, a s  seen f rom the analysis,  in o rde r  that the p rocess  be narrow-banded 
it is necessary that condition m > 1  be satisfied in addition to condition E << 1. This  
is the reason for  the difference between the curves represented in Figures  1 and 2. 

The asymptotic relationship ( 3 . 3 )  was obtained in 

FlGURE 2. 

4. In determining the average number of extrema of the s t r e s s  S o n e  
uses  the ru l e s  of calculation of the distribution of a function of a random 
magnitude / I  1 .  The expression for  S (E)  is of the form 

S= so i, (E+riZ) ( 4 . 1  1 

This relationship is represented in Figure 3 .  
s t r e s s  of the l inear  problem, and r is the coefficient of m e m b r a n e s t r e s s e s .  

Here  So is the mean-square 

FIGURE 3. 

The densit ies of the s t r e s s  extrema were determined in 1 2 1  for the 
case E, r << 1/2, i. e. ,  when relationship E (S) is single-valued for  a l l  cycles 
(except the cycles of ve ry  low probability). 
assumption, but shall  consider that 7<2 and nz >l -  We shall  make  u s e  of 

We shall renounce this 
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relationships (3.3) and (3.4).  Note that to the minima of S correspond the 
minima of E lying in segment 0,O of Figure 3, i .  e.,  -1/2 r,<E,i, cO, and that 
to the cycle E, for  which C,i,<-1/2 r ,  correspond two minima of S of 
magnitude -So/4rEo. Taking these r e m a r k s  into account, we shall apply the 
formula for  the distribution of a function of a random magnitude. 
(2.2), ( 3 . 3 ) ,  (3.4), and (4.1),  we obtain the following average number of 
minima sma l l e r  than S per  unit time: 

Using 

N(Smin<S)  = A 2 x J  [esp 1- F ,  (S) ]+ e x p ( - ~ ~ ) ~  (4 .2)  
(- S0/4r E,, < Smin 0)  

and the following average number of maxima l a r g e r  than S per  unit time: 

N ( s m a x  >s)  = L { e x p  I- ~1 (s)] + esp [- ~2 ( ~ 1 1 1  

N ( S m , , > S ) = O - ( l + e x p  [ - F ~ ( s ) I I  ( - sO/4r  s,<s<o). (4.3) 

(s>o), 2rJ 

2xJ  
Her e 

" >  8r tt ( 3r 8r 
1 F,, = Fz (- S,,/4rE0) = I - - + . (4.4) 

It is easily shown that a t  y <2 the function Fz (S) is everywhere positive. 
Therefore  a t  Eor<l/2 the second t e r m s  in (4 .2)  and (4.3)  a r e  negligibly 
small .  Differentiating these expressions,  we obtain then the relationships 
for  the densit ies of the s t r e s s  extrema obtained ea r l i e r  121 .  

The main pa r t  of fatigue damage appears frequently during the jump 
of the shell  under the action of random disturbances from one stable 
position of equilibrium to another. 
ca se  can be  obtained by calculating the average number of such "snap- 
throughs" pe r  unit t ime. 
we a s sume  that the number of "snap-throughs" is equal to the average 
number n (E , )  of passages a c r o s s  the level 5,  corresponding to the unstable 
position of equilibrium. A s  seen from Figures  1 and 2, the representative- 
n e s s  of this  character is t ic  of the life i nc reases  with the parameter  m. 
the limiting c a s e  of a narrow-banded p rocess  (m>>l) the function n (E,) coin- 
cides with the number of vibration cycles embracing both positions of 
stable equilibrium. 

of / l / ,  into which we wbst i tute  (2.8), (2.9),  (2.2), and (3.5) .  

5. 

A tentative est imate  of the life in this 

In the case  considered of a shallow shell  a t  ~ > 2  

In 

To  determine n (E,) we shall  make u s e  of the well-known relationships 

where 

F o r  the convenience of the calculation of u1 we expand (+-4)'/2 in a 

400 



ser ies  in powers of 4 1 ~ ~ .  We obtain a s  a result  

(5.3) 

Consider a cylindrical panel compressed by an axial load p .  Using the 
resul ts  of 1 5 1 ,  it can be shown that the dependence of the panel parameters  
on the axial load is of the form 

B = B o  (1 --P/p*)-', 0 0  =%a (l--PlP*)"*, 

€ , = E ,  ( l - p / p * ) - " : ,  y = lo (1 -p/p: . ) - '".  (5.4) 

Here p o  is the upper cri t ical  load; the second subscript "0"  corresponds 
to the absence of axial load. It can be seen from (5.1 ) and (5.3) that I E  (E,) 
increases  with the axial load, passes  through a maximum for a certain pmr 
and then drops to zero  a s  p approaches p % .  If we use in (5.3) one te rm of 
the expansion only, we obtain, by substituting (5.4) in (5.3) and (5.1) and 
using the condition dri (EJdp = 0 the following value for p m :  

(5.5) 
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USE OF DIGITAL COMPUTERS IN  T H E  CALCULATION 
OF SMOOTH AND RIBBED P L A T E S  A N D  SHELLS ,  
E I T H E R  N O T  STRESSED OR STRESSED BY HOLES 

M . I .  D l u g a c h  a n d A . I .  S h i n k a r '  

(Kiev) 

1. It was mentioned in / I /  and / 2 /  that the systems of equations ob- 
tained by the method of grids for calculating plates and shells a r e  sym- 
metrical  and can be reduced to matrices of a three-cell or five-cell 
structure. 
nected regions these systems will be further bordered with additional 
columns and lines. The method of group elimination of the unknowns was 
used in the solution, by means of a digital computer, of systems of high- 
order difference equations bordered by one column and row. 

system of equations (the presence of a large number of cell zeroes and 
the matrix symmetry) turned out to be very efficient. 
were achieved by eliminating the groups of unknowns not through a pre- 
liminary calculation of the inverse matrices, but by a direct solution of 
the corresponding systems of equations with several  columns of f ree  terms. 
The cases  treated were those of a rectangular region with a central 
rectangular hole and of a cylindrical shell weakened by concentric rectan- 
gular holes. 

method of group elimination of the unknowns, and have worked out two 
standard programs for the "BESM" computer, suitable for all types of 
problems relative to ribbed plates and shells. One of the programs 
corresponds to the case of symmetrical systems of equations of three- 
cell structure, either bordered by some additional columns and rows or  
unbordered; the second corresponds to systems of equations of five-cell 
structure. 
number of cells of the same type, as in the problems treated earlier,  but 
also of cells belonging to different types. 
equations a re  the most general ones in the calculation of plates and shells. 

The programs contain a special subprogram for the introduction of the 
input data -separate cells which a r e  subsequently stored in a certain order  
in the computer memory. 
stored, while the zero  elements, of which there is usually a large number, 
a r e  dropped in order  to reduce the bulk of the input data. Each cell must 
be accompanied by a scale (repeating cells - by the same scale) by means 
of which the law of alternation of nonzero and zero elements is coded. 
Such scales a r e  formed very ezsily. 

In the case of problems involving plane s t ress  of multicon- 

This calculating method, which allows for the peculiar structure of the 

Many simplifications 

Proceeding further along this line, we have now programmed the 

The systems of equations can be made not only of a definite 

Such types of systems of 

Only matrix elements different from zero a re  

A f t e r  the d-ifferent cells of the 
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system of difference equations have been formed, the solution of various 
problems by means of the programs necessitates no preparatory work. 
The following parameters a r e  necessary for the calculation: 

N is the order of the largest  cell; 
I, is the number of bordering columns; 
I, is the number of columns of f ree  terms; 
s is the cell order of the matrix. 

The following condition must be satisfied: 

2 At + N (1, + 12)  < I  630 

( i f ,  for instance, f, = 1, I, = 2, then N = 27).  

drum or  a magnetic tape. 
system of equations which ran be solved is given by the condition 

The computer program uses  an external memory, such a s  a magnetic 
In the first  case the maximum order  n of the 

s 

n = Z N , ,  
I=I 

where NJ is the order of the i - th  cell of the matrix. 
2. . e ,  s), 1, =0, I ,  = I ,  then s < I  1, whence n < 220. 

Thus, if  N,= N=fLOi(i = I ,  

In the second case the order is practically unlimited. 
2. The following problems have been solved on the BESM computer by 

a) a rectangular plate having a 3:2 ratio of sides with free  short sides, 
means of the standard programs: 

one long side hinged and the other built-in (order  of the system of equa- 
tions n = 110); 

b) a rectangular plate bordered by r ibs  - a panel of assembled r e -  
inforced concrete overlap with sides ratio 5:3, supported by the short  
sides ( P, = 176); 

holes subjected to longitudinal stresses distributed uniformly over the end 
section ( n  = 139); 

d) the same shell under the action of longitudinal s t resses ,  but with 
the condition that the end sections of the shell remain plane ( n  = 143); 

e) a ribbed cylindrical shell subjected to internal pressure ( n = 168). 
3.  The scope of this paper prevents us from examining all these 

c) a smooth cylindrical shell of I = 1 . 8 7 5 ~  Rwith concentric rectangular 

problems. 
bordered by ribs-beams only (Figure 1). 

ing beam a r e  

We shall accordingly consider the case of a rectangular plate 

The boundary conditions for the rectangular end built-in in the border- 

where B and C a r e  the flexural and torsional rigidity of 

(1 1 

( 2 )  

the beam, respect ive 
ly, p r )  is the intensity of the external load per unit length applied to the 
beam. 

for the opposite ends of the plate. 
In the x ,  y coordinate system expressions (1) and ( 2 )  have opposite signs 
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I 

r 
FIGURE 1. 

The biharmonic equation in finite differences for the contour point 2k 
(Figure 2) is, on the strength of condition (1 ): 

(10+6a) mlk -4 ( 1 - k )  (Wl,  k - I  + + w t ,  C+1 + (0.5 + n) (w1, k--2 + 
+Wf, ~ + 2  ) -8 werl-.!, k +2 ( W I - I ,  1 - 1  f + wI-1, k+I ) + wi-2. k - Klk +0.5 Y (Kl ,  k + I - 2Kfk 4- Kl, k - 1  ) - 

where 
B 

Dh 
a=- I 

Pdh is the load on the plate at  node ik. 

(3) 

(4)  

( 5 )  

FIGURE 3. FIGURE 2 .  

The values of w for the first row of beyond-contour points a r e  expressed 
by the extrapolation formula 

beyondcont. =Wpprecont,+ Kc0nt.t ( 6 )  

so  that the magnitudes Kenter in the precontour equations a s  well. The 
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following equation is obtained for Kik from condition ( 2  ): 

where 

p = -  C 
2Dh 

Equation ( 7 )  reduces for a corner point where two bordering beams 
meet a t  a right angle (Figure 3 )  to 

(0.5 + a d  wi-1, k - (0.5 f 0.5 v + 02) wIk +0.5~ Wf, R-1 $. 

+(0.25f0.5PI -+ 0.5 a*) Kj:'-0.5& &.&-I t 0 . 2 5 ~  K{:'=O. ( 9 )  

In this case the magnitude KQ+I, being beyond-contour, has been eliminated 
from the equations, and it has been taken into account that the torsional 
moment for beam 1 is equal to the bending moment for beam 2. 
also been taken into account that wi, = wl, + Kji'. The equation for  K$' 
a t  a corner point is written by analogy with ( 9 ) .  

The plate represented in Figure 1 (bordered by beams) is supported on 
its short sides. 
the points of the longitudinal edges a r e  unknown, and so a r e  the values of 
K at all contour points (two values of K correspond to each corner point). 
The total number of unknowns for a plate quadrant in the case of a load 
symmetrical relative to the plate axes is equal to 176 for the grid used 
(under the assumption of uniformly distributed load). The equations for 
w a t  the internal nodes a r e  written in the usual way, and the equations for 
the contour unknowns by formulas ( 3 ), ( 7  ), and ( 9  ) . The system of 
equations is represented in Table 1 in the form of a cellular matrix, the 
equations and unknowns being grouped in groups according to two horizontal 
rows of nodes. The matrices of the separate cells, with the exception of 
matrix Ill (the left half of which coincides with the left half of the matrix n, 
while the right half contains only zeroes) and the matrices-columns of 
f ree  te rms  (the free  te rms  of the equations for w a re  equal to Plkh*/D.), 
a re  given in Tables 2 to 5. 
represented by their symmetrical part  only, a s  required by the program. 

It has 

The values of w at the internal nodes of the grid and a t  

The cells of type D of the main diagonal a r e  

1 
2 
3 
4 
5 
6 
7 
8 
~- 

D 
n' n 

n 
D n 

n' 
D 

TABLE 1 

n 
D n' n 

D n' D" 1 n, 
n; D 

Free 
terms 
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T A B L E  2 
~~ 

~ 

0.6 
0.5c. 
0 . 5 ~  - 

‘ 2  
2 
3 

8 
9 

10 

20 

2 
-8 2 
. .  

2 

- 

1 
~ 

T A B L E  3 
D 

2 
-8 

- 
1 

-8 

20 

~ 

2 
-8 
2 

- 

-8 

2 

c: fs 

1 
1 1 

12 
13 
14 

19 

21 
22 

m !1 -8 

1524 



TABLE 4 

DI 

1 
2 
3 

8 
9 

10 
11 

12 
13 
14 

19 
20 
21 
22 

.~ ~. ~ 

n 
. -  

12 
13 
14 

19 
20 
21 
22 

- 
-4 
2 

- 
2 

-8 2 
2 -8 

2 c 

TABLE 5 

2 

2 -8 2 
. .  

2 -8 2 
2 E* C' 

9 

1 
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The symbols used in these tables have the following meaning: 
c1 =IO + 6 a, 

c,=O.5+P. cg= -0.58, c,,=0.25+0.5?+0.5a. 

c, = - 4 - 4a, c, = 0.5 4- a, 
c,=c,+c,=10.5+7u, c 5 = - ( 1 f v ) ,  C, =0.5v. 

cU, =0.25~. 

The calculation was conducted for a = 13.5; p = 2.9; Y = 1/6. Some de- 
flection diagrams are given in Figure l .  
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A NONSTA TIONARY TEMPERA T U W  PROBLEM 
RELATIVE T O  A CYLINDRFCAL SHELL 
STIFFENED BY A RING 

S . M .  D u r g a r ' y a n  
(Yerevan) 

In the case of considerable temperature drops it frequently becomes 
necessary to allow for the variation of the physicomechanical properties 
of the material  of structures and machine parts a s  a function of the heating 
temperature. 

temperature field varying monotonically along the cylinder generator a r e  
finding an increasing application in engineering practice. 

The present paper is devoted to the study of the state of s t r e s s  and 
strain of structures of this type. 

The problem i s  solved in a linear formulation in the frame of the 
generalized Hooke law, without allowing for the creep of the material .  

Structures such a s  thin-walled stiffened cylindrical shells working in a 

$1. STATEMENT OF THE PROBLEM AND 
INITIAL ASSUMPTIONS 

Consider, in a cylindrical system of coordinates x ,  0,  z (Figure l ) ,  a 
thin orthotropic shell of revolution with uniform thickness h ,  whose 
material  possesses cylindrical anisotropy of axis coinciding with the 
shell axis ox.  

-X 

FIGURE 1. 

The shell is assumed to be reinforced by a stiffener of constant c ross  
section, and of physicomechanical properties different from those of 
the shell. 
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The law of variation of the temperature T = T ( x ,  t )  along the cylinder 
generator and in time, and the dependence of the elastic constants of the 
shell material  on the temperature a r e  considered as known and given by 
monotonically varying functions in the s t r ic t  sense. The temperature is 
assumed to be constant through the shell thickness, 

It is assumed that the disturbances caused by the heat capacity of the 
annular stiffener do not have a considerable influence on the temperature 
distribution in the shell itself. 

considered (111, 1 2 1 ) :  
The following assumptions a r e  used in the solution of the problem 

where p i ,  E1 are,  respectively, the coefficients of temperature expansion 
and the moduli of elasticity along the coordinate lines i; p.1 a r e  the Poisson 
ratios. 

§ 2. DERIVATION OF THE FUNDAMENTAL EQUATIONS 

Using the generalized law of Hooke for the temperature problem /3/ 
and the well-known relationships for the relative s t ra ins  (cf. 141, p. 31), 
we obtain, allowing for ( l . l ) ,  the following formulas for the s t resses  a,, a1 

and the s t ra ins  e,, eo: 

u, w a r e  displacements of the points of the middle surface along the 
generator and in the radial direction respectively, 9 is one of Meissner’ s 
variables, defined in the case considered by the relationship 

dW 
QS - 

dx 
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( 2 . 4 )  
(cont'd) 

Designating by X and Z the projections of the external load per unit a rea  
of the shell surface in the directions of the tangent to the meridian and 
the normal to the middle surface, we can write the equations of equilibrium 
of a shell element for the case considered in the form 

( 2 . 7 )  

where N is the shearing force per unit circumferential length. 
Introducing the second Meissner variable V, and writing 1 3 1 ,  141 

T g = d v  R N = V - R  Z d x ,  T = = T : -  Xdx (2.8 1 
d x '  X. s X. s 

(here  72 = C, = const, cf. / I / ,  footnote on p. 1 2 9 ) ,  we transform the f i rs t  
two equilibrium equations of ( 2 . 7 )  into identities. 

obtained relative to E ,  and E~ yield 
Substituting (2.8) in (2.5) and solving the system of algebraic equations 

dV kpexT:  +kpez X d x + a e T + b , T Z .  s E t = -  *--- E z h  dx  E ,  h E , h  
r. 
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There remains to satisfy the third equilibrium equation (2.7), and 
the equation of strain compatibility 141, 131 ,  which is represented in this 
case in the form 

(2.10)  

Using (2.6) and (2.9), we obtain the following system of differential 
equations for the unknowns V and 9: 

(2 .11)  

h dT 
k dx 

(ae + 2be T )  -. _ -  

This system is easily reduced to one fourth-order differential equation 
relative to V (o r  8): 

l2  V = @  ( X ,  Z,  T). (2.12) 

The second unknown function 8 (o r  V) is found from the second (or  first)  

Equation ( 2 . 1 2 )  cannot be integrated in the general case. 
equation of system (2.11). 

In particular 
cases (when the laws of variation of the physicomechanical properties of 
the material  with the temperature, and of the temperature itself along the 
cylinder generator, a r e  specified) i t  is possible to obtain approximate 
solutions of (2 .12 ) ,  and therefore of the problem of the s t ressed and 
strained state of a heated nonhomogeneous cylinder. 

The study of (2.12) shows that the problem can be solved in a closed 
form by imposing some restrictions on the law of temperature distribution 
along the generator of the cylindrical shell and on the dependence of the 
physicomechanical properties of the shell material  on the heating 
temperature. 

We assume that the Poisson ratio is temperature-independent, and that 
the law of variation (along the cylinder generator) of Young's modulus can 
be approximated by the exponential function 

E x =  E F .  (2.13) 

The following point should be noted relative to relationship (2.1 3).  An 
analytical relationship between Young's modulus and the heating temperature 
can be obtained only by approximating experimental curves. Relationship 
(2.1 3) can be satisfied by suitably selecting the form of the approximating 
function a t  different laws of temperature distribution along the generator. 

412 



$ 3 .  SOLUTION OF T H E  P R O B L E M  OF AN 
U N S T I F F E N E D  CY LINDR.ICAL S H E L L  

Assuming pir = p = const and Er = EeU we can transform system ( 2 . 1  1 ) to 
the form 

euxB=-pa (T2- X d x ) - p X -  s d4V d V  Eh 
dxa dr RR 

X. 

( 3 . 1  1 

from which we obtain the following equations for determining the functions 
V and 8 :  

where 

d'V - -2a-  d3V +a2-+ d z p  12(1-kp2) v =  @l ( X ,  2) + W T ) .  ( 3 . 2 )  dx' dx3 dx2 kh2K' 

( 3 . 3 )  

d2T d3T)  (7x)'] R'(ai + 2beT) a - + - -2R'bs a - . dT d'T 
d x  dx2  ( dx' dx3  

- 6 R ' b ~  --- 

The solution of the linear differential equation ( 3 . 2 )  can be represented in  
the form 

v =  v,+ v1t  v,, 
where V, is the general solution of the homogeneous equation 

d4V -- 2a-+a2-+12- daV daV 1- kp' V =O. 
dx' dxa dxs  khzR2 (3.4) 

v, is a particular solution of the nonhomogeneous equation ( 3 . 2 ) .  cor- 
responding to the case when i t s  right-hand part consists of the load term 
Ol(X, 2) only, and V, is a particular solution of this same equation cor- 
responding to the case when its right-hand par t  consists of the temperature 
term @, (T) only. 
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The general solution Vo of the homogeneous equation ( 3 . 4 )  is 

where Cj a r e  constants which 
of the characterist ic equation 

p4 - 2apJ +a*$ -t 

4 

v0 =z C; ePi X I  

j -  1 

remain to be determined, and p j  a r e  roots 

By solving ( 3 . 5 )  we obtain 

where 

The general solution of (3 .2)  can thus be represented in the form 
(IX 

U6,X + ( C 3  sh - + V=eT[(C1sh1-+CCzch- ab,x sin - 
2 2 

( 3 . 5 )  

The particular solutions V, and V, can be found for specific external loads 
and temperature functions. 

Having determined V ,  we find 9 from ( 3 . 3 ) ,  and then from ( 2 . 9 ) ,  (2 .3 ) ,  
(2.4), (2.6), and (2.8) we obtain the expressions for the displacements u, zer, 
the s t resses  ax, 00, the forces per unit length and the moments Tx , Te , N ,  
M,, Me. 

( 3 . 6 ) ,  there enters in the las t  expression of (2.8) a constant T: = C,, and 
an additional constant C, appears in the determination of u from the f i rs t  
relationship of ( 2 . 3 ) .  The values of these constants a r e  determined by 
the usual procedure a s  a function of the conditions at  the cylinder ends. 

Note that, in addition to the four constants Ci ( i =  1, 2, 3,4)entering in 

§ 4. THE NONSTATIONARY TEMPERATURE PROBLEM 
FOR A STIFFENED CYLINDRICAL SHELL 

The displacements, forces, moments, and s t resses  in the unstiffened 
shell will be considered in what follows a s  known, and wil l  be designated 
by the superscript  zero (i. e . ,  wo, 9O, etc . ) .  

The displacements, moments, and forces corresponding to the ring 
(stiffener) wi l l  be designated by the superscript  "K" ( t u K ,  CtK etc.) ,  and 
those corresponding to the shell stiffened by the ring by the superscript 
II ( w n ,  an, etc.). 
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By neglecting the effect of heat radiation by the stiffener / 5 /  in the 
formation of the equations of heat balance of the shell and stiffener, we 
obtain (cf. Figure 1) 

(4.1) 

where P K ,  e;, T K  are ,  respectively, the density, specific heat, and tempera- 
ture of the ring (stiffener); 1.0 i s  the heat conductivity of the shell; TO is 
the shell temperature a t  section n= I .  

We obtain from (4.1 ) the following equation for determining TK = TK (t): 
T K  

where T,Y is the temperature of the ring (stiffener) at the initial moment 
( t = 0). 
has been given for the dependence of the temperature on time. 

This equation can be integrated only after a specific relationship 

In the particular case  B = const and b = const we obtain from (4.2): 

We shall consider the interaction between the shell and ring. 
Assume that the r ibs  a r e  sufficiently thin and narrow. This gives us  

reason to consider that the contact forces  and moments a r e  uniformly 
distributed along a circumference lying in the middle plane of the rib, and 

h H  also to use  the approximation R + - + - =: R. 
2 2  

sections relative to i t s  axis under the action of uniformly distributed forces 
per unit length and moments P and M / 6 / ,  171, and of the heating T"=TK(t), 
a r e  then determined by the following formulas (cf.  Figure 2 ) :  

The variation of the radius of curvature and slope of the r ib  c ross  

(4.4) 

where P K ,  EK are ,  respectively, the coefficient of temperature expansion and 
the modulus of elasticity of the ring material; 
the rib c ross  section relative to the radial axis 2'. 

J;  is moment of inertia of 

x 
I -  
//////////////////// 

I 

FIGURE 2 .  
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The state of s t r e s s  and strain of a shell nonhomogeneous along its 
generator and subjected to the action of forces and moments distributed 
uniformly along the circumference of the c ross  section (Figure 2) can be 
obtained by superposing the solutions of the two homogeneous problems* 
represented schematically on Figures 3 and 4, while fulfilling the conditions: 

fulfilled a t  the ends x = 0 (Figure 3) and x = L (Figure 4); 
a) the conditions at  the ends of the shell represented in Figure 2 a r e  

b) N, - N ,  = - P, M, - iM2 = - M ;  
c)** w; =w; , a:= 87 

FIGURE 3 

J - c - L L - e - I  

I 

O L  

FlGURE 4. 

- -  
A l l  the magnitudes (.*, 00, ?, , TB, N, Mx,& E & t  of the shell represented 

We obtain in particular 
in Figure 2 a r e  thus found a s  a function of x ,  P, M. 

.Ze, = G ( x ,  P, M) ,  u = a  ( x ,  P, M ) .  (4.5) 

By substituting x = 1 in (4.5), we obtain from (4.4) and the conditions of 
compatibility of the shell and stiffener the following system of two equations: 

- pR2 
E K  1,H 

+ Rp"TK= w (P, M ) ,  

-= M R Z  G (P ,  MI. 
E X  J," 

By solving i t  we find the unknowns P and M, which ends the solution of the 
problem of the state of s t r e s s  and strain of a nonhomogeneous shell 
subjected to the load represented in Figure 2. 

obtain finally 
Turning back to the problem of a heated stiffened cylindrical shell, we 

- 
Tu" = d + w ,  t i a = w + B  

etc., where, a s  mentioned above, the superscript zero designates the 
results obtained in § 3. 

internal forces, and moments will be functions of time, due to the 
disturbances introduced by the heated ring (stiffener). 

Note that even in the case B = const, b = const the s t resses ,  strains,  

T h e  solution of  the  homogeneous problem is easily obtained from the  results of 5 3, by writing in the 
final formulas V,= V, = 0. 

** T h e  subscript r corresponds to the right end of rhe shell, represented in Figure 3, and the  subscript "1" 
to the  left end, represented in Figure 4. 

t T h e  magnitudes corresponding to  the shell of Figure 2 a re  represented by a bar above the corresponding 
letter. 
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THE TWO-DIMENSIONAL PROBLEM FOR A 
HELICOIDAL SHELL 

V . K .  Z a l e s s k i i  
(Khar'kov) 

1. Consider a shell of uniform thickness and helicoidal middle surface. 
The helicoid equations in dimensionless coordinates a r e  

I x = S h  ( a + ! )  COS (a-p), 

y = sh (a  + 8) sin ( a  -p), 
z = a - p ,  

where a and 9 a r e  curvilinear coordinates coinciding with the lines of 
curvature of the middle surface of the shell. 

We shall write the fundamental equations of the theory of thin shells 111, 
121 ,  131 ,  substituting in them the geometrical parameters of the helicoid 
(1 ).  Transferring to the right the te rms  of the equations of equilibrium 
containing the shearing forces and the load components, we obtain 

5 - 5 f th (a  + 8) (T, - T,) + th ( a  + p) (SI - s,) = 
do. dp 

where the components X ,  Y ,  and Z of the distributed load a r e  given functions 
of the variables a and p .  

distributed moments or concentrated interactions. 
We assume that the load is sufficiently smooth and that there a r e  no 
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The sixth equilibrium equation is an identity 11 1, 1 3 1 ,  and is discarded 

W e  write the equations of compatibility of s t r a ins  in fo rces  per  unit 
as usual. 

length and moments in Novozhilov's form 131: 
d 
- (0, + G2) - da 
a 
- (4 + 02) - 
d? 

( 7  1 

(8) 

+ 5 )  ch (a+ B) Nl =O, 

+ 3) ch (a  + P I  N2 =O, 

The equations of elasticity will be written in the s implest  form 121,  131 :  

We shall a lso need the following formulas connecting the displacements 
with the s t ra ins:  

1 du 
v / l c h ( a  + ?) [: d? 

-+- - th ( a + p )  ( u t v )  s 
1 

u )=  

x l = L , ,  x l -=L, ,  5 = L  a, ( 1 7 )  

where L,, L , ,  La represent  the l inear  differential operators  of the components 
u, w . w  of the displacement vector.  

analysis of the equations of compatibility given in / 4 /  and 1 5 1 ,  i t  is possible 
in several  ca ses  of considerable practical  importance (when the shearing 
components of the load and the forces  pe r  unit length on the contour bounding 
the pa r t  of the shell  considered a r e  small)  to neglect the right-hand side of 
equation ( 9 ) .  W e  obtain: 

2. Consider the bending of a helicoidal shell .  On the strength of the 

GI = G2 = G. ( 1 8  1 
The f i r s t  and second compatibility equations ( 7 )  and ( 8 )  a r e  then written 

as follows: 
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. . . . , ~- 

We shall determine the moments, fo rces  per  unit length, and dis- 
placements characterizing the s ta te  of s t r e s s  and s t ra in  of the helicoidal 
shell  considered under these assumptions. 

simplifying the equilibrium equations ( 5 )  and ( 6 )  with the aid of the com- 
patibility equations (18 ) and (1  9) ,  and the elasticity equation (1 3 ) ,  we 
obtain: 

3. Determine the moments G, H and the shearing forces  Nl ,  N,. By 

dG d H  
da d? 
dG dH 
d? da 

X - + - f- 2th(a + p) H =0, 

A - + + 2th(a + e) H =0,  

where 

) -  .- !-I!. 
1 + a  

Subtracting (20 )  from ( 2 1 )  and passing to new variables  : and 9 according 
to the formulas 

[ = a  -1- p, 9 = a  - p, ( 2 3 )  

we obtain after integration by 3 

H -  ). G =f l  ( E ) ,  

where f, ( E )  is an a rb i t r a ry  integration function. 
Using ( 2 4 ) ,  we can write ( 2 1  ) in the form 

dG dH 
dp da 

A- + - +2th (a - I -p )  kG= - 2th(a+ p) fl ( 5 ) .  

By adding ( 2 0 )  and ( 2 5 )  and passing to the variables E and 71 according to 
(23 )  w e  obtain after integration by E 

where f p  (1) is an a rb i t r a ry  integration function. 
By solving the system of finite l inear  differential equations ( 2 4 )  and 

( 2 6 )  simultaneously we obtain the unknown moments G and H .  By sub- 
stituting the bending moment G in ( 1 9 )  we obtain the shearing forces  Nl 
and N , .  

4. We shall  now determine the forces  per  unit length TI, T,, and S.  By 
substituting in the equilibrium equations (2), (3), and ( 4 )  the known values 
of the shearing forces  N,, N2 by ( 1 9 ) ,  eliminating T, from ( 2 )  and ( 3 )  with 
the aid of ( 4 ) ,  and using the elasticity equation (ll), we obtain the system 
of equations 

dS '% + -- +Pth(a + p)  S = 'p (a, p), 
da dp 
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where [p (a, e )  and d, (a. (3) a r e  known functions of the variables i and f ! :  

By applying to the system of equations ( 2 7 )  and ( 2 3 )  the scheme of inte- 
gration of the system of equations ( 2 0 )  and (21 )  and passing to the var iables  
(23 )  we obtain 

(31 )  

where 

and f, (E) is an a rb i t r a ry  integration function; 

where 

+ ti1 E I jFl  ( E ,  7) d p  +fa  (E) I ,  ( 3 4 )  

and f4 (?) i s  an a rb i t r a ry  integration function. 

we determine the unknown functions TI ,  T,, S .  

ponents u ,  (2) . 
from the elasticity equations ( 1 0 )  and (11) the values of E,, E ~ ,  W, and sub- 
stitute them in equations ( 1 4 ) ,  ( l 5 ) ,  and ( 1 6 ) .  

By solving the system of equations (4), (31 ), and (33)  simultaneously 

5. We proceed to the determination of the displacement vector com- 
Having the forces  per  unit length T,, T,, S ,  w e  calculate 

We obtain the system 

where 
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are known functions of the var iables  a and p .  

E and 
By adding equations ( 3 5 ) ,  ( 3 6 ) ,  and ( 3 7 )  and passing to the new variables  

defined by ( 2 3 )  we obtain after integration by E : 

where 

F, (E, q) - 
2 

and f5 (q) is an a rb i t r a ry  integration function. 

equation ( 3 7 ) ,  passing to new variables according to formulas ( 2 3 )  and (41 ), 
and integrating the r e su l t  of all  these operations by 1, we obtain 

By adding equations ( 3 5 )  and ( 3 6 )  and subtracting f rom their  sum 

where 

and f8 ( E )  is an a rb i t r a ry  integration function. 

system of equations ( 3 5 ) ,  ( 4 1 ) ,  and ( 4 3 ) .  

It contains s ix  a rb i t r a ry  integration functions, which have to  be determined 
from the boundary conditions. 

The displacement vector components u, w, w a r e  determined f rom the 

A general  solution to the problem formulated has  thus been obtained. 

6 .  If we a s sume  that the right-hand pa r t s  of ( 3 5 ) ,  ( 3 6 ) ,  and ( 3 7 )  a r e  
equal to zero,  i. e. ,  

@I ( a ,  B) = @2 ( a ,  B) = 0 8  

from which i t  follows that 

El = Et = 0 -0, 

r, = r, = s = 0, 
and 

this will correspond to a deformation of the middle surface of the shell 
without elongations or  shears ,  i. e.,  to a pure moment s t a t e  of s t r e s s ;  
the components of the displacement vector for  this ca se  will be, according 
to ( 3 5 ) ,  ( 4 1 ) ,  and ( 4 3 ) ,  
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U =  '[ A (3) - thE A ('i) dq+ B (E )  I 

2 

A (9) +th t  A (3) d q -  B (i) v s 1 v -  -[ 1 
2 

shaE 4-1 1 c h c  
w=- -{[A' 1 (?)+E (E) chE 4. -SA ('i) dq-B (E )  sh i )  ( 5 0 )  2 

where A ('i) and B ( E )  a r e  arbi t rary integration functions. 

xl. x,, r a r e  determined by (17) ,  and the bending and torsional moments 
G,, G,, HI, H, a r e  calculated by (12) and (13) .  

With U, v ,w known, the relative variations of the curvature and torsion 

7. If we write in the equilibrium equations ( 2 ) ,  ( 3 ) ,  (4 ) ,  ( 5 ) ,  and ( 6 )  

HI = H2 = Gl = G, = N ,  = N, = O  (51)  

and make use of the elasticity relationships ( l l ) ,  we obtain a system of 
equations of equilibrium of the momentless theory of shells, which coincides, 
after the elimination of T, ,  with the system of equations (27) and (28 ), 
the difference being that the functions 
underlined in the right-hand par ts  of (29)  and ( 3 0 ) .  

The forces  TI ,  T,. S per unit length can be found from the system of 
equations ( 4 ) ,  (31) ,  and (33) ,  in which the conditions (51)  a r e  allowed 
for. 
system of equations (35) ,  (41) ,  and (43) ,  with the values of T,. T,, S ob- 
tained from the membrane problem considered substituted in the functions 

and will contain only the te rms  

The displacement vector components n, w, w a r e  determined from the 

@I (a, e , ,  'D, (2. P )  1 0, (=, P I .  
The displacements u ,  w, .re, calculated thus wi l l  contain a s  additional com- 

ponents the displacements of the pure moment state of s t r e s s  (48) ,  ( 4 9 ) ,  
(50) ,  which must be discarded in order  to obtain the pure membrane state 
of strain.  

In this case the equilibrium equations ( 5 )  and ( 6 )  and the equations of 
strain compatibility ( 7 ) ,  ( 8 ) ,  and ( 9 )  drop out, while the load components 
X ,  Y ,  Z and the forces per unit length Tl,T2, Swill  be subjected to the general 
conditions of existence of the membrane state of s t r e s s  111, 131. 
assumption that X ,  

The 
Y and T,, T,, S a r e  small drops out. 
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DETERMINING GREEN'S  FUNCTION FOR A P L A T E  
OF VARIABLE THICKNESS, RECTANGULAR IN THE 
PLAN 

G . A .  I z d e b s k a y a  

(Kiev) 

Plates  of variable thickness a r e  widely used in engineering s t ruc tu res  
of the most  diverse  types, such a s  bunkers, reinforced-'concrete b reas t  
walls, rectangular r e se rvo i r s ,  but t ress  dams, etc.  In ship design, the 
ship bottom is frequently considered a s  a complex plate of variable thick- 
ness.  The skin of airplanes is likewise considered a s  a plate of variable 
thickness . 

One of the basic methods now being used in s t ructural  mechanics for 
calculating rectangular plates of variable thickness is the method of grids,  
developed in the works of the Soviet scientists Dinnik, Panov, Varvak, 
Mikeladze, etc.  The difference method r equ i r e s  protracted calculations, 
but is characterized by i t s  remarkable  simplicity. 

general, a r e  that in many cases  i t  is impossible to obtain the expression 
of the unknown function in an analytical form, and that the calculations are 
difficult ( this  is being gradually eliminated with the introduction of high- 
speed computers).  The method of gr ids  necessitates considering points 
outside the contour, which a r e  treated very negligently. In many cases  
the increase in the number of equations does not lead to an increase in 
accuracy, due to the accumulation of e r r o r s .  

of variable thickness rectangular in the plan, based on the application of 
the reciprocal  theorem. 

Using the reciprocal  theorem i t  is possible to determine Green ' s  
function with a singularity enclosed in a function known beforehand. 
function is the deflection of a rectangular plate of uniform thickness. 

Consider the problem of the equilibrium of a rectangular plate of 
variable thickness (cf. the figure). Let  a unit concentrated force be 
applied at some point N ( x ' ,  y ' )  of the plate. 

M (x ,  y )  different f rom N(x ' ,  y ' ) .  
in the vicinity of point N itself: 

The shortcomings of the grid method, a s  of all  numerical  methods in 

We present  h e r e  a method for determining Green ' s  function for a plate 

This  

In other words, the load density q ( x ,  y) is equal to z e r o  a t  all points 
The following condition must  be  satisfied 

n n  

Select two sys t ems  of loads and displacements. 
system of loads correspond to the problem of the equilibrium of a plate 

Le t  the fundamental 
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of variable thickness rectangular in the plan. 
fundamental displacement M ( x ,  y) of a plate of variable thickness under the 
action of a unit concentrated force applied at  point N ( x ' ,  y ' ) .  

A s  auxiliary displacement w e  select  the s ta t ic  deflection w (x .  y, x,, yl) of 
a rectangular plate of uniform thickness under the action of a unit con- 
centrated force applied at  point L (x,. y , ) .  

Designate by w ( x .  y, x', y ' )  the 

FIGURE. 

The fundamental displacement corresponds to load (1 ) .  W e  shall  now 
determine the auxiliary system of loads.  
w (n. y. x,, y,), which sat isf ies  the differential equation of static bending of a 
plate of uniform thickness 

To that end, the displacement 

D , A A w  = q, , ( 2 )  

is substituted in the differential equation of s ta t ic  bending of a rectangular 
plate of variable thickness 

dD d dD d D A A w  +2 - * - A w +  2 - e  - A w  + ADAW - 
dx d x  dY dY 

where w is the deflection of the middle plane of the rectangular plate of 
variable thickness. We obtain 

D A A W f 2  dD d S ; * z A ~ + 2 - - - A ~ + A D A ~ -  d dD d 
dy dY 

( 4 )  
SD agv d 2 ~  azv d = D  a2v 

- ( ' -r j  (F ' d F  2m ' d q  f dy2 F )  q' 

The following condition is satisfied in the vicinity of the point L ( x , .  y,) of 
application of the unit concentrated fo rce  on a plate of uniform thickness: 

We have from 

F r o m  ( 2 )  and 

2 )  A A ~ = Q ~ .  
Dl 

5 )  we obtain 
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whence 

where D'(xl, y,)  is the value of the flexural rigidity of the plate of variable 
thickness at  point L (x , ,  yl). 

The auxiliary system of loads consists thus of the concentrated force 

applied at point L (x1, y,) and of a distributed load of intensity 

The application of the reciprocal theorem to the fundamental and 
auxiliary systems of loads and displacements yields 

w (XI, y l ,  x', y') DL-+  = v (x' ,  y', X I ,  y l )  - 

- SF ( x ,  y, x', y ' )  

where A is the work of the additional forces and moments applied to the 
contour of the middle surface of the plate (which depend on the auxiliary 
displacements) and performed during the actual displacements of the 
contour points of the middle surface of the plate of variable thickness. 
The work done in the auxiliary displacements by the forces and moments 
appearing under the action of the fundamental system of loads i s  usually 
equal to zero. In fact, i t  is always possible to select identical boundary 
conditions for the plates of uniform and variable thickness. The form of 
the work A depends on the specific boundary conditions of the problem. 

Consider the case of a simply supported rectangular plate of variable 
thickness. 
plate of uniform thickness. 
termining the deflection of a rectangular plate of variable thickness. 

equation for the deflection of a rectangular plate of variable thickness will 
then be 

We select  a s  auxiliary state a simply supported rectangular 
We then obtain an integral equation for  de-  

Let the plate thickness vary in the direction of the coordinate y .  The 

DL (VI)  

Dl 'ZPI ( X l .  YIP x', Y') - = 'u (x', Y', x1, Y1) - 
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Consider the kernel  of this integral equation: 

Using Dzhanelidze's papers  / 4 /  and 1 5 1 ,  where Navier 's  solution i sob -  
tained by means of theta-functions, we obtain the following expression for 
the kernel: 

where 
z = x + i y ;  zl=x,+iy,; 

The representation of the kernel through theta-functions, which a r e  
expressed by rapidly converging se r i e s ,  makes i t  possible to avoid the 
use  of the diverging s e r i e s  obtained in Navier 's  solution. 

W e  shall t ransform kernel (12 ) ,  using the expansion of the log and the 
logarithmic derivative functions of 8, in s e r i e s  161, and restr ic t ing our- 
selves  to two t e r m s .  
elementary transformations we then obtain the following approximate 
expression for the kernel: 

After the separation of the r e d  pa r t  and some 
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The determination of Green 's  function for a rectangular  plate of var iable  
thickness reduces to solving the integral  equation 

with kernel ( 1  5 ) . 
The integral  in the right-hand pa r t  of ( 1 6 )  contains no singularities, 

and equation (1 6 )  can accordingly be solved by approximate methods. 
The advantage of the method of integral  equations for  determining 

Green 's  function consists in the fact that the integral  equations r ep resen t  
a means for determining the interpolation formulas through which the un- 
known function can be  approximately represented. 
solution of (16 )  of the form? 

We shal l  look for a 

where Fi(x', y') a r e  some unknown functions of the point of application of 
the unit concentrated force; 'pi (xl, y , )  a r e  a rb i t r a ry  functions, preferably 
satisfying the boundary conditions of the problem. W e  shall  r equ i r e  that 
function ( 1 7 )  satisfy equation ( 1 6 )  a t  a discrete  s e t  of points lying inside 
and on the contour of the rectangular plan of the plate. We obtain then a 
system of algebraic equations for determining the unknown functions 
F ,  (x ' ,  y'). The l a r g e r  the number of t e r m s  taken in (17  ) (and therefore  
the l a r g e r  the number of points), the higher the accuracy of the solution. 
Consider a s  an example a rectangular plate of r igidity varying according 
to the l inear  law 

D = D , + C Y .  ( 1 8  1 
We shall  look for a solution of ( 1 7 )  a s  the sum of two t e r m s .  In the 

case  of a simply supported plate the functions 'p, (x l ,  y l )  and 'pz (xI, yl) can 

The method was proposed by N. A. Kil'chevskii. 

428 

.. ... . ,I , ,  



be selected in the following form: 

'pl (xl, y~ = sin d- sinx A, 'pz (xI, y,)=sin 2 x  5 s ~ n  2 x  A. ( 19 ) a b a b 

Substitute ( 1 7 )  in ( 1 6 )  and r equ i r e  that i t  b e  satisfied at  two points: 
at the plate center  and at the point of application of the unit concentrated 
force.  We obtain then the following system of two algebraic equations 
with two unknowns: 

FI (w', y')*y1 (x ' ,  y ' )  + F, ( ~ ' 3  Y')  ' ~ z  (x' ,  y ' )  = v (x't Y ' )  - 

- f ( k  (x ' .  Y ' ,  x ,  Y )  14 (x'. Y')'P, ( x ,  Y )  -t Fz (x'; Y') F~ ( x ,  Y)I d x d y .  
0 0  

Having determined the functions F, ( x ' ,  y') and F,fx'. y') and substituted them 
in (17) ,  we obtain the approximate value of Green ' s  function in a closed 
form.  This  value is then substituted in the integrand of ( 1 6 )  and, using 
the fact that the integral  is l i t t le  sensit ive to e r r o r s ,  we find a m o r e  
accurate  value of Green 's  function. In the c a s e  of variable rigidity (18)  
the approximate expression of Green 's  function is of the form 

This  generalized interpolation-iterative p rocess  makes  i t  possible to  
determine Green 's  function for  a plate of var iable  thickness rectangular 
in  the plan in  a closed form. 

t e r m s  in the sum ( 1 7 )  and to inc rease  the number of i terat ive steps.  
In o r d e r  to obtain a m o r e  accurate  solution i t  is necessa ry  to  take m o r e  
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STRESS CONCENTRATION IN THIN ELASTIC 
SPHERICAL SHELLS 

L . B .  I m e n i t o v  

(Moscow) 

This paper deals with the case of s t r e s s  concentration about an 
arbitrari ly located nonreinforced circular hole in a thin elastic spherical 
shell with a built-in edge passing along a parallel of the geographical 
system of coordinates. 

1. The Ukrainian school of mechanics considers (cf. Savin's survey 
/ I / )  that the s t r e s s  concentration decreases rapidly with the increase of 
the distance from the hole, so that it is possible to use the equations of 
a shallow shell. 

This same problem i s  solved below by the method of resolving the 
s t ressed state. It is assumed that the stressed state in the shell can be 
resolved into a membrane stressed state, a pure moment s t ressed state, 
and a simple edge effect. It follows from the results of 1 2 1 ,  /3/ that in 
order to be able to calculate the shell by the membrane theory it i s  
necessary that the load applied vary not too rapidly, and that the shell 
itself be sufficiently rigid. 
doubly connected shell of positive curvature will be formally rigid if it is 
fastened sufficiently rigidly along an arbitrari ly small portion of i ts  
boundary. 
one, however, this portion should not be too small 141. Fastenings of 
this type alone wi l l  be considered in what follows. 
in a membrane state of s t r e s s  at a sufficient distance from the built-in 
edge, since the s t resses  due to the edge effect by the hole will be small 
compared with the s t resses  of the membrane stressed state. Further- 
more, a specially conducted study showed that for a considerably large 
class of loads and a wide range of hole dimensions the s t resses  of the pure 
moment s t ressed state a re  likewise small compared with the s t resses  of 
the membrane stressed state, which wil l  interest  us  below and for the 
determination of which we shall make use of analytical functions 131 .  

3. 
load. 
same load. 
theory of s t r e s s  concentration. 
the stressed state (P2)  corresponding to zero surface load, which would 
have eliminated the discordance in the boundary conditions at the hole. 
In accordance with the preceding reasoning, this s t ressed state (P2) must 
be membrane near the hole. 
to the determination of the stressed state (PJ reduces to determining a 

2. 

It follows from the theory of surfaces that a 

In order that the membrane state of s t r e s s  be the predominant 

The shell will then be 

Consider thus a domelike spherical shell subjected to an arbi t rary 
Let (f,) be the stressed state of a shell without hole subjected to the 

This problem will be solved by the procedure used in the 
We superpose on the s t ressed state (PI) 

The mathematical problem corresponding 
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function analytical in an annular region, if  i t s  real and imaginary par ts  
a r e  given on one of the contours. 

state (P,) can however be determined with-an accuracy of up to a rapidly 
varying s t ressed state / 5 / :  (P2 )  = (Pz)  + (4 ) . (Pd  is the membrane s t ressed  
state which eliminates the discordance in the boundary conditions ?n the 
hole with an accuracy of up to the rapidly varying s t ressed state (P2), which 
is the integral of a homogeneous elliptic equation with strongly fluctuating 
boundary conditions. A s  follows from the paper of Vishik and Lyusternik/G/, 

this stressed state (Pi)  is usually damped 
rapidly with the increase of the distance 
from the hole. Furthermore, if  the applied 
load does not vary too rapidly, (P i )  will have 
an intensity considerably lower than (P;). 
Since very general and simple methods 
have been evolved for determining this 
s t ressed state 13, 6, 71, we shall not deal 
here  with this determination, considering 
instead the more  difficult and practically 
more important problem of determining 
the s t ressed state (Pi) .  

FIGURE. 4. The determination of the s t ressed 
state (Pi) is illustrated in the example of a 
dome-shaped shell with a hole ( see  figure) 

This problem cannot be solved in the general case. This s t ressed 

subjected to i ts  dead weight. 
state of a full spherical shell subjected to the force of i ts  dead weight, 
parallel to the polar axis, and fastened at the south pole of this system of 
coordinates. In the given case this stressed state differs in nothing, at 
a sufficient distance from the built-in end, from the ear l ier  considered 
s t ressed state of the shell ( P I ) .  If we pass to a new system of coordinates, 
in which the point corresponding to the hole center will be the origin of 
coordinates, and the point corresponding to point C will be a t  infinity, 
the solution can be written in this system in the form 

We take a s  stressed state ( P I )  the s t ressed 

where 

ulr PI a r e  isothermal coordinates on the inverted sphere, in which the hole 
contour coincides with the parallel of the geographical system of co- 
ordinates. 
cordance in the boundary conditions at  the hole is of the form 

It is easy to show that the function which removes the dis- 
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This function is not analytical in the entire region of the complex variable, 
since a t  points z = 0 and z = 00 it has a pole of the f i rs t  order,  and a t  points 
z = - p, and z=l/pl a pole of the second order; i t  is true that the points z = 0 
and z = l / p ,  do not belong to the region corresponding to the middle surface 
of the shell. 
region, the function 9 (2) will be analytical, and in i t  will be realized the 
s t ressed state (P,) consideredin the preceding section. 
which corresponds to the north pole of the initial geographical system of 
coordinates, belongs to the shell, 9 ( z )  will no longer be analytical in the 
entire considered region, but will be analytical in the vicinity of the hole 
contour. It follows that + ( z )  can be expanded in a MacLaurin ser ies  in a 
certain annular region adjoining the hole contour. This is not necessary 
in practice, it being sufficient to develop the factor l / ( r  + pl)* in a, Taylor 
ser ies  in the vicinity of point z = 0. Thus, the s t ressed state (9) will be 
determined by the analytical function of the forces 

If the remaining two points likewise do not belong to this 

If the point z =  -pl. 

fl where N is a sufficiently large number, not exceeding, however 

In view of the convergence of the Taylor ser ies ,  the boundary conditions 
remaining unsatisfied will have a large variability index and a low intensity, 
and therefore the s t ressed state ( P i )  determined by them need not be taken 
into account. 
preceding one by means of the transformation described in 181. 

force per unit length T, of a spherical shell characterized by the following 
values of the parameters  8, -15". 8, = go", 8, =Zoo for the forces of the dead 
weight and of an uniform internal pressure.  
concentration factor k (rp=O) a r e  represented in the table. 

The case when z=m belongs to the shell is reduced to the 

5 .  We determined a s  an example the concentration of the circumferential 

The results obtained for the 

Dead weight  . . . . . . . . 
In t e rna l  pressure . . . . . 

20" 

2 

2 

2 5' 

1.68 

1.65 

30" 

Here 8 is the geographical coordinate on the inverted sphere. 

CONCLUSIONS 

The problem of s t r e s s  concentration, near a circular hole of a spherical 
shell built-in a t  a sufficient distance from it is solved by finding the 
membrane s t ressed state (Pz) .  
state is determined by the analytical function of the forces +*.) The 

(In the case of the dead weight forces this 

433 



following factors a r e  neglected in view of the low intensity of the forces 
produced by them: 

1) the purely moment s t ressed state ( a  special study was conducted to 
that end); 

2) the edge effect by the hole, and 
3) the rapidly varying s t ressed state. The la t ter  can be neglected when 

the load does not vary too rapidly. 
physical point of view to resolving the s t r e s s  concentration into two parts: 
a relatively slowly decreasing part  (&) and a rapidly decreasing part .  The 
specially conducted analysis has established that in most cases of practical 
importance the first par t  (determined by the membrane s t ressed state) 
plays the main role. 

This approach is equivalent from the 
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ON THE CALCULATION OF NONLINEAR VIBRATIONS 
OF FLEXIBLE PLATES AND SHALLOW SHELLS B Y  
THE SMALL PARAMETER METHOD 

V . S .  K a l i n i n  
(Leningrad 

1. Mathematical difficulties which have not a s  yet been surmounted 
make i t  necessary to look for approximate solutions of the nonlinear 
problems of the theory of plates and shells, based on the first te rms  of 
the ser ies  expansions of the unknown magnitudes by the systems of some 
selected coordinate functions. A s  a result, the distributed mechanical 
system (plate, shell) with infinite number of degrees of freedom is re -  
placed by a discrete system (which frequently has  one degree of freedom 
only, in view of achieving a maximum simplification of the problem). 
problem solution itself reduces to solving nonlinear equations, algebraic 
in statics and ordinary differential in dynamics. 

The selection of the coordinate functions predetermines the distribution 
of s t resses  in the shell (plate). Such approximate solutions a r e  according- 
ly  usually suitable for calculating the deflections only, and not the s t resses .  
This is true in particular of the dynamic problems considered below, when 
the form of the deformation depends on the frequency of the vibrations and 
on the particular mode of nonlinear vibrations realized from among the 
possible ones. 

It should also be borne in mind that in the case of nonlinear boundary 
conditions it is frequently very difficult to find coordinate functions which 
satisfy them (the usually used modes of natural vibrations of the cor- 
responding linear problem a re  not suitable in this case). 

importance when estimating the fatigue strength) i t  is necessary to have 
solutions in which the form of the deformation is not selected, but i s  found 
from the equations allowing for all the linear and nonlinear boundary con- 
ditions. Such solutions of greater accuracy can be obtained by the method 
of the small parameter. A scheme for calculating the periodic vibrations 
of flexible shallow shells and plates, similar to that used ear l ier  for  
calculating the nonlinear vibrations of bars  11, 21,  is exposed below. 

shells (the subscripts E, q, and s stand for differentiation by the dimension- 
l e s s  arguments, A represents the Laplacian): 

The 

In order  to calculate the s t resses  more accurately (which i s  of particular 

2. The dimensionless nonlinear equations of the vibrations of shallow 
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were obtained from the dimensional equations by means of the following 
transition formulas: 

The linear magnitude 1 characteristic of the shell is either one of the radii 
of curvature or the length of one of the edges. 
plate k,=k,=O . 
of its nature it is expedient to write 

In the case OP a plane 

Various magnitudes can be used as  small parameter p. Independent 

This formal transition to new magnitudes, while not absolutely necessary, 
considerably simplifies the solution. 

Equations (2.1 ) become then 

- - - -  - -  - -  
A A  'p = W E ,  - W ~ E W ~ ~  - k ,  w,, - k ,  ~ i t .  

We shall look for a solution of system ( 2 . 4 )  in the form of the ser ies  
expansions 

1 - 0  1-0 

The boundary conditions for WI and 91 are  obtained from the given con- 
ditions by expanding the latter in ser ies  by the powers of p with the aid 
of (2.5) and of expressions of the type 

N ,  = 

Equations (2 .4)  describe at  p = p = O  free vibrations of a shell of simpler 
This system can be called agenerating properties than the considered one. 

436 



system, just a s  in PoincarC's method of a small parameter 131, since i ts  
vibrations ( a s  will be seen below) generate in fact in a certain sense the 
vibrations of the shell considered. 

'2 directly a s  se r ies  expansions by p, the generating system will be an 
ordinary linear shallow shell with a resolving equation of order eight. 
deflections of this shell will be independent of the shearing forces per unit 
length, while these forces themselves wi l l  depend on the deflections. To 
this shell correspond simpler differential equations of order  four, whose 
solutions can be found in successive steps. The influence of the shearing 
forces on the deflections of the shell considered a r e  allowed for in q. w2, 
etc. 

When selecting a generating system one should keep in mind that the 
nearer  this system to the considered one, the smaller the number of te rms  
which it will be necessary to keep in ser ies  (2.5) in order  to achieve the 
required accuracy. On the other hand, i t  is usually much more difficult 
to integrate the equations of such a closer generating system. 

periodic function of t, i t  must be expanded in a Fourier ser ies  in an inter- 
val equal to the period). 
the shell one should distinguish between the resonance and the nonresonance 
cases, corresponding to ~ = k y , , , ,  and w ;f- k i n ,  respectively, where i:,,, ( i n ,  

IL =0,1, 2,. . . ) a r e  frequencies of the free  vibrations of the generating system. 

If, without using the formal representations (2.3),  we t ry  to find and - 

The 

3.  Let, for simplicity, p (x. y .  t )  = ,D:~ (x. y)  s i n w t  ( i f  p is an arbi t rary 

When calculating the forced steady vibrations of 

In the nonresonance case, introducing the designations 

(where E, is the area of the part  of the shell surface loaded by the 
pressure p ) ,  writing p = IIi. 11* (usually il>. l l<<l),  and substituting (2.5) in 
( 2 . 4 ) ,  we obtain, by equating the coefficients of equal powers to zero, the 
following infinite sequence of systems of differential equations: 

- - 
raAAw2 + was = k , $ l , , + k , . q l ~ ~  + WE viqq + w r ~  ' p o l l  + 

(3.21, + woqq %E+ w q y  'PoEE-2(woEyy1tq -1- WlEq FOEq), 

I - 
A A T ~ =  - k,Wqq- kzWzEE + W ? E ~  + 2  WOE^ W ~ E ~  - W ~ c ~ q q  - 

- WEE w1,q - Z'aqq WPEi , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
In the resonance case we assume p = IIp, [ [A  since the small  parameter 

must be selected SO as  to make the harmonic load appear in the equations 
of the f i r s t  approximation (and not of the zero approximation). 
the solution of the generating system, containing secular terms, would 
not have been periodic. In addition, in order that the vibrations might be 

Otherwise, 
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calculated near a s t r ic t  resonance a s  well, it is necessary to introduce 
the frequency discrepancy / 3 /  Zi= i t ~  - ).:,,. The frequency 
appear, however, explicitly in equations ( 2 . 4 ) .  The frequency discrepancy 
is accordingly introduced obliquely, through the variation of the coefficient 
e? corresponding to it: 

- -  
does not 

E* = E: - pa, ( 3 . 3 )  

where 2. is the value of E for which the ma -thfrequencyof f ree  vibrations 
of the generating system is exactly equal to the given frequency UI. 
coefficient a is calculated from ( 3 . 3 )  for the given p and E ,  and for E ,  

found from the condition iLn=  z .  
the following form in the resonance case: 

The 

Due to these two peculiarities, the f i rs t  equations of system ( 3 . 2 )  have 

s'AAW, $- Woss==o; ( 3 . 4 ) ,  

E*AAw, +- wls,=~:2slnG + a A A w ,  + k,polq+ &,we+ ww'pol, + 
i-W,,W€ - -2~oes'PoE1, (3.411 

( 3 . 4 )  

- - 

- - 
E * A A w ~  f wzSs = a A h r ,  + k ,  qilq 4- k,cpis + Waz'pisq + W I E ~  'pols + 

+ woqqp1e + WIssWE--2 (woes 9lEq + Wits 'pars). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

The second equations of system ( 3 . 2 )  remain unaltered. 
Let the shell edges be the coordinate l ines x=O. x= k, y = 0, y a b or,  if 

the shell is closed along coordinate y ,  only x =O. x=l. 
first case that 

It is assumed in the 

(3.5) 

The calculation of the nonresonance vibrations of a nonclosed shell is 

The pressure p. (E, 7) is expanded in a Fourier series: 
conducted accordLng to the following scheme. 

- -  
p ,  = 2 P, (E) sin a, p, a, = n lib, 

"-1 

after which the f i rs t  equation of ( 3 . 2 ) ,  becomes of the form 

e3 - 
A A W ~  + woSs = sin os 2 pn sin a,,?. 

n-1 

The solution of ( 3 . 7 )  satisfying conditions ( 3 . 5 )  is of the form 

(3.6) 

( 3 . 7  1 

( 3.8 ) 

( 3 . 9 )  
where 
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is the solution of the equation 

- 2a: xi,+ (/?-3)Xo. = p n ,  n = t ,  2,.  ., (3.10) 

where X?' is a particular solution corresponding to p n r  and XO,, a r e  
linearly independent particular solutions of the corresponding homogeneous 
equation. The integration constants C, a r e  determined from the non- 
homogeneous system of four linear equations obtained from the boundary 
conditions for w,, at the edges x =  0, x = 1. 
of equations is the frequency equation of the generating system. 
ikn # 
exists a unique solution Xon. 

hand part  of the second equation of (3.2). 

a periodic function having the same period e. 

right-hand part  of the first equation of (3 .2 ) ,  becomes known. After finding 
i ts  solution similarly to the solution (3.8) we can calculate ylr  etc. A t  each 

2a 
step of the calculation wL and 'pi will  be periodic functions of period -, 
all of them being determined in a one-valued manner on the strength of the 
condition # 1;". 

(3.5),  the variables in the equations can no longer be separated. 
case the solution can be represented in the form of a se r ies  by the cor- 
responding beam functions, obtaining equations for Xin of the form of 
(3.10) by orthogonalizing the equations for lluj relative to each of the 
beam functions. 

a s  a cosine and sine Fourier ser ies .  
(3.10) will once more be strict .  

The determinant of this system 
Sihce all 

by hypothesis, this determinant i s  different from zero and there 

To the periodic solution w, found there corresponds the periodic right- 
Therefore, 'po will likewise be 
2x After i ts  determination the 
W 

w 

In the case of boundary conditions at  the edges Y =0, b, different from 
In this 

If the shell is closed along the coordinate y, then wl is to be represented 
In this case equations of the type of 

The scheme of calculation of resonance vibrations is somewhat different. 
To the solution of (3.4), for a closed shell 

w,, = A, X: ( C )  sin a, q sln I:,, S. (3.11) 

where X ,  (E) sln a,, is the mode of the free  vibrations of the generating 
system of frequency i k n ,  and A,,  an arbitrary amplitude at  this stage, 
corresponds the solution of the second equation of (3.2),: 

'p, = 701 ( C ,  7. A,) sin s + (po2 (E, q,  AJsin' % s. (3.12) 

A, figures in at  the power of two. 
The substitution of w, and 7,  in the right-hand part  of (3.4), yields 

E ~ A A ~ ,  + wss= Ipn ( E )  + PI '(t, A,)]  sin a, q sin %s + Q, (€ .? .s .  A,). ( 3.1 3 )  

The right-hand part  is split in two components such that Q, does not con- 
tain te rms  proportional to sina. ?s in  xi. s .  
corresponding to Q1 wil l  accordingly be nonresonance and can be found by 
the nonresonance scheme exposed above for any value of A,. 

The amplitude A. is found from the condition of periodicity of wen, 
properly speaking of the resonance part  w, corresponding to the first 
term of the right-hand par t  of (3.1 3) .  

The part  of the solution of wl 

The function wen will be a periodic 

439 



function of the form 

wm = XI" ( E )  sln a, 9 sin Ti,, s, 
provided there exists a solution XI,, of the equation 

(3.14) 

which satisfies 
w, a t  the edges 
The solution 

x:: - 2 a2, x;,+(.j: - a 2  X,, XI, = P n  + PI, (3.15) 

the boundary conditions following from the conditions for 
x=O and x =  I .  

(3.1 6) 

is s imilar  to solution (3.9). In this case, however, the determinant of the 
system of algebraic equations relative to C, is equal to zero, since A:, 
is the eigenvalue of the corresponding homogeneous boundary-value problem. 
This system will therefore have a nonlinear solution only for those values 
of A, for which the expansion of the matrix of the equations coefficients by 
the addition to i t  of a column formed of the right-hand par ts  does not alter 
its rank. 
termines the values of A, to which there correspond periodic values w, 
(the equation is nonlinear relative to A " ) .  
ordinary differential equations, the condition of equality of ranks of the 
fundamental and expanded matrices is identical to the condition of ortho- 
gonality on segment 10. IJ of the right-hand part  of (3.15) and of the solutions 
of the conjugated homogeneous boundary-value problem. 
dition is much more  easily formed, in particular in the case when the 
boundary conditions for XI,  a r e  self-conjugated (the differential operator 
of the left-hand part  of (3.15) is self-conjugated). 
for the determination of A, 

This fact should be used for forming the equation which de- 

But, according to the theory of 

This latter con- 

In this case the equation 

(P" + Pl) x, dE = 0 (3.17) B 
is the condition of orthogonality of the right-hand par t  of (3.15) and the 
eigenfunction X ,  corresponding to the frequency cn. 

The solution of w, remains indeterminate even after A, has been 
calculated, since when pn + P, satisfies condition (3.17) or a condition 
equivalent to it the constants C, a re  determined up to some constant factor 
A,. 
in w,. 
from the condition of periodicity of w,,  just a s  A, was determined from the 
condition of periodicity of w,.  It is important to note that the algebraic 
conditions for determining A,, Az ; . .  are linear. Therefore, when con- 
ducting the calculations for each of the roots Aor of the nonlinear equation 
(3.17) we do not obtain new bifurcations of the solution. 

The scheme of calculation of resonance vibrations with small  
variations can be used for elucidating the influence of the amplitude of the 
free shell vibrations on the frequency. 
time s to the natural t ime T by the formula 

The indeterminate term A,X,  (5) sin a,, 1 sinx:," s will appear as a result  
The magnitude A, is determined only in the next stage of calculations, 

4. 

To that end one passes from the 

7 = I N S ,  (4 .1  1 
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where 3 . ~  is the frequency of the free  nonlinear vibrations, expanded in a 
s e r i e s  (the subscripts mn of the frequencies have been omitted) 

ki= i o *  (1 + p, p + p,p2 + . * . ) (4.2) 

with unknown coefficients P I .  
where A, is the amplitude of the initial displacement. 

s t r e s ses  o:, 0;. a:, the first equation of (2 .4)  wi l l  be written in the form 

It is in addition convenient to write p=AE, 

Then, if we single out from the s t r e s ses  the initial statistical membrane 

- -0 - - - - -  - -  - 
s'AAw 4- Gwc)ir = P [WE (a:+ ' ~ q q )  +w,q (a! + ~ i i  ) + 2 ~ q  ( o x y -  YE,)-+ 

+ Ll cp,,+k,%€ I * 
- -  -- 

(4.3) - 
while the second one will remain unchanged. In this case, however, 9 
determines the dynamic s t resses  only. 

The use  of se r ies  (2.5) and (4.2) yields the equations 

I' AA W, +'r.'' wolr -0; 

e* AA w,+ X'* wi,x= - B, ~ ' W O , ,  + klrpoqq + k, WL+ ~ o : r ( &  + 'p~qq)  + 
(4.4)0 - - - 

- 
(4.4)1 

- + wnqq (0; + 'PO€€) t2wo:q (a:,- 'p0:q); 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Having found the solution of the second equation of (3.2),, corresponding 
to the solution wo = A o X ,  (E) sin an T, C O S T  of equation (4.4),,  and having sub- 
stituted i t  in (4.4)1, i t  remains, just as in the resonance case, to form 
the condition of periodicity of the solution w,. With i t s  aid B, is re -  
presented as function of the initial amplitude. The arbi t rary number A, 
entering in w, is found from the condition that at  T = O  w, = O  at the point 
where wo = A, at this moment. 
A,, etc. 

relative to the case when the boundary conditions at  two opposite edges 
a r e  different from ( 3 . 5 )  remains correct  for the resonance case and for 
f ree  vibrations. 

above- considered problems. 

boundary conditions at  the edges 

At the next stage we similarly find p, and 

A l l  that was said in § 3 relative to the calculation of a closed shell and 

5. 

In the case of f ree  vibrations of a closed circular  cylindrical shell with 

We shall now give the resul ts  of the solution of the simplest of the 

loaded by a constant internal pressure p (.", - 112 
dimensionless frequency TN is connected in the following way with the 
dimensionless initial amplitude &,= cA,/ l :  

= a12 = pR/2h, a:,= 0) the 
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The f i r s t  three te rms  correspond exactly to the linear theory of shallow 
shells. It follows that the use of a shell with simpler properties a s  
generating system has not led to an e r ro r  in the fundamental terms.  

FIGURE 1. FIGURE 2 

FIGURE 3 .  

Formula ( 5 . 2 )  was obtained by satisfying all the conditions ( 5 . 1  ) a t  eachpoint 
of the edge. If the last  two conditions a re  satisfied a t  the edges in an integral 
form ( a s  in most solutions of nonlinear problems), the correction to the linear 
frequency is considerably modified. 

frequencies of the three shells and the ratio A,lhfor p = 0. The continuous 
curves were plotted by formula (5.2), while the dotted l ines were obtained 
by satisfying the condition v =  d2p/dy1 = O  on the average over the edges. 

Figures 1 to 3 represent the relationship between the lower three 
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It i s  interesting that at  a certain value of A,/h the lowest frequency 
corresponds to a number n different from that predicted by the linear 
theory. This should be taken into account when calculating forced vibrations. 
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LOAD-CARRYING CAPACITY OF CIRCULAR 
CYLINDRICAL SHELLS A T  COMPRESSION 

S . N .  K a n  
(Khar ' kov) 

The loss  of load-carrying capacity of a shell can be a consequence of 
buckling or of a strength disturbance (caused for instance by the appearance 
of s t resses  equal to the yield s t r e s s  of the material). 
portance of the study of the stability of thin circular cylindrical shells and 
of the large number of papers devoted to this question, there exists to date 
no generally agreed upon explanation of the mechanism of shell buckling. 
Different authors give various explanations of the considerable discrepancy 
between the experimental data and the resul ts  of theoretical studies based 
on the classical l inear theory. 
Vol'mir, Donnell) a r e  today of the opinion that the cri t ical  s t resses  of the 
shell a r e  to be determined on the basis of the nonlinear theory, allowing 
for the considerable radial displacements of the system elements. Many 
papers begin from the existence of initial deflections of the shell surface. 
The complexityand inaccuracy of the solutions obtained on the basis of the 
nonlinear theory seem to us  unjustified, not to mention the impossibility 
of explaining some of the experimental results.  

The load-carrying capacity can be determined in a manner which is both 
physically more convincing and mathematically sufficiently accurate on the 
basis of the l inear theory, allowing for small initial deflections of the sur-  
face, by reasoning in the following way. 

The totality of initial imperfections of the middle surface of the system 
can be divided into two groups, corresponding to buckling in an axisym- 
metrical  and a nonaxisymmetrical mode, respectively. We shall be in- 
terested in what follows only in the surface shapes for which the shell 
deformations can increase rapidly under the action of the compressive 
s t resses .  These shapes correspond to the minimum critical s t r e s s  of 
the classical l inear theory of buckling. 

the action of the external compressive forces. Calculations show that, all 
other conditions being equal, the axisymmetrical mode of initial deflection 
is the more dangerous one. The load-carrying capacity of the shell can 
thus be determined from the condition of strength, starting from the ex- 
ternal compressive forces  under whose action the total internal s t resses  
reach the yield point 05 the material. 
only a t  relatively low values of the ratio of the shell radius to i t s  thickness 
(Ria) . * What happens at  large RIB? 

In spite of the im- 

Many scientists ( K a r m a ,  Mushtari, 

The longitudinal elements of the shell bend longitudinally-laterally under 

This procedure is, however, suitable 

To this type of shells usually belong reinforced and corrugated structures 
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The longitudinal bending moments of the separate s t r ips  at longitudinal- 
la teral  bending can be considered a s  due not to the t rue initial axisym- 
metrical  curvature of the surface, but to an equivalent fictitious axi- 
symmetrical radial load under whose action the shell buckles in a non- 
axisymmetrical mode. Since the flexural rigidity of the shell elements 
is proportional to the cube of i ts  thickness, buckling will be very probable 
at  relatively large Rp,  i. e., at  small  thicknesses, the compressive axial 
external load contributing actively to this phenomenon. 
becomes understandable why a surface deformation in the form of pro- 
tuberances and depressions according to a nonaxisymmetrical mode is 
observed a s  a rule  in thin shells at  the las t  moment preceding collapse 
only. Buckling is usually accompanied in this case by snap-throughs. 

We proceed to determine the formulas for calculating the load- 
carrying capacity of the shell on the basis of the phenomena described 
above. 

It therefore 

STABILITY O F  A SMOOTH SHELL 

The initial deflection of the middle surface will be represented in the 
form 

m xx wo=f , , s in+,  
L 

where fo is the amplitude of the initial deflection; 
x is the coordinate along the system axis; 
into which an ideally smooth shell buckles in an axisymmetrical mode. 

In the case of elastic radial displacements of the elements we have* 

L i s  the shell length; 
no is the number of half-waves 

- 
( 2 )  

m rx = f o  - "5 sin 0 * 
1 -ax L 

where (yr=Gis determined from the condition of minimum of 

the critical s t resses  acr  of an ideally smooth shell; gx =r "- is the ratio of 

the collapse compressive load to the cri t ical  load 

- 

QCI 

The longitudinal bending moments in the separate s t r ips  a r e  

Cf. S. N .  Kan. 
(Strength. Stability. and Load-Carrying Capacity of Structurally Orthotropic Shells). -In: Sbornik 
"Raschet prostranstvennykh konstruktsii", No. 8. Gosstroizdat. 1962. 

Prochnost', ustoichivost' i nesushchaya rporobnost' konatruktivno ortotropnykh obolochek 
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To these bending moments there corresponds a radial load of maximum 
intensity 

rw where a?= - . - E  is the circumferential normal s t resses  in the skin. 

the intensity p is constant along the generator and directed toward the 
shell center, since such a direction of a constant load can lead to buckling. 
The influence of the variability of p on the critical s t resses  is allowed for 
by artificially lowering the initial deflection amplitude fo in ( 4 ) .  
this simplification is very convenient, i t  is not a necessary condition for 
solving the problem. 

The collapse axial s t r e s s  corresponding to the nonaxisymmetrical 
buckling mode will be, allowing for the influence of the constant radial 
load p :  

R 
In order  to simplify the solution we shall assume in what follows that 

While 

where n is the whole number of waves in the circumferential direction 
into which the shell buckles under the combined action of the axial forces 
and the radial  pressure.  
respond to the whole number of half-waves along the generator, which is 
expressed by the following relationship: 

The necessary minimum value of n must cor- 

o r  

On the strength of ( 5  ) and (4) we obtain 

where 

and p is the Poisson ratio. Relationship (8  ) represents the equation for 
calculating a,. 

load-carrying capacity < is a functionzf the initial imperfections 7,. 
the case of high-grade surface finish ( f o  tends to zero), 

- 
The analysis of ( 8 )  shows f i rs t  of all that the relative magnitude of the 

In 
a, approaches ucI I 
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It  is necessary further on to note the substantial influence of R/b on the 
value of a,. 
agrees with the experimental data. 

characterist ics influence the value of ix, a fact found so strange by Donnell. 
In fact, all other conditions being equal, the increase of the modulus of 
elasticity of the material  E causes, according to ( 6 ) ,  a reduction in the 
number of waves n, which in turn causes, in accordance with ( 8 ) ,  a certain 
drop in &. 

Relationship ( 6 )  finally elucidates why the values of L/m obtained in tes ts  
with real  shells (allowing for p )  a r e  higher than the values calculated for 
ideal shells ( p = 0). 

Practically, the utilization of ( 8 )  for structures of a certain grade of 
finish is envisaged in the following way. The value of i, is known from 
the data of tes ts  with given value of R/8. This makes i t  possible to calculate 
the constant parameter 

A drop of .< takes place with the increase of Rl6, which 

On the strength of ( 8 )  and ( 6 )  i t  is possible to explain why the material 

whose value is then substituted in (8  ): 

From ( 9 )  we determine Ox, and therefore ax, for any arbi t rary value of Kld. 
Such a sequence of using relationship ( 8 )  coincided with the results of the 

500 mo (500 20w 2500 3wo 

Comparison of the  results of calculation by (9) and (14) with 
the data of the experiments and of the theory of Donnell and 
Wan. 
data of various authors: 1 -celluloid (Fliigge); 2-steel  
(Robertson): 3 -steel, brass (6ridget): 4 -duralumin 
(Lundquist); 5 -steel  (Boley): 6 -steel  (GAILIT); 
7 -steel, brass (Donnell): 8 -steel (Wilson, Ncwmark). 

T h e  thin dotted lines correspond to the experimental  
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experiments and calculations given in the paper of Donnell and Wan* (see  
figure). When plotting the stability curve we took as initial point the 
point i, = 0.5 lying on Donnell's curve. 

CONDITIONS OF SHELL STABILITY 

In the presence of an initial deflection ( 1  ), the compressive forces per 
unit length ox cause the appearance of bending moments ( 3 ) ,  which lead 
to the appearance of longitudinal bending normal s t resses  

or, in relative parameters,  

The elastic radial displacement ( 2 )  is accompanied by circumferential 
normal s t resses  

or ,  in relative magnitudes, 

Finally, the circumferential bending normal s t resses  at  a Poisson 
ratio p = 0 . 3  a re  

We shall determine the value of ax which gives, in conjunction with 
omx, op and alllo by the third theory of strength, an equivalent s t r e s s  equal 
to the yield s t r e s s  of the material  a, andleading to the collapse of the shell*<:% 

ax + (amX)max + (op)max - (OmQ)max = or 

or in relative magnitudes (expressing each term in ocr units): 
- - 

(13) 
- -  
ax + (amx)rmx + (ap)max - (&+ax =as . 

m xx 
L 

Substituting here  GmX, a,, im, and taking sin -'- = 1 we obtain the following 

Donnell, L. and J .  Wan. Vliyanie nepravil'nostei v forme na ustoichivost' sterzhnei i tonkostennykh 
tsilindrov pri osevom szhatii.-In: Sbornik "Mekhanika, "No. 4. 1951. [Original title: Study of the 
Influence of Imperfections on the Process of Buckling-J. Appl. Mech. , Vol. 17.  p. 73. 1950.1 
T h e  condition of equality of the  resultant stresses and the yield stress of the  material  a t  the extreme 
fibers does not exhaust the load-carrying capacity. and is arbitrary in this sense. T h e  safety margin 
obtained as a result. connected with the variation of the stresses amx over t h e  section, compensates for 
the init ial  deviations which a re  not allowed for in the  calculation. 

** 
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quadratic equation relative to the unknown magnitude y,: 

According to ( 1 4 ) ,  the load-carrying capacity (0 , )  is determined by the 
following parameters: the relative magnitude of the initial deflection 
fo=j0/4 the relative geometry of the shell section R/&, and the material 
characteristic €/a,. The increase of fo and Elasleads to a reduction in a,. 
The increase of Rlh leads to an increase in ax. 

materials with E/o,= 160 and 
symmetrical deflection for these curves was taken a s  fo = 0.14 6. 

smaller than a certain magnitude it is necessary to use the strength curve 
for determining ax, while a t  higher values of R/6 the stability curve is to 
be used to that end. 

Strength curves a-, = 'p (@) have been plotted in the figure by (14 )  for 
The amplitude of the initial axi- = 625. 

The analysis of the curves of the figure shows that at  values of R/b 

CONCLUSION 

The physical clarity of the proposed interpretation of the structure behavior, 
the simplicity of the derivation of the computing relationships and of the 
plotting of the curves of strength and stability of the shell, and the practical- 
ly  perfect coincidence with the resul ts  of the experiments and calculations 
by the relatively complex method of Donne11 and Wan speak for themselves 
in favor of the solution proposed. 

It should be noted also that, since the lateral  load is equivalent, from 
the point of view of the s t ressed state, to some initial deflection, the 
method for calculating the load-carrying capacity proposed here  applies 
directly to this type of load a s  well. The lateral  load can sharply reduce 
the load-carrying capacity of the shell in those cases when the initial de- 
flection equivalent to i t  approaches the "critical" harmonic. It is at the 
same time obvious that large local dents can influence only weakly the 
load-carrying capacity, i f  they have an irregular pattern; in fact, their 
Fourier ser ies  expansions have very small  amplitudes for the harmonics 
near to the "critical" one. 
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FREE ?'IBRATIONS OF A CYLINDRICAL SHELL 
WITH STIFFENING RIBS 

N.I .  K a r p o v  
(Kiev) 

Numerous studies have been devoted to the question of the vibrations 
of reinforced shells. 
importance of these studies, no efficient method for solving this problem 
in the engineering practice has been evolved. 
either coarsely approximate o r  reduce the solution of the problem to 
solving an infinite system of algebraic equations. 
is obtained in the form of infinite determinants, which a r e  of little use  
even for analyzing the spectrum of frequencies of a reinforced shell. 
a result, almost no studies have as  yet been conducted on the optimum 
parameters of the stiffeners and of their optimum disposition on the shell, 
and of the design of structures of minimum weight. 

A method i s  proposed below for solving the problem of f ree  vibrations 
of a shell reinforcement by stringers,  allowing for the discrete arrange- 
ment of the la t ter  on the shell. The frequency equation is obtained in the 
form of a transcendental equation which can be easily analyzed. 

Despite the outstanding scientific and practical 

The existing methods a r e  

The frequency equation 

As 

STATEMENT O F  THE PROBLEM AND METHOD 
FOR SOLUTION 

Consider a circular cylindrical shell reinforced by stringers of 
identical geometrical and elastic characteristics, arranged on the shell 

a t  equal angular distances a = k ,  where k is the number of stringers.  

Let the shell r e s t  by i ts  ends on diaphragms absolutely rigid in their plane 
and easily yielding to lateral  deformations, and le t  it be loaded by an axial 
static force P distributed uniformly over i ts  ends. 
small and the deformations l ie within the l imits of proportionality. 

a contact problem of the theory of vibrations of shells and bars .  
assumed that the contact between the shell and the i-th stringer is such 
that i t  does not prevent the f r ee  sliding of the stringer along the shell and 
i ts  free twisting relative to the line of contact, but ensures equal dis- 
placements of the points in contact along the normal to the middle surface 
of the shell. 

Assume that the components of the displacements of the middle surface 
points have been specified in some way, defining thus the deformed state 

2r 

The vibrations a r e  

The problem of the free  vibrations of a reinforced shell is treated a s  
It is 
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of the shell. The shell and the stringer being in contact, this defines the 
deformed state of the stringer a s  well, Using the equations of vibrations 
of the stringer, we determine the load on the stringer which would give it 
this deformation. According to the scheme of contact adopted, the latter 
must be directed along the normal to the middle surface of the shell. We 
mentally remove the stringer, and replace i ts  action on the shell by this 
load with reversed sign. 

A s  follows from this statement of the problem, we s tar t  in the solution 
of the problem of the free vibrations of a reinforced shell from the equa- 
tions of vibrations of a smooth shell /I/ and the equations of vibrations of 
a bar in a local system of coordinates (121, p. 302). The latter a r e  of the 
form 

N d2 - __- -I a2 + ( F v - S z 0 )  =o;  { gEc dtz E,? 

P 
4nrh + kF 

N =  ---. 
The physical meaning of the magnitudes entering in these equations i s  
explained in / 2 /  (p.302) and in 1 3 1 .  We only changed the designations of 
the coordinate axes, according to the following rule: x to y ,  y to Z ,  z to x ,  

and introduced the relative coordinate E = -, where r is the radius of the 

middle surface of the shell. 

initial equations in the following form: 

X 

The problem reduces to determining the nontrivial solutions of the 

Y 

IC (E, p. t )  = 2 ( ~ L ~ ~ C O S  mp + untSsin mp) cosX,E sin (wf -I- a); 
m-0  

= 

'U ( E ,  P, t )  = 2 (vmC COS mp + v,,-sin me) sin i,I sin ( w t +  a); ( 2 )  
m - 0  

- 
WJ (E, p, f) = 2 (wmCcos mp + wfmssin mp) sin A,,[ sin (wf + z); 

uti ( E ,  t )  = At cos ).,E stn ( w t  + a); 
vCi ( E .  t )  = Bt sin X,E sin ( w t  + a) ; 

m-n 

( 3 )  
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(cont’d) 

where u ,  v, w and U.I.  vel, wcl a re  the components of the displacements of 
the points of the middle surface of the shell and the points of the i-th 
stringer, lying on the line of contact; 

relative to the line of contact; 

a r e  the unknown frequency and phase angle of vibrations. 
and ( 3 )  in the initial equations, w e  obtain after elementary transformations 
a system of l inear algebraic equations relative to wmC and Wmr whose solution 
yields: 

b is the angle of twist of the stringer 
nnr 

A,, = T ;  1 is the shell length; w and a 

Substituting (2) 

Here D(X, m )  is a known third-order operator (the natural frequencies of the 
smooth shell a r e  determined from the equation D (A, nz) =O) ;  A= is its minor 
corresponding to the element a,,; 
(the natural frequencies of the bar a re  determined from the equations 
D, = 0) ;  D,, is i t s  minor, corresponding to the element au; 
respectively, the modulus of elasticity, the Poisson ratio, and the half- 
thickness of the shell; 
(4) and ( 5 )  yield an infinite system of algebraic equations for determining 
W m c  and wmsr obtained by substituting in (4) the values of Zcm and Zsm from 
( 5 ) .  This is the procedure usually adopted, and a s  a result  a frequency 
equation in the form of an infinite determinant is obtained. Some of the 
possible modes of vibration a r e  dropped out in the course of the de- 
rivation; these a r e  the modes of vibration corresponding to some natural 
frequencies of the nonreinforced shell. 

There is, however, another possibility of forming the frequency 
equation, also starting from (4) and (5) .  
and ~ ~ ( k , - ~ ) ,  ws(br+m) from (4) and substituted the values obtained in ( 5 ) ,  
we conclude that nontrivial solutions of the initial equations in the form 
of (2) and(3)  a r e  possible i f  the following alternative conditions a re  
satisfied: 

Dc is a known fourth-order determinant 

E,. 0 ,  and h are,  

Formulas E, is the modulus of elasticity of the bar. 

Having determined Wc(br -m) ,  wc(k,+,) 

Z c m = O ;  Z , m = O ;  ( 6 )  
(!--*)rkDcEc k r - m )  - A,,(X, kr + m )  

4xhDuE, {$, D ( A , k r - m )  ‘2 r-0 D ( A ,  k r + m )  

m-0, 1.2, ..., 
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We make use here  of equalities of the type 

Z c m  COS rx = Z c ( k r - m )  = Z c ( h r + m ) ;  

Z s m  COS r x =  - Zr(hr-m) = Zs(ar+m) 

(m=O, 1, 2; * ., k ) .  

It can be established that when equalities ( 6 )  a r e  fulfilled the reinforced 
shell vibrates with the frequency of the nonreinforced shell. The middle 
surface of the shell is then split in the la teral  direction in a number of 
half-waves which is a multiple of the number of stringers.  The s t r ingers  
a r e  located a t  the nodes of the natural modes of vibrations corresponding 
to these frequencies. If we exclude these modes of vibrations from con- 
sideration, there remains equation ( 7 )  a s  frequency equation. Equation 
(7) is transcendental, a s  canbe easily shown by summing the ser ies  in it. 
I t  will then be written in the following form: 

~- 
where D(A, p )  = D (1, ip), D,, (A,  p )  = A a ,  (A, i p ) ,  i = v  - 1 , D' is the derivative of 
D (A, p )  byp. 
part. 

we write them in the form 

pl  a re  the roots of the equation D ( A ,  p )  = O  with positive real  
Such a notation is convenient for numerical calculations. 

In order  to be able to study conveniently each of the equations of (7) ,  

where 

ot(i = 1, 2, 3) a r e  the natural frequencies of the bar; C., a r e  the natural 
frequencies of the nonreinforced shell, whose vibrations a r e  accompanied 
by the division of the middle surface of the shell into n and m half-waves 
in the longitudinal and lateral  directions respectively; p is the density of 
the shell material; D: is the derivative of Do by w',. 

intervals l ie respectively between the natural frequencies of the bar and 
the natural frequencies of the nonreinforced shell) f (0,) and 'p (w.) have 
derivatives of the same sign and that f ( O ) > O  whileT(O)<O. 
the continuity intervals these functions suffer discontinuities of the type + ~ l )  and - ua. Taking into account the above-mentioned properties of the 
functions f ( ? u n )  and 'p (wn) ,  and allowing for the fact that their continuity in- 
tervals  overlap either completely or partially, we reach the following 
conclusion. 

The roots of each of equations (7 ) l ie  within intervals bounded by the 
magnitudes w i ( i  - 1, 2,  3), Cn(kr+m), C n ( k r - m ) ,  arranged in an increasing order,  
each interval containing one root only. Thus, i f  W ,  < CRm < Ca(a-,,,) < us<- -, 

It can be easily shown that in the intervals of continuity (for f ind 'p these 

A t  the ends of 

453 



the first root of the equation will be larger  than or equal to w,, but smaller 
than or equal to C,,, the second will be larger  than or equal to C,,, but 
smaller  than or equal to C,(*-,,,, , etc. The magnitudes W I ,  Cn,kr+m), Cn(kr-,, ,)  

representing the natural frequencies of the bar  and shell and the frequency 
spectra of the la t ter  being discrete, the roots of each equation of (7) form 
a discrete spectrum of numbers. 
by two finite numbers a and b there exists a finite number of simple roots 
of these equations. 
spectrum of a reinforced shell for which the middle surface of the shell 
and the stringer axis are divided into n half-waves in the longitudinal 
direction is discrete, and that the minimum frequency will be the smallest 
of the magnitudes 0 1 ,  Cm(b+,,,hs Cn(br--m). 

(ba r )  length during the vibrations, the higher the natural frequency of these 
vibrations. It follows that, at  any finite number N>O, only a finite number 
of frequencies of the reinforced shell is contained in the inerval(0, A'). 
fact, those frequencies to which there correspond n half-waves along the 
reinforced shell, the smallest of the magnitudes m i ,  Cn(kr-,,,), C.(iOr+m) being 
larger  than N turn out to lie outside the l imits of this interval. 

In other words, in every interval bounded 

It follows in particular from here that the frequency 

A s  known, the larger  the number of half-waves formed along the shell 

In 

The following conclusions can be made from these studies. 
1. 

2. 

The spectrum of natural frequencies of a shell reinforced by s t r ingers  

If the fundamental frequency of the stringers reinforcing the shell 
is discrete. 

is larger  (smaller)  than the fundamental frequency of the shell which is 
to be reinforced, the fundamental frequency of the resulting reinforced 
shell will likewise be larger  (smaller)  than the latter.  

The la rger  the number of stringers,  the nearer the fundamental 
frequency of the reinforced shell to the fundamental frequency of the r e -  
inforcing stringer.  

natural frequency of the shell without the stringers,  i f  

mode corresponding to this frequency; 

3. 

4. The frequency spectrum of the reinforced shell always contains the 

a) the reinforcing stringers a r e  arranged at the nodes of the natural 

b) the frequency spectra of the stringers contain this frequency. 
5. The spectrum of natural frequencies of the shell is sufficiently 

dense, and it becomes even denser after i t s  reinforcement by the stringers.  
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POST -BUCKLING STATE AND STRESS CONCENTRATION 
IN ANNULAR PLATES 

Y a .  F .  K a y u k  
(Kiev) 

Consider an annular plate of inner radius b and outer radius a,  with 
inner contour free, and outer contour either hinged or rigidly clamped. 
Let a normal compressive force per unit length P be applied to the outer 
contour. We shall study the s t r e s s  concentration on the free  contour of 
the plate in the post-buckling elastic axisymmetrical state. 

The problem reduces to integrating the equations / 1 /  

1 d  Dp2v2w - - - r T r -  
r d r (  '?)=ol  

with boundary conditions: 
1) outer contour hinged: 

dzw f - -  Y d w  = o  
r = a  r:= - P ,  w = o ,  - 

drz r dr  ' 
r = b  T i - 0 ,  d ' " + - - - - = O  v dw 

dra r dr  ' 
2) outer contour rigidly clamped: 

dw 
dr 

r = a  T: = -- P ,  w =O, - =O; 

d"w v o'w 
dr2 I' d r  

r-b T;=O, - + - - = O ,  
In accordance with 121, we represent P, T: in the following form: 

P= Po + p, T;=T: + 7, + T: (7 1 
and introduce the following dimensionless parameters  and symbols: 
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- 
where PO, Pare ,  respectively, the critical and the additional contour load: 
T:* ?,are the internal forces per  unit length corresponding to these loads; 
i$ is the corrective force per unit length. 

in ( 4 )  and ( 6 )  and introduce designations ( 7 )  and (8 ); 
become then of the form: 

Integrate equation (1 ) allowing for the conditions for the shearing force 
equations (1 ) and ( 2 )  

where 

Equations ( 9 )  and ( 1 0 )  will be solved by the small-parameter method. 
In order to increase the region of applicability of this method we shall 
express the parameter E through another parameter 9 by the formula 

We then find the solution of equations ( 9 )  and (10 )  in the form / 3 /  

By substituting ( 1 6 )  and ( 1 7 )  in ( 9 )  and (10)  and equating the te rms  on 
the left and right with the same power of 1 we obtain the followingequations: 
for q 

for qa 

for qa 

( 1 8 )  L 'Po =o; 

Nti.1 4; (19 )  

(20)  
- 

Lcp,=(1--aaP) A* ( t p  +t,",,) yo; 

456 



for  7' 

for q5 - 
Lv, = ( 1  - a*) iz l ( t P  +t,". 1) '91 + iz,+ f , " * Z )  'pol, (22 )  

etc. 

with replaced by ~, , ,~l , . . . . ,and t," by t:,!, t : , 2 , - - -  

The boundary conditions for these equations are (1 1 ) to ( 1 4 )  as before, 

The solution of (18 ) will be represented in the fo rm 

vo=A 90 O i P ) ,  (23)  

where A is a constant, q0 0.p) is an eigenfunction. 

t o  A2. The  value of A will then b e  determined f rom the condition of 
existence of a solution of equation ( 2 0 )  

It then follows f rom (10)  that the solution of (19)  will be proportional 

- 
ipla ( t P  +e I )  dP =o. (24)  
# 

With A known, the solution of (20 )  will be 

v1= B qo + y:, (25 1 
where B is a constant and 7: is a par t icular  integral  of the nonhomogeneous 
equation. 

(allowing for  (25 ) )  f rom the condition of existence of a solution of ( 2 2 ) :  
Having found the solution of equation (21 ), we determine the constant B 

( P + O [  ct, + C I )  '91+ c t p  + t 6 2 )  Yo]  dP =o. (26 )  

Condition (26 )  will b e  l i nea r  re la t ive to  B,  while ( 2 5 )  will b e  nonlinear 
re la t ive to A .  

This  p rocess  for  obtaining solutions can be extended fur ther .  
The eigenfunction +" (ph) in  (23 )  for  annular plates  is of the fo rm 

$0 ( P V  = JdP9 - 'I N, (PA), ( 27 )  

where J,, N, are  Besse l  functions and 'I is a constant, depending on the 
boundary conditions. 

thus: 
At small  a ( q - I )  the functions Jqr Nq can be approximately represented 

where 
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Using the expression for h',, formula (27) becomes, after some simplifica- 
tions, 

0.1 
0.3 
0.5 
0. I 

+E' i, (2) - 1 n, (2) (c=0.57. . .), (29) 

-2.13 -2.2 
-2.12 -2.41 
-1.92 -2.61 
-1.69 -2.90 

where i, ( z ) ,  n, ( 2 )  can be approximately represented by the followingformulas: 

(30) 

z 

We shall consider an example. 
1. 
from the condition 

The outer edge is hinged ( a  = 0.1). The value of 7 is then determined 

%-I ( z )  + vxJq (2) 
_ _  p.- -I= 

AhIq-dZ)+ L3Nq(z) I-. 
P 

for a = 0.1, q--1. 
=0.02  and 

Using the value 4 = 1.97 for AI, we obtain 7-0.06, 6* = 

'po = A (?:! +0.98 p - 0.48 (31 1 

(32) 

- 0.06p+0.41pJ-0.26p5-0.01p' 

(B = k2.75). 
The following expressions a r e  obtained for 6.1, $ 2  : 

2'94'10-2 -0.841np f2.94-4.62~~ +l.68p4, (33) --4 Inp  
.$,I =84.10 - - - - 

P2 P2 

p, - lo-* - - -0.681np +1.74-2.66p2-l.22p4+2.9p8-0.64ps. ( 34) 
P* P2 

P 2 -  

d 
dP 

Using the formula for the circumferential force per unit length t; = - ( p t ;  ) 

we calculate, with the aid of ( 1 5 ) ,  (33) ,  and (34) ,  the value of t;',,ol for 
different values of E ( see  table). 
hole (the outer edge is hinged) decreases with the increase of the post- 
buckling load. 

The s t r e s s  concentration about the free  

TABLE 71 - - t r i i o - ,  - __._ -- 

Outer edge Outer edge  
hinged built- in 
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2. The outer edge is built-in ( u  = 0.12). Taking / 4 /  into account, and 
determining 7 by the formula 

for A1 = 3.68, we obtain = 0.25 and 

0'045 1-1.78~ -3.28p3+1.92p6-O.56p'+0.O3pD (A= k4.5). (35 )  
%=A (7 ) 

The solution of (25 ) is of the form 

91 = & ~ o  (z ,  + Ax: (3.5. - +o.i8p -o.oip2--o.o5p* -0.22p4- 
P 

-0.30p5+0.27pc+0.45p'-0.18~8-0.44pD+ 0.24p1'-0. 10p" 1 (36 )  

B = -4.7 ( A  >O), B =4.7 (A<O). 

W e  obtain for  f,*. I ,  f : , ~  

f' P. 1- -7.2. 18.10-' - L-- -0.63 Inp +1.08-3.24pz+4.32p4- 
P2 P2 

-3.24p0+1 .62p8 -0.54p1', 

$ , l =  - 0 . 0 1 3 ~ + 0 . 0 1 3  -E5 -1.3 lnp-2.56+ 
Pa P P' 

+2.89p1 +2.20p4 - 2 . 8 6 ~ ~  - 6 . 7 7 ~ ~  +4.54p7 +8.12p8- 
-3.59~' -6.71~'~ +2.39p1' +3.53~" -0.7 lp''4.47p". ( 3 7 )  

The value of t&=o.12 for different c is calculated in the same  way a s  in 
The data in the table indicate an inc rease  in the stress concen- point 1. 

tration about the f r e e  hole (the outer contour is built-in) in the post- 
buckling stage. 
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STUDY OF THE STRESSED STATE OF RIBBED 
SHELLS WITH ZERO GAUSSIAN CURVATURE 

G . A .  K i z i m a  

(Leningrad 

Consider a shell of zero Gaussian curvature subjected to a symmetrical 
load. The shell is provided with r ibs  arranged along the generators a t  
equal distance from each other along the directrix. The s t ressed state 
of this shell will be represented a s  a superposition of the symmetrical 
s t ressed state of a shell without r ibs  under the given external load and of 
the nonsymmetrical s t ressed state, i. e . ,  of the disturbance introduced 
by the ribs. 

We shall use the following symbols: 

tensile forces per unit length TI= TIC; T,= T,< + Tzp; 

shearing force per unit length N, = Nzp; 

tangential force per unit length SI=& = S = 0; 

bending moment GZ=Gzp.  

We assume that the disturbance introduced by the r ibs  only slightly 
a l ters  the symmetrical stressed state along the generators; i t  can 
therefore be considered that the forces and moments T I ,  N l ,  0, a r e  de- 
termined by the symmetrical stressed state, and the influence of the r ibs  
on their magnitude, can be neglected. 

It remains to examine the influence of the r ibs  on the magnitude of the 
forces and moments T,, N,, G , .  Let us cut out one of the r ibs  and the two 
sections adjoining it (Figure 1). 

the entire rib, the following conditions of strain compatibility must be 
satisfied: the shell deflection must be equal to the deflection of the rib; 
the relative angle of rotation T~ and the relative displacement 'u of one 
section relative to the adjacent one must be equal to zero. 

In order  to ensure the joint deformation of the r ib  and the shell along 

1. WSh = W [ ;  2. T2=o; 3. V =o, ( 2  1 
The shell deflection will be represented a s  the sum of the deflections 

of the symmetrical and nonsymmetrical s t ressed states. 

WSh =Wpl,h,s + msh,ns. ( 3 )  

The deflection w s h , n s ,  the angle of rotation T ~ ,  and the displacement 
will be represented by the influence coefficients in the following form: 
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W e  have taken h e r e  as directions 1, 2, and 3 the directions of the 
deflection w, the angle of rotation y l ,  and the displacement v, respectively. 

G'.( n P 
Nz, N 

y< 
T2 ' I /x 

'T2 I %/ - l 
/ 

I 
1 
I 
I 
I / 
I / 

/ 
/ 

/ 

FIGURE 1. 

The following th ree  cases  of loading a r e  considered: 

1. N , = l ;  G , = T 2 = S = 0 ;  

2. G,=l ;  T,= N , -S=O;  (5) 
3. 7, = 1; A'Z=G,=S=O. 

The deflection x , h , s  is known for  var ious c a s e s  of loading and edge con- 
ditions; i t  is proposed, e. g. 1 2 1 ,  to take i t s  value as a function of the 
external load and the edge conditions of the ribbed shell. 

a r e  the eigenfunctions of the equation 
l i e  shall  r ep resen t  w sh,s a s  a series by the functions y,(E). where ?,(E) 

x:'p,=O ( for  a cylinder) ( 6 )  
d'p, _- - 
dt4 

for the s a m e  boundary conditions as at the edges of the ribbed shell. 
'p, ( 5 )  a r e  given in Gol' denveizer' s paper / 1 / for  various edge conditions. 
Thus, 
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where 

X Here  XI = hi R a r e  the eigenvalues of equation ( 7 ) ;  t = - is a dimensionless R 
coordinate; !? is the shell  radius; 1 is the shell length. 

S a ,  2 ( .  E) d! was calculated by Rayleigh and given in / I  / for various conditions 

at the edges. 

load and edge condition. 

I 

0 
wsh,s ( E ) . ? ,  (F )  dE must be calculated for  every type of external i 0" 

Expansion ( 7  ) will contain odd t e r m s  only, since Ah, = 0 for ki = k2,,, . 
Two t e r m s  of the expansion give a satisfactory approximation. 
Having expanded the forces  and moments in s e r i e s  by the eigenfunctions 

cp,(t),  and using ( 3 ) ,  (4) ,  and (7), we write the shell deflection in the form 
h 1, k, 

z ' s h , s  = X A k ,  * ? , ( E )  f ~ T z / * % ' ~  (E).C,, -1 2 Gx.?, ( i ) .CI2+ 
ht kt 

k. + C N 2 I . ? ,  (E).C,,. 
k.  

But, according to the f i r s t  condition of s t ra in  compatibility ( Z ) ,  

=a!,. 

The r i b  deflection is found a s  deflection of a beam: 
1 -E I J 2 Td; = NZc. 

( 9 )  
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By solving system (12 ) we obtain the expansion coefficients Tzl, G Z I ,  N Z I .  

where 

The fo rces  and moments a r e  determined a s  follows: 
ks 

1, 

r, = r z c t  2 TZl-Pi; 
bs 

G, = Gzi 91; 
h', 

*, 
N2 = 2 Nzr?,. 

k, 

'p, (E) determines the s t r e s s  variation along the shell  generators .  
To  calculate the influence coefficients Ci,, consider the nonsymmetrical  

s t r e s sed  state.  
loaded along the meridional edges by unit fo rces  pe r  unit length andmoments  
N2 = 1, G, = 1, On the other two edges a r e  given 
the same  boundary conditions a s  on the ribbed shell .  
the undegenerated edge effect exposed in Ill, we reduce the determination 
of the s t r e s sed  s ta te  to the solution of the differential equation 

Take out a shell section between any two adjacent r ibs ,  

T2 = 1, S = 0 (F igu re  2 ) .  
Using the theory of 

where 

2h is the shell  thickness; R is the mean radius  of curvature  of the shell  
c r o s s  section; v is the Poisson ratio;  U) is the running angle; X I  a r e  
eigenvalues; p ( ~ )  determines the variation of the s t r e s s e s  and s t r a ins  
along the shell directrix.  

The solution of ( 1 4 )  is 

where Vi a r e  fundamental functions of the solution; B, a r e  a rb i t r a ry  
integration constants. 

measu re  the angle o fo r  each section of the shel l  f rom the r i b  adjoining 
the section on the left, and r equ i r e  that the fundamental function Y, satisfy 

We shall  make use of the method of initial pa rame te r s .  We therefore 
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the following conditions: 

Y,(O)= 1: Y,(O) =o; Y2(O)=O,...Y,(0)=O; 

Y; , (O)=O;  Y;(o)= 1; v; (o) -o; . . .Y; (o)=o;  

Y p ( o ) = o ;  Y y ( o ) = o ;  Y,v"(o)=o;...Yy"(o).= 1. 

. . . . . . . . . e - . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . .  

The derivatives of Yj are related to Vi in the following way: 

Y: = Yj-, - t 8 -  j '  Y, ; 

vi= - "Y,; 

t o =  1; t , = 0 ;  t,=0;...t6=0; f , = A f ;  

j=1; 2 ; . . . 7  . 

The fundamental functions are of the fo rm 

1 
2 Yo = - (ch aw . cos bw + ch bw . cos uw); 

where 

where 
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The forces and displacements a re  easily expressed through p ( w )  and 7/(E): 

2 E h v = - - .  1 S-Q~: 2 E h w = q s l ;  2Ehy - - - - . * . c p , :  1 
x )  '- R d w  

where 

We shall calculate in what follows not the forces and deformations 
themselves, but the coefficients of their expansions in ser ies  by the 
functions 'pl (E); 
following boundary conditions respectively for the three types of loading 

the arbi t rary constants B1 a re  determined from the 

1. N2 = 1; G, = T, = S,=O;  

g .  a t  the edge = 0 and o = Bo p = p' = p V 1 =  0; pVll= 
2. G,=l ;  T , = S , = N , = O ;  

= 0 and w Oo p =p' =pvll= 0; pvl = g R .  a t  the edge 

a t  the edge ,O Oandw = Bo p' =pV1 = P VI1 =o; p = f ,  

where 

3. T 2 = l ;  S , = N , = G , = O ;  

, z-number of ribs; 2n e - _ .  
O- 2 

x:*R.3 (1  - v') . R 
h x: 

1 f=-. g= 

Using expressions (17)  for w ,  yz, and v ,  we obtain the following expressions 
for the loading coefficients CII for each of the three types of loading: 

1 
2Ehx: cv=-- 

Here j = 1, 2, 3. 
The fulfillment of the reciprocal theorem 

c1/ = c, . 
serves  a s  test  of the correctness of the solution obtained. 

middle surface of the shell is a cylinder; 
applicable to the case of a conical shell a s  well. 

( 1 9 )  is independent of the shape of the middle surface of the shell (whether 
i t  is a cylinder or a cone). 
however, different for the cylinder and the cone. 

The reasoning exposed above was based on the assumption that the 
the same method is, however, 

The integration of ( 1 4 )  and the determination of the influence coefficients 

The geometrical meaning of 4, W ,  and R is, 
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FIGURE 2. 

The following r u l e  is proposed for  passing from the calculation of a 
cylindrical shel l  to the calculation of a conical one: 

In the calculation of a cylindrical shell  x i  r ep resen t s  the eigen- 
values and F i  (:) the eigenfunctions of the equation of vibrations of a beam 

of uniform c r o s s  section 2 - 
ing to the conditions a t  the edges of the ribbed shell; 
a conical shell  xi and yitF) a re ,  respectively, the eigenvalues and eigen- 
functions of the equation of vibrations of a beam of variable c r o s s  

section (t.2) -%:'pi= Owith the s a m e  boundary conditions. The 

equation was thoroughly discussed in Mikhlin' s paper 1 3 1 .  

d'p = O  with boundary conditions correspond- di4 
in the calculation of 

J1 

The expressions for  the fo rces  and displacements ( 1 7 )  for a conical 
shell  a r e  

where xo is the cone angle. 
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INTEGRAL-DIFFERENTIAL EQUATIONS OF SHELL 
EQUILIBRIUM WITH FOCUSING KERNELS 

N . A .  K i l  ' c h e v s k i i  and N.I .  R e m i z o v a  
(Kiev) 

The idea of forming integral-differential equations with focusing kernels 
arose in the course of the development of numerical methods for  solving 
the boundary-value problems of the theory of shells. 
a r e  possible for forming integral-differential equations with focusing 
kernels. 

In our development of Somilian's method we make use of the reciprocal 
theorem a s  proposed in f 1-41. *::' 

The reciprocity theorem leads to integral-differential equations with 
focusing kernels i f  the auxiliary displacements /1,2/ a r e  selected in the 
form of products of the displacements of a plate whose middle surface 
maps the middle surface of the shell, by a positive exponential factor 
which decreases  rapidly with increasing distance r between the point of 
displacement and the point of application of the auxiliary concentrated 
force. It can be shown that the introduction of this factor does not alter 
the analytical singularity in the expressions for the auxiliary displacements 
a t  the point of application of a concentrated force. 

The advantage of the system of equations with focusing kernels over 
those treated in 11-41 lies in the fact that when this system is approximate- 
ly replaced by a system of algebraic equations i t  becomes possible to pick 
out the dominant t e rms  in these equations and to work out approximate 
methods of solution, similar to Gauss' method of solving systems of linear 
algebraic equations. 
sufficiently rapidly, the matrix of the coefficients of the system of algebraic 
equations which replaces approximately the system of integral-differential 
equations will contain many t e rms  practically equal to zero.  
i t  possible to develop efficient methods for the numerical solution of 
boundary-value problems of the theory of shells. 

Various methods 

One of these i s  exposed below::' I 11. 

When the focusing exponential factor decreases  

This makes 

Following the ideas of 11, 21 ,  we communicate to the shell 

Other methods for forming integral-differentia1 equations with focusing kernels of t h e  statics and dynamics 
of shells are indicated in Kil'chevskii's treatise "Fundamentals of t h e  Analytical Mechanics of Shells" 
(in print). 
We shall make  use in what follows of the terms and symbols used in these papers. 
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the displacement 

where v,.)p (N: M)  is Green 's  tensor for  the plate whose middle su r face  maps 
the shell  considered 1 2 1 ;  f ( r ( N ; M ) ]  is an a rb i t r a ry  function of distance r ,  
withf(O)=O; 

a t  point ,M, a load R,.,@(Q, M )  distributed over the middle surface,  and 
fo rces  pe r  unit length S,.)@(L; M )  and moments xacl) ( L  ; M )  applied on the 
contour of the middle surface of the shell  ( Q is an a rb i t r a ry  point of the 
middle surface of the shell, L is an a rb i t r a ry  point of the contour).:% The 
load G.,p will be determined by the methods indicated in / 1-41. and &.,e 
and &), by the well-known methods of the theory of shells.  

k is a positive a rb i t r a r i l y  l a rge  number.  
The displacements (1  . I  ) in the shell  are caused by a concentrated fo rce  

We have: 
i G ) p  = e-&'(') + k ~ ( . , @ ) ,  

S(.)p = (&)@ + k Y(.+), (1 .2)  

= e+(') ( . M ( . ) ~  + k~,.),) 
Here  K(.)p, S,.)p, M(.), is the load distributed over  the middle surface of 

( m ,  p = I .  2. 3: -r = 1, 2 ) .  

the shell and i t s  contour, corresponding to the displacement v ( ~ ) > ;  X(,)C, Y(.)p, 
Z(,),is the additional load on the middle surface of the shell  and i t s  contour, 
due to the presence of the focusing factor e - k f i r ) .  The character  of this  
load depends on the propert ies  of the function f ( r ) .  
( 1.1) and the load in the shell  ( 1 . 2  ) causing the displacements determine the 
auxiliary s ta te  of the shell .  The fundamental (unknown) s ta te  of the shel l  will be 
determined by Green 's  tensor qB).(M; N), the fo rces  per  unit length T,p,. (L; N ) ,  
and the moments L(p , , (L ;  N) on the contour of the middle surface of the shell. 

reciprocal  theorem, applied to the two s ta tes  of the shell, yields*;% 

Let  the displacements 

Consider a shell  with Euclidean ma t r ix  of the middle surface.  The 

q p ) .  ( M ;  N) = e - b / [ r ( N :  M ) ]  w ~ . ) ~  ( N ;  M )  - 

- ~ S [ K ( * ) ~ ( Q ;  M I  + kx,.)f (Q; MI] e - k / r r ( Q ; M ) ] u ( p ) l  (Q;  N )  dsQ + 
: $ ~ T ( W  ( L ;  w , u , * ) l ( L ; M )  +LlB)r(L;  N)Y1.,,(L;M)- 

( 1 )  

- [swt (L ;  M) + kY,m~ I ( L  ; M ) ]  u(e)i ( L ;  N) - [ M ( a ) ,  ( L ;  M) t 
+ kZ(= , ,  (L; M ) ]  U J , ~ ) ~  (L; N ) ]  e-kfir(r;M)ldfr 

(a. p,i= I ,  2, 3; ~ = l ,  2), (1.3) 

where S is the a r e a  of the middle surface of the shell; 1 is the length of 
the arc of i t s  contour; U I , ~ , ~ ,  &r a r e  the angles of rotation of the shel l  a t  
point L i n  the fundamental and auxiliary s t a t e s  respectively,  We have 

I. 

It is assumed here and below that the torsional moments on the contour a re  replaced by a statically 
equivalent system of shearing stresses. 
Here and below we omit the sign of summation by a "mute"index. 
to  repeating subscripts. since the  covariant and contravariant components of tensor magnitudes coincide 
in the metrics of the  middle surface. 

We give the  nameof  "mute" indices 
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where 
v(.)p; +(Q)r is the additional angle due to the presence of the factor e- k'(r) in (1.1 ).  

Equations (1.3) form a system of nine integral-differential equations 
with focusing kernels relative to the component of Green's tensor u(g), . 
They describe the equilibrium of a shell of arbi t rary contour subjected to a 
concentrated force of unit components under arbitrary boundary conditions, 
provided the metr ics  of the middle surface of the shell is Euclidean (shallow 
shells, shells of zero Gaussian curvature). If the metrics of the middle 
surface of the shell is not Euclidean, it must be taken into account that a 
unit concentrated force in a plate is transformed into a concentrated 
(nonunit) force in a shell /2 ,  4 / .  The structure of equations (1.3) is not 
disturbed substantially as a result; there appears to the left of u(e), a 
factor independent of e - k f c r ) .  

Analyzing the structure of equations (1.3), we can conclude that the 
presence of an exponential focusing factor e-k"') makes it possible to simplify 
its numerical solution. 
selected in such a way a s  to make the kernel of (1.3) arbitrarily small 
outside a certain sufficiently small region enclosing the point M. 
the formulas of the mechanical quadratures we obtain a system of algebraic 
equations which approximately replaces system (1.3), and in which the 
unknowns a re  the values of the unknown functions at the nodes of the inter- 
polation grid. 
absolute value, equal to the coefficients of the unknowns at the nodes of 
the grid outside the above-mentioned region enclosing point M .  

is the angle of rotation corresponding to the displacement 

In fact, the number k and the function f ( r )  can be 

Using 

This system will have a matrix with elements small in 

§ 2. 

Consider as an example the equilibrium of a circular cylindrical panel 
with contour elastically supported at four corner points under the action 
of a normal concentrated force. 

The fundamental state satisfies the following boundary conditions: 
Ti=O, T i = O ,  T i = O ,  L : = 1  fx=O, O<s<b; X = U ,  O < S < ~ ) ;  

(2.1) 
q = O ,  T:=O. q = O ,  L : = O  (s=O, O < x < a ;  s = b ,  O < x < n ) .  

In order  to obtain the conditions at  a corner point, we assume that this 
point moves along the axis of the spring which represents schematically 
an elastic support, and that the displacement vector lies in a plane normal 
to the panel generators. W e  assume further that the hinge at  the spring 
end excludes the possibility of appearance of concentrated reactive moments. 
Then: 

(uI)/ = 0. (RJ1  = ci ( ~ 2 ) ~ .  (RJi = 6;. ( ~ 3 ) ~ ,  ( M R I ) / =  (MRz)/ = ( M R ~ ) ,  . 0. 

support, ( R , ) ,  (MRI) ,  a re  the components of the reaction and the reactive 
moment. Naturally, depending upon the type of support, different formula- 
tions of the boundary conditions at  the corner point and i t s  vicinity a r e  
also possible. 

the forces and moments of the fundamental state in the displacements of 
the auxiliary state must be different from zero. 

(2 .2 ) 

Here j is the support number, ci is the rigidity factor of the j - th  

In selecting the auxiliary state we shall use the fact that the work of 
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Since the shell considered possesses  a sufficient mobility a t  the ends, 
w e  select  the auxiliary displacements in the form (1.1 ), where z+.)p a r e  
the known solutions of the problem of the action of a concentrated force 
with unit components on an unlimitedly thin elastic shell. A l l  the char- 
acter is t ics  of the s t r e s sed  and strained auxiliary s ta te  on the shell  con- 
tour a r e  i n  this ca se  different from zero.  The auxiliary load of the shell  
i s  determined by formulas ( 1 . 2 ) ,  where k'(.)?, X(,,p. Y(,,p. Zla,, a r e  given by: 

in which 

(7. i = I ,  2; a = I ,  2. 3). 

The analytical expressions of the remaining functions will not be given here .  
Allowing for (2.1) and ( 2 . 2 ) ,  system (1.3) becomes of the form 

where ri is the distance of the j- th support  f rom the point ,M (x, s), 

(P, 7 = 1, 2, i = 1, 2, 3). 

We shall indicate the scheme of the numerical  solution of system (2.8),  
( 2 . 9 ) .  Le t  u s  select  the function f ( r )  in the form 

.___ 
f ( r )  = rz,wherer =I/(~-XQ)~+(S-SQ)*. ( 2 . 1 0 )  
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When f ( r )  is selected in this way the functions x(.,9, Y!.,p. &,,, a r e  regular  
everywhere except a t  the point of application of the auxiliary force.  
follows that the kernels  of the system (2.8),  ( 2 . 9 )  a r e  sufficiently rapidly 
decreasing functions, due to the presence of the factor 

When system (2.8) ,  ( 2 . 9 )  is replaced approximately by a system of 
algebraic equations, we take into account the values of the kernels  at the 

nodes of the grid enclosing point M. At a = b and a gr id  with step A = 
4 

the systems of algebraic equations for the inner points have ma t r i ces  in 
which 9 elements differ f rom zero, and 1 6  elements are equal to  zero.  
The system of algebraic equations, formed for  the boundary points and 
for the points adjoining the boundary, contains a sma l l e r  number of zeroes .  

The case  when the region of kernel determination lies within the f i r s t  
r i ng  of nodes surrounding the point /M is of interest .  
equations for the inner points of the grid then spl i ts  into quasi-independent 
systems,  determining all  three components of the displacement a t  the given 
point. A s  an example, the system of algebraic equations corresponding 
to the internal node of index i is 

It 

The system of algebraic 

( 2 . 1 1 )  

The solution obtained a s  a resul t  must  obviously be considered a s  an 
initial approximation, corresponding to Gauss' scheme, since the co- 
efficients of the unknowns a t  the nodes of the interpolation grid lying 
outside the nea res t  vicinity of point il.1 a r e  only approximately equal to 
zero.  
conditions, which is an additional fact pointing to their  insufficiency. 
Subsequent approximations make i t  possible to introduce the boundary 
conditions in the solution. Due to lack of space, we shall  not descr ibe 
the method of forming equations with the boundary conditions elements.  

i terative method can be  used in solving system (2.8) ,  ( 2 . 9 ) .  

Approximations of the form of (2.11 ) a r e  independent of the boundary 

In addition to the numerical  methods, the so- called interpolation- 

The solution of this system will be represented in  the form 

u,(M; N) = a;i(N) y(;;,(/Ll) (i= 1. 2, 3), ( 2 . 1 2 )  

where y,,,/ ( M )  a r e  a rb i t r a ry  functions satisfymg some boundary conditions; 
a , / ( N )  a r e  functions determined f rom the system of algebraic equations 
derived from the conditions of fulfillment of (2 .8) ,  (2.9) a t  a discrete  s e t  
of points of the middle surface of the shell, and also a t  several  points of 
the contour. The number of components in ( 2 . 1 2 )  is a function of the 
number of selected points. 
application of the fundamental concentrated force (N) and at  four nodal 
points of the contour, i t  is necessary to  substitute in (2.12) 11 unknown 
functions a;/, whose determination necessitates the solution of a system 
of 11 algebraic equations. 
makes i t  possible to simplify the calculation of the coefficients of this 
system. 
a t  the g r id  nodes adjoining point M. 
calculation ends with the calculation of the functions aft .  

In order  to satisfy (2.8) ,  ( 2 . 9 )  a t  the point of 

The presence of a focusing load in (2 .8) ,  ( 2 . 9 )  

It thus suffices to calculate the value of the integrand functions 
The f i r s t  (interpolative) s ta te  of the 
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The second (i terative) stage consis ts  in substituting the functions ( 2 . 1 2 )  
in (2.8 ), ( 2 . 9 )  and obtaining m o r e  refined values of the unknown functions 
UI by integration. By increasing the number of points on the f i r s t  s tage 
and the number of i terations on the second i t  becomes possible to obtain 
m o r e  accurate  solutions of the problem. 
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DYNAMIC I N S T A B I L I T Y  OF CIRCULAR CYLINDRICAL 
SHELLS  SUBJECTED T O  LONGITUDINAL 
COMPRESSIVE STRESSES IN THE CASE 
OF THERMOPARAlLfETRIC RESONANCE 

G . A .  K i l l  c h i i a s k a y a  

(Kiev) 

The excitation of parametric vibrations is important, since it can lead 
either to a disturbance of the integrity of the structure or  even (in the case 
of lengthy excitation) to i ts  fatigue collapse. 

The dynamic stability of elastic systems, and of shells in particular, 
was studied in detail in Bolotin's treatise 1 2 1 .  
Darametric resonance of cylindrical shells were treated in 141, 1101, and 
111 I; 
at equal frequencies of fluctuations of the pressure and the temperature 
field was treated in / 41. 

An analysis i s  given below of the stability of cylindrical shells subjected 
to the simultaneous action of longitudinal compressive force and a tem- 
perature field, both periodic in time, in the case of temperature-dependent 
coefficient of l inear thermal expansion and modulus of elasticity. 
analysis is based on the following assumptions: 
elastic effect is neglected; 
efficieizt of linear thermal expansion a a re  assumed to be linear functions 
of the temperature 

Some problems involving 

in particular, the case of thermoparametric resonance of the shell 

The 
1) the rcverse  thermo- 

2) the modulus of elasticity E and the co- 

E = € , - E r r ;  a = a,+ a'T; (1 1 
where T is the running coordinate of the temperature, 
thermal values of the corresponding magnieddes; 3) the Poisson ratio Y' 

is assumed to be temperature-independent; 
temperature varies linearly through the shell thickness and periodically 
with time; 5) the analysis is based on the differential equations of motion 
of flexible shells, using Kirchhoff-Love's hypothesis 161;  6) the problem 
is considered in a linear formulation only. 

If a circular-cylindrical shell of radius R and length 1 is compressed 
by longitudinal forces P varying periodically with time 

a, and E, a re  iso- 

4) i t  is assumed that the 

p = Po + P,  (t). (2) 

then, on the basis of assumptions 1 to 6, the equations of the disturbed 
motion of the shell will reduce, according to / 4 /  and / l o / ,  to thefollowing 
differential equation::: 

T h e  system of coordinates is selected as follows: the  z axis is directed along the  normal to  the middle 
syrface of the  shell, and the x and y axes along the lines of principal curvatures; t is the t ime coordinate. 
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where w ( x ,  y ,  t ) i s  the deflection function, p is the density of the material ,  
h is the shell  thickness, E,. E,, Ea a r e  the moduli of elasticity of the f i r s t ,  
second, and third order ,  respectively, determined by the following 
relation ships: 

h 
2 
- 

E,= 1 Edz;  
i, .- 
2 

- 
2 

E,= [ E z d r ;  ( 4 )  

Using the Galerkin method, the solution of the problem is presented 
in the form of the series 

where, in accordance with 181 ,  7w,"" a r e  given functions, satisfying homo- 
geneous boundary conditions determined by the type of fastening of the 
shell, and f m n  a r e  functions which remain to be determined. 
is hinged at  the edgcs and f r ce  in the circumferential  direction, theboundary 
conditions will be 

If the shell  

where T, is the normal  force per  unit length, Ti,, is the reduced shear ing 
fo rce  pe r  unit length, and M, is the bending moment, determined from the 
relationship 

475 



The nonhomogeneity of the boundary condition (7 ) ,  caused by the tem- 
perature field, can be removed by means of the following substitution: 

( 8  1 1 
2 

Wl(X,y, t)=W ( X . Y .  f ) - - X ( X - L ) W ( t ) ,  

where the function v (C) is determined a s  follows: 

E T  - E I M i  
Y ( t )  = ( 1  + v) 21,. 

EIE, - E: 

When the boundary conditions a r e  ( 6 ) ,  ( 7 ) ,  the following system of ortho- 
gonal functions wmn ( x ,  y) can be used / 3 /  as expansion functions in ( 5 ) :  

( 9 )  
mxx ny wmn ( x ,  y )  = sin -sin - 

1 R ( m . n = l , 2 . 3 . . . )  . 

After the substitution of relationships ( 5 ) ,  ( 8 ) ,  ( 8 ' ) ,  and ( 9 )  in equation (4) 
and the fulfillment of the generalized condition of orthogonality / 8  / the 
problem reduces to studying a second-order differential equation with 
variable (on the strength of relationships ( l ) ,  ( 2 ) )  coefficients 

where Ol(t) = - ('I">' - '$j is due to the variation of the compressive 

forces with time;. 

h 

of the temperature field; 

The next stage of the study of the problem depends on the interrelationship 
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between the frequencies (o r  the periods) of the periodic functions cD1 ( t )  
and c$?(t). In the case  of incommensurable frequencies wl and w2 the sum 
of the functions O,(tj  and (b2(t)isr  in accordance with 191 ,  a quasiperiodic 
function; when these frequencies a r e  commensurable i t  is a periodic 
function. We consider h e r e  the l a t t e r  case,  when the differential equation 
( 1 0 )  belongs to the Mathieu-Hill c l a s s  and is reduced to the best-known 
type of equations of this class* 

where w 2 = w ;  3 - p  is an integer; p k ,  v k  a r e  coefficients of the Four i e r  

s e r i e s  of the functions@,(t)and @,(t)respectively;p;,=p,+v,; y h  - 2 0  with k 

a multiple of p. 
according to  which the boundaries of the stability and instability regions 
of the solution of Mathieu-Hill 's equations a r e  periodic solutions, cor-  
responding to two groups of multiple roo t s  of the character is t ic  equation 

of period to = --; 

"'3 F 
P 

The study was conducted by the method developed in 121, 

2x 
W 

2 
k w t  

f, ( t )  = ( u k  sin + b h  cos - 
k-1. 3, 5 

4. 
and of period 2 t 0 = - -  

w 

where oh and b k  a r e  coefficients to be determined f rom the condition that 
relationships (13 )  and ( 1 4 )  satisfy equation ( 1 2 ) .  
sys t ems  of l inear  homogeneous algebraic equations obtained r ep resen t  the 
equations of cr i t ical  frequencies. To  solution (1 3 )  correspond the equations of 
cri t ical  frequencies of the odd regions of instabil i ty( 1 5 ) ,  and to  solution (1 4 )  
correspond the equations of cr i t ical  frequencies of the even regions of in- 
stability ( 1 6 ) ,  ( 1 7 ) .  

The question of the convergence of infinite determinants of the 
type of ( 1 5 ) ,  (1 6 ) .  and ( 1 7 )  has  been examined in papers  dealing with 
the analysis of the Mathieu-Hill equations (such as 1 5 1 ) .  

varying periodically with t ime has  the s a m e  action on the shel l  as a 
pa rame t r i c  load: i t  can cause the appearance of regions of dynamic 
instability for  specific relationships between the pa rame te r s  of the 
temperature  field and the shell  when the l a t t e r  is subjected initially 
to  uniform s t r e s s e s  in the middle surface.  In the case of action 
on the shel l  of a longitudinal compressive pa rame t r i c  load, the tem- 
pe ra tu re  field, which v a r i e s  periodically with time, i nc reases  the 
region of dynamic instability. 

The determinants of the 

It follows from the r e su l t s  obtained that a temperature  field 

It is assumed that the functions ( t )  and (f) can be expanded in cosine Fourier scries: 
s - 

*I (f) = 2 vk COS k b f ;  * a  ( t )  - 2 COS k w t .  
k-0 k-0 
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P -4 W 

A I ,  z= 

A, = 

. . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
k 2 d  - 1 

4 2  
... v - - + - (P, + v%);  . . .  y [be+.._' T ( P y  + .+)I: $[r@ t w k - 3  F ( P ~ + ~ +  - v k + o ) ] l  

1 . 
(k-1.  3. 5. ' .). 

~ 

2 %  
- 

1 2p 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 - 0 ;  (IS) 

. ( R - 2 ,  4, 6 . .  .). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 



We shall consider several  particular ca ses .  Le t  the temperature  
vary according to the following law: 

This  corresponds approximately to a periodic variation of the temperature  
on the surface of a thin shell. 
of view of i t s  thermal  properties) depends on, in the c a s e  of periodic 
variation of the temperature  on i t s  surface,  the heat capacity of the 
mater ia l  / 1 2 / .  
tions" of the temperature,  i. e., relationship (18 )  is c o r r e c t  only when 
the following restr ic t ion is fulfilled: 

The "thinness" of the shell  ( f rom the point 

The shell  thickness r ep resen t s  a "layer of sharp fluctua- 

where Y is the thermal  diffusivity of the shell. 
principal region of dynamic instability of a shell  subjected to the action 
of a periodic temperature  field only a r e  determined from the following 
relationship'? 

The boundaries of the 

where 

7 = ( 1 - 9 ) - :  

and z, and z2 (with I z, 1 > I z2 I )  a r e  the roo t s  of the algebraic equation 

obtained by the theory of deductions 11 when equation (10 )  is reduced to  

f o r m ( l Z ) ,  i f the temperaturefieldisgivenbyrelationship(18). 8 =  v'p; 
corresponds to the natural  frequency of the shell  a t  constant temperature  
and is determined a s  follows: 

* Relationship( 19) can also be  uetermined from the condition that relationship( 18) corresponds approkitnately 
totlie solution of the problem of lieat conduction for a rhin wall In the case of periodic variation ofthe temperature 
on the surface /I/. 
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The conditions under which a shell buckles when subjected only to a periodic 
temperature field, cannot be determined from the quasista tical theory, 
since the la t ter  neglects the inertial terms. 

compressed by constant longitudinal forces distributed uniformly over the 
edges. Let the parameters of the temperature field be given, and le t  i t  
be required to determine the magnitude of the critical forces a t  thermo- 
parametric resonance. 
forces of the principal region of dynamic instability a r e  approximately 
determined by the following relationships: 

Consider now a second example: Let the shell considered above be 

In this case the boundaries of the minimum crit ical  

where 

z, and zt a re  roots of equations (21 ) .  

relationship (18 ) the maximum value of the function cos w t ,  

In the case of stationary variation of the temperature, i f  we take in 

the value of the statical critical force per unit length is determined, 
assuming 1, 2, 3, 5, and 6, by the following formula: 

A numerical example was calculated for a shell made of steel-35: 

$ = 2 . 1 0 " ~ ;  E ' = 6 8 0 k p .  T,=2O0C; Tz=500"C; 
cm c m . g '  

w = 100 sec-1. 

The calculation by the dynamic theory yields the following boundaries of the 
minimum critical forces per unit length of the principal region of dynamic 
instability 

1.419.106eh "P;:' .S i . m . i w e h ,  ( 2 6 )  

where 
8 = h : R .  

The calculation by the quasistatical theory gives a lower value of the 
critical force per  unit length 

~ 1 s t )  Cf = i.ooos4.io6eh. (27) 
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It is seen from formulas ( 2 6 )  and ( 2 7 )  that the parametric influence of 

The resul ts  obtained 
the temperature field can increase the value of the cri t ical  forces  per unit 
length (at least  in the particular cases  considered). 
a r e  obviously in need of further substantiation, both theoretical and ex- 
per im ent al. 

The examples considered above point to the existence of qualitatively 
new dynamic processes,  depending on the inertial t e rms  in the equations 
of thermoelasticity of the shells and on the temperature variation of the 
modulus of elasticity and the coefficient of l inear thermal expansion. 
Taking into account the dependence of the modulus of elasticity and the 
coefficient of l inear thermal expansion on the temperature, we obtain the 
possibility not only of allowing for the parametr ic  influence of the tem- 
perature  field in the dynamic equations, but also of generalizing the resul ts  
obtained to the case of high heating temperatures (lying within the l imits 
of a certain interval in which, according to 1131, the l inear differential 
equations describe with sufficient accuracy the processes taking place). 
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C A L C U L A T I O N  OF R E C T A N G U L A R  ORTHOTROPIC 
P L A T E S  L Y I N G  ON AN E L A S T I C  FOUNDATION WITH 
T W O  FOUNDATION MODULI A N D  SUBJECTED T O  
S T A T I C  A N D  PULSATING LOADS 

V.A. K i s e l e v  
( M O S  cow ) 

1. INTRODUCTION 

Rectangular orthotropic plates lying on an elastic foundation with two 
foundation moduli (represented by the models of Prof. Pasternak, Prof. 
Vlasov, and others) and subjected to static and pulsating loads a re  calculated 
by the method of initial parameters.  
of the plate a r e  hinged (Figure 1) or have sliding fastening while the fastening 
of the other two edges is arbitrary.  

It is assumed that two opposite edges 

$ 2 .  DIFFERENTIAL EQUATION OF BENDING OF A 
PLATE AND EXPRESSIONS OF THE INTERNAL 
FORCES 

The differential equation of bending of an orthotropic shell subjected 
to tensile forces in i t s  middle plane and lying on an elastic foundation is 

where w ( x ,  y) is the vertical displacement of the points of the middle plane 
of the plate, 

Gh3 D k = - .  12 0, DIP, + 20,  a D ~ P I  4- 2Dh; 

E,, Et, p1 and pz are ,  respectively, the moduli of elasticity and Poisson 
ratios for the principal directions, coinciding with the coordinate axes, 
C, and c, a r e  the foundation moduli, q ( x ,  y) is the load on the plate. 
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FlGURE 1. FIGURE 2 .  

The expressions for the internal forces (Figure 2 )  a r e  

The reduced lateral  forces (support reactions) a r e  determined by the 
formulas 

(7) 
V x = - D , ( g + ~ d - ) ;  - dJw 

where 

E = Dip, + 
D, 

. -_ DIP, + 4 D k  
D, 

I E -  

In the case of isotropic plates we have 

- Dl=D1=D,=D= 12(1 - p’) ’ e - e = 2 - - ) 1 ;  ~ O ~ = D ( I - ~ P ) .  

§ 3. SOLUTION O F  THE DIFFERENTIAL EQUATION 

We shall represent the solution of (1 ) for the case of hinged support 
of the edges parallel to the y-axis (Figure 1)  in the form 

e. mxx 
a w ( x , y )  = 2 Y,,,sin--. 

m- I 
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The acting load 4 I x ,  y) wi l l  be represented as follows: 

where 

The substitution of ( 9  ) in (1 ) yields 

where 

( l o ) *  

We shall represent the solution of (11) in the form 

Ym = Y; + Ya, (13) 
where Y k ( y )  is the general solution of the homogeneous equation correspond- 
ing to (1 1 ) and r, (y)  is a particular solution of (1 1 ) .  

The roots of the characterist ic equation 

r4 - 2a:,rz + Ai = 0 
a r e  

F i r s t  c a s e :  a',>O; k i > a i > O .  

In this case the roots will be complex conjugates 

rl = - rz = !3, + Tmi; r, = - r, = p, - 7,,,i; 

m mxx . 
a 

I n  the case of sliding c l amping  W ( X ,  y )  = 2 ym COS -, 
m=O 
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where 

The general  integral  of the homogeneous equation corresponding to 
( 1 1 )  is 

W e  shall  r ep resen t  it by a combination of par t icular  integrals in the form 
of functions satisfying the unit ma t r ix  

1 ch P,Y sin T,Y sh P,Y cos ymy , 

Bnl 

The par t icular  solution will be written by Cauchy's ru l e  

W e  shall now apply the method of initial pa rame te r s .  
the integration constants in ( 1 5 )  by the initial pa rame te r s  a t  y=O;  Y m ( o ) ;  
l"' (0) ;  M,,(O); V,, (O), two of which a r e  either known (frequently equal to 
zero) or expressed through the two others.  Since the particular integral  
( 2 0 )  can be used in the case  of a discontinuous load a s  well, the problem 
of the determination of Ym will reduce to the determination of two and only 
two initial pa rame te r s  a t  any load q ( x ,  y).  

along the y-axis ,  for a discontinuous load distributed according to some  
a rb i t r a ry  law and for concentrated-strip forces  and moments a r e  (F igu res  3 
and 4), omitting the derivation: 

We therefore  expres s  

The expressions for Ym (y), Yk (y) ,  My, (yJ, and V,, ( y )  on the n -th segment 

where 
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for di>O 

FlGURE 3 .  

X 

FIGURE 4 .  FIGURE 5 .  

Here 

+ Y k ( O )  F'( + E -  F ; ( y )  Fi (y)- VYnI (0) - F; ( y ) ;  [ Z y )  (".">' ] D, 2 
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The integrals  in ( 2 1 )  to ( 2 4 )  can be represented in an explicit form for 
l inear loads of the type 

q,, (Y) = Q , I  (0) + L I  (0)  Y: 

Aq,, (y) = qm(i+l) (y) - qmi (Y )  = A q m i  (di ) f *qk;  (di (Y - di ). 

For the sake of brevity we shall  give only those corresponding to ( 2 1  ): 

- ( d l  [(y 5 di ) - F2 (y- dr )]. 
D,% 

S e c o n d  c a s e :  a 2 , > 0 ;  at>).4,)0. 

Here all the roots are real and different: 

YL (y) = A ch rl y + B sh rly + C ch ray + D sh ray. 

The functions which satisfy the unit ma t r ix  will be 

r: ch ray; ( 2 7 )  c h  rly + L1(y)=- --- 
r: 

2 v n  2 v R  
r: r: 

2r, v w  sh rly -I- c w ~  
chraY , (29  1 

L 3 ( y ) c  2v-- - 2.l- ' 

sh rlY - shraY . ( 3 0 )  
L* (Y) = 2r, v m  2ra 1- 

sh ray; ( 2 8 )  L 2 ( y ) = -  __ __ 

ch rlY 

They replace the functions F , ( y ) ,  F,(y), F, (y) ,  and F4(y) in expressions ( 2 0 )  to 
(26) ,  respectively. 

T h i r d  case:a:>O; X',=ak>O. 

The character is t ic  equation has  multiple roots  rl =-'*=am ; r,= -r,=a,, 
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and therefore 
y: (y) = A CII amy -I- B s h  amy + Cy ch amy + Dy sh amy. 

The functions which satisfy the unit ma t r ix  and replace Fl (y) ,  F,(y), pa(y),  
and F,(y)  in (20 )  to ( 2 6 )  will be 

R,(y) = chamy - %ysha,y; ( 3 1 )  

(32) 

2 

R , ( y )  = -- 3 shamy - --hamy; Y 2am 2 

imaginary; here  
- - - 
L4 = - x 4  > o  , ra I /v -a$  + 14, - e.; >o: 

and therefore 
y$ (y) = A ch rly 4- B sh rly + C cos Fay $- D sin Fay. 

The functions satisfying the unit matr ix  and replacing Fl (y), F,(y), Fa (y), 
and t',(y) in (20 )  to ( 2 6 )  will be 

1 ra ( Y )  = - (ch r,y - cos yay); 
r: + 2 

F i f t h  c a s e :  a L < 0 ;  i:<O. 

The roots  of the character is t ic  equations are: 

r = - r  * = v - c + m  
( r e a l  roots) and 

(37) 

(39) 

(imaginary roots),  where 
- - ~ a = V % + m ~ ;  o:=- a', >O; X', = - L', > 0. (41  1 
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The fifth case reduces to the fourth, but with new values of the roots, 
given by (39)  to (41) .  

S i x t h  c a s e :  a2,<0; ).:>O. 

The roots  a r e  

- 
where a',=-.: > O .  

a) If ;$>A;, then 

r 1 -  - - r2 = I/- p+ v m  m m = Lrl .- (44 )  
a r e  imaginary, and 

(45)  
j//z--- -.m - ; -a 

2 - - i.4 = ir 
m r a- - - r 4 =  

a r e  likewise imaginary; here  
_ _ _ .  

( 4 6 )  
- 
r, = Vsm - -< > 0;  V F m >  0; 

therefor e: - 
Y: ( y )  = A cos r,y + B sin Fly + Ccos <y -+ D sin Gy. 

The functions which replace F, (y ) ,  F , ( y ) ,  F3(y),anaF,(y) in ( 2 0 )  to ( 2 6 )  will be: 

(47)  

(48 1 

- - 9  

ri r3 u, ( y )  = - -., -__ -2 cosr,y + -2--2 cosray; 
ri - r3 rl -. r3 

r3 U2 ( y )  = - --2 sin r,y + - 
I-, ( r l  - 4)  r3 (7:- r3) 

- -2 

- -2 - -2 

-* sinray; 

1 - - 
U3 (y) = - -* - 2  (cos r,y - cosr,)!); 

rl - r3 
(49  1 

§ 4. BOUNDARY CONDITIONS 

The boundary conditions a r e  written a s  usual, except for the conditions on the 
f r ee  edge, where the elastic foundation with two foundation moduli gives 
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concentration-strip reactions (Figure 6 )  

R m  (0) = c2 IW, - v:, (011. ( 5 4 )  

+b- 
FIGURE 6. 

The differential  equation of displacements of the unloaded foundation sur -  
face is 

w mxx 
Writing w* ( x ,  y )  = z w; (y) sin - _  and using the conditions: 

w> = 0; 2 )  y = 0, w:= Y, (O), we obtain 

1) y =  - m, U 
m=1 

W e  then find 

and s imilar ly  

S5.  CALCULATION O F  PLATES SUBJECTED TO A 
PULSA TING LOAD 

In the case  of a pulsating load the differential equation (1 ) will contain 
an additional t e r m  representing the inertial  forces:  

where m' is the m a s s  of the plate and the attached foundation p e r  unit 
area;  & ( x .  y ,  t )  . 

We shall  consider steady vibration of the plate; in this ca se  

UV (x ,  y .  t )  = w ( x ,  y )  (A  sin et + B COS et). (58  1 
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The substitution of (58 )  in ( 5 7 )  yields the following differential equation: 

where c; = c, - m. 82. 

the r e su l t s  obtained ea r l i e r  on the bas i s  of the solution of ( 1 )  are suitable 
therefore in this c a s e  a s  well, it being only necessa ry  to replace c1 by c ; .  

This equation coincides in s t ructure  with the initial equation (1 ). A l l  

5 6 .  FREE VIBRATIONS AND PLATE STABILITY 

The question will be described in general  l ines  only, for the sake  of 
brevity. The frequencies of natural  vibrations of the plates W ,  and the 
cr i t ical  loads H, and H,, can be found from the determinant of the equations, 
written for calculating the unknown initial parameters ,  in the absence of 
la teral  load; to that end the determinant is equated to  zero,  and the 
frequency of the acting load 6 o r  the loads H, and H, a r e  considered un- 
known magnitudes. 

( the roots  of the character is t ic  equation) will be unknown magnitudes; 
herein lies the basic difficulty in solving problems of this type. 

In this ca se  the factors  before the arguments of the different functions 

5 7 .  SOME PARTICULAR CASES 

Consider a trapezoidal load on a portion of the plate (Figure 7) .  :: 

A C  

- a  
Y 

FIGURE 7 .  FlGURE 8 .  

F i r  s t p o r t i o n :  O < y  Q d = d , ,  q ( x ,  y )  =0, and therefore q,,=O. 

According to ( 2 1 )  u,, (Y) = ye, (Y). 

S e c o n d  p o r t i o n :  d 4 y S d + Ad= d2. 

Here, in the region c < x s c + A c ,  d , < y < d + A d .  

T h e  load can  b e  arbitrary. either s ta t ic  or vibrating. 
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the load is determined by the equation q ( x .  y )  = - 

According to (10 )  

S nrrn 
f A c [  q + ( y - d )  sin - d x -  l a  4,,(Y) = - 7 
c 

2 s  
mx Ad 

mx (c  + Ac) 
a 

A ;  9 k 2 ( y ) = - - - *  
2 

mr: 
mac 

A COS - - COS -- . a where 

The transition conditions from the first  portion into the second one a re  

AMyml  ( d i )  = 0; A V y m t  (d,)=O; 

2q Aqml (di) = q m z  (di) - q,i (di) = - A;; A ;  

d )  - F,(Y -41. 

T h i r d  p o r t i o n :  J , = d + A d , < y , < b ;  q 3 ( y , y ) = 0 ,  therefore qm3(y)=0. 
The transition conditions from the second portion into the third one a re  

A M y m 2  (d,) = 0;  A V y m z  (d2) = 0; 
2s A. 2 

A q m 2 ( d 2 ) = =  ( 4 f s ) A ;  A q m * ( d * )  = 

From ( 2 1 )  and ( 2 6 )  we obtain 

It is possible to obtain from this case expressions for numerous other 
cases, corresponding to different combinations of the magnitudes c, d. Ac, Ad, 
c=O, d = 0 ,  A c = O ,  A d - 0 ,  q=O,and s = O .  
of a concentrated force P (Figure 8 ) .  
portions only (the second portion disappears, and the third one becomes 
second). 

We also obtain the case of action 
In this case we shall have two 
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F i r s t  p o r t i o n :  O,<y < d ;  Y m I  (y)=YO,;(y).  

S e c o n d  p o r t i o n :  d , < y < b ;  Y m l ( ~ ) = Y ~ ~ ( y ) + Y ~ , ( y ) .  
According to (62 ) ,  for s = 0, 

X [F,(y - d - Ad) - F, ( y  -41. 
A t  the l imit  Ac+O and Ad + 0, 
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O N  T H E  S T A T E  OF M E M B R A N E  S T R E S S  OF S H E L L S  
OF R E V O L U T I O N  W I T H  POSITIVE C U R V A T U R E  

A . M .  K i y a s h k o  

(Kiev) 

The state of membrane s t ress  of a shell of revolution formed by a 
second-order surface is described by an analytical s t r e s s  function. 
more general case of a shell formed by an arbi t rary surface of revolution 
of positive curvature i s  treated below. 
static equations of equilibrium in the geodesic system of coordinates 
( r  = r (z) is  the equation of the generator; 
parallel; 
means of the transformation of variables 

The 

The corresponding homogeneous 

z = const is the equation of the 
= const i s  the equation of the meridian) / 1 /  a r e  reduced by 

to a system which defines a p-analytical function of a complex variable 

- -. -!.-- i s  the nonnegative characterist ic of the 
r ” ( z )  r ( 2 )  

p-analytical function, defined by the shell geometry /:%I. 

a re  thus expressed through the real  and imaginary parts of a s t ress  function 
which is a p-analytical function of a complex variable 141. 

In the case of a shell of revolution whose characterstic p is either an 
exponential function or such that fi is a harmonic function, the boundary- 
value problem arising for the p-analytical function can be reduced to the 
corresponding boundary-value problem for an analytical function, by using 
the known relationship between analytical and p -  analytical functions 1 3 1 .  
In the case that v / p i s  a harmonic function, this connection is expressed 
by the following Theorem 1. 

The s t resses  appearing in a shell of revolution free of surface load 

- - - 
Let f ( z ) = u ( x , y )  + i v ( x , y )  be an analytical function, and le t  A f i 4  

[The reference is not given in rhe Russian text .  ] 
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Then 
- 

f ( z )  = u(x ,y )  -t iv (x, y )  = u ( x *  - Y' + i (v  (x, y )  VF+ R )  
VF- 

will be a p-analytical function, and R ( x , y )  will satisfy the conditions 

This is the method used to solve in a closed form the problem of the state 
of membrane s t r e s s  of a glass-shaped shell of revolution of generator 

where c>O is a numerical parameter 141. 

to a concentrated force. Integral equations of equilibrium were obtained 
for a finite par t  of the shell, similar to the conditions of equilibrium for 
a second-order shell of revolution. 
functions developed in Polozhii's papers 12 ,  31, these conditions a r e  written 
a s  integrals by the conjugate variable of the p-analytical function of a 
complex variable @ (E, 7)  + i Y  (f, q): 

We consider next the case of a membrane shell of revolution subjected 

Using the apparatus of p -analytical 

Z l = - q + i  pdE,  

Px+iP,= @ d Z , +  i Y d Z , .  Z , = - - - f - l i q ,  Z2=irrli l  
- 

( 3 )  

s - 

i 
J 

@d 3, + i 'PdZ,, Z, = -- 21'1 9 

c 

Z , = i ( r  - zr ' )  I ; ? ,  
where P i s  the resultant of the forces applied to the shell, M,, MY.Mz a r e  
i ts  moments relative to the coordinate axes, 21 and ZI (i = I ,  2,3) a r e  con- 
jugate variables corresponding to the given p-characterist ic.  

In the case of a glass-shaped shell ( 2 )  we obtain P=E*, and the con- 
jugate variables a r e  

I 

z,P-q--ii-,Z*=-q-i-r i . -  E' 
3 

- 
Z, a - 1 (t++ll-l- E+'?), Z, - - i  [(E + I )  I - E + ' ~  +(E -1) I -€+  '71, 

E 

The P -analytical function 0 (E. q) + i Ip (E, q) is then defined in the region 0 
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(the plane { = E + iq) which has the shape of a left-hand unboundad horizontal 
semistrip of width 2s,  and possesses a t  the point of sppllogtlon nf the p9q- 
centrated force a singularity in the form of a pole, 

FlGURE 1. FIGURE 2 .  

We shall consider two cases  of loading of the glass-shaped shell by 

1. 
concentrated force. 

In accordance 
with Theorem 1, we form the El -analytical function of st resses ,  starting 
from an analytical function having a singularity at  the point corresponding 
to the shell top. We obtain 

Let the concentrated force be applied at  the shell top. 

f (E) =@(E, q) + i V (E, q) -- I - €  (a-lcos q + 6-1 sln 7)- 

The coefficients of the regular part  of the E* -analytical function un, 6* 
(m=2. 3,. 0 a )  a r e  determined from the boundary conditions, and the co- 
efficients a-1, b - ~ ,  a,, bo, 4, bl from the integral conditions of equilibrium 
( 3 ) ,  ( 4 ) .  
conjugate variables we obtain 

By substituting ( 5 )  and ( 4 )  in ( 3 )  and taking the integrals by the 

Consider as  an example the problem of determining the forces in a single- 
shear glass-shaped dome loaded at  the top by a concentrated force, in the 
case when the end z = a  - const is connected with a support which does not 
take reactions in the tangential direction. This problem leads to the de- 
termination in region G of a E* -analytical function with a singularity in 
the form of a pole at  the shell top, from the boundary conditions 

@ (Z.$)G 5 4 - 4, (6% ?)I€= - b =o. (8 1 
We shall represent the solution in the form of the function ( 5 ) ,  determining 
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the coefficients a,,,, bm by ( 6 )  and ( 7  ). We obtain 

-i ( t  + l ) ( P x  sinq - 

t i ( € - - 1 )  (P , s inq-P , , cosq )  . 1 
The following relationships must be satisfied from boundary conditions (8 ): 

M, = P, =O, 

It is seen from these relationships that the force acting on the shell top 
cannot be specified arbitrari ly.  

lo = Eo + iq, of the shell. 
= L E = / E + r . l .  

radius R= 
is transformed into a p-analytical function with characteristic p=ln* 1/ m. 
Since 1/p= In {m is a harmonic function, we form a p-analytical 
function with third-order pole at point T ~ = L ' *  = to+iso, starting, in accord- 
ance with Theorem 1, from an analytical functicn. W e  obtain 

2, Let now the concentrated force be applied a t  an arbitrary point 
W e  make the transformation of variables 7 = t + i s =  

The region G i s  transformed a s  a result  into a circle of 
and the p-analytical function with characteristic p = k2 

-t A&OSk? f BkSlnk.9 
rk 

1 _-- f ( r )  = ____-___.---.--- 
I ~ P '  r2+2r ( ~ , C O S  p + sosin 7 )  -I- ti + si k - 1  

+ + B2 (to cos g, - so sin '9) - A, (to sin? + so cosp) 
(ti + 3 ) r 

2 2  A,(t&s:) sing,+ SA,f~s~cosg,  -WB,L~sosincp - B, (f,? - so') cos 'p 

where r=  I y - ~ ~ 1 ,  'p = arg (7  -yo), and p(y) is a function regular in the vicinity 
of 7 0 .  

coefficients Ar. BI ( k  = 1, 2, 3)are  determined from the integral conditions 
of equilibrium (3), (4), which yield 

- -  - ]+P(?). (d+$J r 
+ 

The function p (y) is determined from the boundary conditions. The 

as 
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SOLUTION OF THE PROBLEM OF THE CYCLICALLY 
SYMMETRICAL DEFORMATION OF A CONIC SHELL 
IN DEGENERATE HYPERGEOME TRICAL FUNCTIONS 

A . D .  K o v a l e n k o  
(Kiev) 

The paper deals with the cyclical deformation of a conic shell of uni- 
form thickness under the action of a fo rce  load and nonuniform heating, 
corresponding to the distribution along the parallel  of contour and surface 
fo rces  and purely thermal  s t r a ins  according to the law cos k 6 or siQ k 6 ( k  =2, 3 ) ,  
where 0 is the angle between the planes of the running and the initial 
meridians.  

metr ical  ( k  =1) distributions of fo rces  and thermal s t ra ins ,  the equations 
of the theory of shells cannot be integrated, and the problem is described 
by a resolving fourth-order differential equation in a complex form 1 3 1 .  

The solution of this equation for  a conical shell of a rb i t r a ry  cone angle 
is found he re  in degenerate hypergeometrical functions, the fundamental 
propert ies  of which a r e  given in 1 3 1 .  

given in the same  functions. 

of the problem of the cyclical deformation of a shallow conic shell  / 2 /  is 
a particular c a s e  of the problem treated here .  

The solutions in degenerate hypergeometrical functions, defined by 
series summed by means of r a t h e r  simple r ecu r ren t  formulas, a r e  easily 
tabulated by digital computers; the tables of the solution for the k-th 
harmonic a r e  obtained in the case  of a conic shell of a rb i t r a ry  cone angle 
with two inlets, and in the case  of a shallow conic shell  with one inlet. 

symbols given in 1 3 1 .  

values of the s t r e s s  resultants,  moments, s t ra ins ,  and displacements. 

In this case, unlike the cases  of axisymmetrical  ( k  =0) and antisym- 

The solution for all  forces,  moments, strains,  and displacements i s  

The earlier obtained solution in degenerate hypergeometrical functions 

1. 

A s  unknown magnitudes we shall consider in what follows the amplitude 

The resolving equation of the problem considered is 

W e  shall u se  the fundamental equations of the theory of shells and 
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Table of values of A and A 

Type of load or 

hearing 
h I 

nonuniform I A 

I 
Surface load 

q/=qm Im 1 

m=0,1,. - .) (qm=const;  

Surface load , I 
- qr=qn 1" 

( qn = const; 
n = O , l , .  . .) 

Nonuniform hearing 

k 
Coctg2 a Q: sin a 

j=o, l , . . . )  I 



a is the angle between the meridian and the axis of the middle surface; 
h is the shell thickness; Nl and No a r e  the normal stress resultants in 
sections 1 = const and 0 = const; X I  and xg a r e  changes of curvature in 
the meriodional and the other principal sections. The constants A and 1 
have the values given in the table. 

We shall represent the general solution of (1.1) in the form 

- 
where NCn) ( n = l ,  2, 3, 4) is a p_articular solution of the homogeneous equa- 
tion corresppnding to (1.1); 
constants; 

C,, (n=l, 2, 3, 4) a r e  complex integration 
N(9) is a particular solution of the nonhomogeneous equation (1.1 ). 

2. By means of the substitution 
a 

N ===@ W ,  (2.1 1 
where 

we transform the homogeneous equation corresponding to (1.1 ) to the 
canonical form of a degenerate hypergeometrical fourth-order equation 

whose parameters  a r e  equal to 

where 

On the strength of the properties of the hypergeometrical equations 131 
we obtain the following particular solution of the homogeneous equation 
corresponding to (1.1 ): 

- (a )  N 
(2.5) = zp n p F I  (1+pn,2+Pn;  l+px-Pp , ,  *1+Pn 

1 + pr - ps, 1 + pn - p4; 2 )  (n  = 1. 2. 39 4). 

where the asterisk designates that the expression 1 + pn - pm is to be dis- 
carded at n = m .  
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3 .  The substitution of (2 .1 )  into (1.1) yields 

Using the particular solution of equations such a s  (3.1 ) through a hyper- 
geometric function given in 131, and allowing for the substitution of (2 .1  ), 
w e  find the following particular solution of the nonhomogeneous equation 
(1.1 1: 

XaF, (1+1, A+2, 1; 
A + 1 -pp1. A + 1 - PI, I + I --pi, + 1 -PI; z ) ,  ( 3 . 2 )  

where at  s = q l ,  qr ,  er, zT the magnitudes A and A acquire the values given 

Knowing the solution for the function N, we find the solutions for 
in the table. - 

4. 

where the same symbols a s  in / 3 /  a r e  used for the s t r e s s  resultants, 
moments, and strains.  

The formulas for finding these solutions a r e  
- - -  
N I  = N - N e ,  

where 
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I 

The following formula is used in differentiating the products of ex- 
ponential and hypergeometric functions: 

d -& 2'pFq (a,, =I,'"* ap; B1, B * , . - * *  Bq; z ) =  

= AzA-I p+lFq+l (%, a2. * ., 4. 1 +I; PI. Pz,- -. Pq. A; z) .  (4.3) - 
Replacing the complex integration constants c,, entering in (4.2) by 

the expressions - -  
c, = c: $-i cl (n  =. 1.2.3.4). 

where C i  and Ci a r e  r ea l  constants, and separating the r ea l  and imaginary 
par ts  of solutions (4.2), we find the solutions for  the s t r e s s  resultants N l ,  
Ne, S ,  the moments MI, Ma, Mia, and the strains E l ,  EO,  q ~ ,  q ,  xp. xIa. 

These solutions contain eight integration constants C, (n-1, 2. 3, 4) and 
Ci (n=1. 2, 3, 4 ) ,  which a r e  determined from the boundary conditions on 
the inner and outer contours of the shell. 

and sixth relationships between the strains and the displacements 131.  
5. To determine the displacements, we integrate the first ,  second, 

We obtain 

where 

ug = Cl, 
sina wo = 

COS% - k2 
sina 

(cosa C, -+ k 1 Cz). wo=-  COS^^- k2 

ug = Cl, 
sina wo = 

COS% - k2 
sina 

(cosa C, -+ k 1 Cz). wo=-  COS^^- k2 

(5.2) (5.2) 

The te rms  (5.2) in expressions (5 .1)  obviously represent the displace- 

The substitution of the displacements (5.2) in the third, fourth, and 
ments which nullify the s t ra ins  E , .  €0, X ~ O .  

fifth relationships between the s t ra ins  and the displacements yields 

(5.3) 

Displacements (5.2) make thus all the s t ra ins  equal to zero, and r e -  
present the displacements of the shell a s  a rigid body for the axisym- 
metrical  ( k  =0) and the antisymmetrical ( k = l )  st ressed s ta tes  only. 

A t  k > 2  an undeformed state of the shell can exist only for C, = 0, C,= 0, 
and there a r e  no displacements of the shell a s  a rigid body. 

In this case we calculate the displacements by (5.1), substituting inthem 
u, = v, = wo =o. 
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Using the formula 

sza ,F4(a1, a 2 , . . # ,  a ~ ;  PI, h , . . . ,  P q ;  z)dz= 

* ) + I  

k t 1  
=  IF^+^ (a,, a , : . . ,  a,, k + 1 ;  PI. B 2 , . . . , P q .  k + ~ ; z ) + C ,  (5 -4 )  

which is t rue  for  h different f rom a negative integer, the integrals SEI dl 

and 1 xIB dl can likewise be found in degenerate hypergeometrical  functions. 

6 .  In the c a s e  of a shallow conic shell  we can write 

cosa=cp, sin 0-1, ( 6 . 1  1 
where 'p is the angle between the normal  to the middle surface and the shel l  
axis. 

The magnitudes (2.4) are then equal to 

p l = k ,  p z = - k - l l ,  ~ ~ s k - 1 ,  p4=-k .  (6 .2)  

The substitution of ( 6 . 1 )  in solution ( 2 . 5 )  shows that the second (n=2) 
and third ( n  = 3 )  particular solutions of the homogeneous equation become 
meaningless. 

solutions: 
In these cases  we form, by passing to the l imit ,  the following logarithmic 

- 
N"'=zk *@, ( l + k ,  l f 2 k ;  2, 1+2k; 2+2k; z ) ,  

N"' = ~ - k  (1 -k ,  2 - k ;  2, 1-2k, 2-2k;  z), 
- 

where the degenerate hypergeometrical  function of the second kind 

(a,,..., a,; I f m ,  B1,.-., Bq; z ) ;  (m=0,1,.. .) 

is determined by the series given in 13 I .  
If, in accordance with the theory of shallow shel ls  111, we neglect ( i n  

addition to assumptions (6.1 )) the small  t e r m  containing Qe in the second 
equation of equilibrium, the small  t e r m  containing Ml1 in the expression 
for the s t r e s s  resultant S ,  and the small  t e r m s  containing I) in the re- 
lationships between the bending s t r a ins  agd the displacements, we can 
select  a s  resolving function the function Fp which, in the case  of the homo- 
geneous problem (without allowing for the surface forces-and- t h s  tempera-  
ture-dependent terms) ,  is associated with the functions NI, Ne, Nls by the 
s impler  formulas 

With these additional assumptions the homogeneous problem reduces 
to solving the equation 
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where 

The solution of this equation was treated in 121.  

particular solutions of the honhomogeneous equations for a shallow 
conic shell. 

Having formed in some specified form linear combinations of these 
solutions with the corresponding particular solutions of the homogeneous 
equations, we can obtain particular solutions of the nonhomogeneous 
equations in the form of polynomials. AtX-k =- -m (nz=O, l;..)the non- 
homogeneous equations have logarithmic particular solutions. 

The same method is used (cf. section 3 of this paper) for obtaining 
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EXPERIMENTAL STUDY OF THIN- WALLED 
STRUCTURES IN LIMITING STATES 

L .  A .  K o  1 e s n i k  ov 
(Khar ' kov) 

An experimental study was conducted in order  to test  the accuracy of 
the computing models and the theoretical calculation used, and mainly to 
determine the weak places in which collapse occurs and which a r e  not 
susceptible to theoretical calculation by the computing model adopted. A 
large number of gages were used in the experiment to measure the elonga- 
tions, displacements, and s t resses .  The data accumulated in the course 
of the tes ts  was so extensive, that it was impossible to process all of i t  
manually within a practical amount of time. A s  a result, a par t  of the 
material  obtained has remained unused (unprocessed). 

The introduction of automatic processing equipment and high-speed 
computers in the processing of the experimental data seems therefore 
desirable. 

Automation cannot be based, however, on the methods used in manual 
processing which depend on the direct participation of a specialist who 
can creatively solve many problems due to his knowledge and experience. 
Automation necessitates, f i rs t  of all, a clear formulation of the cr i ter ia  
and estimates characterizing the stressed-strained state, and a method 
ensuring the highest degree of objectivity and reliability of the processing. 
It is desirable to include in the processing program the experience which 
scientists gradually accumulate, On this basis they a r e  capable of making 
intuitive forecasts deduced from a small  amount of information. 

into account when designing the method of automated processing of the 
experimental data; in fact, their high speed makes i t  possible not only 
to reduce the processing time, but also to increase the accuracy of the 
processing. 

The possibilities of the modern high-speed computers should be taken 

1. LIMITING STATES 

When using automatic installations to process the experimental data 
i t  is necessary to res t r ic t  the volume of output data, so a s  not to reduce 
the speed of calculations and not to bother the researcher  with a great  
amount of secondary and irrelevant data. 
significantly reduced by using the concept of limiting state in  the analysis 
of the behavior of systems. 

The volume of output data can be 
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By limiting state we mean the stressed-strained s ta te  immediately 
preceding a state of the system which is dangerous in some sense. 
Examples of limiting states are:  

The operating limiting state, in which the yield point is reached in  
a t  least  one element. 

The life limiting state, in which the fatigue l imit  (corresponding 
to a certain specified number of cycles in the case of repeated cyclical 
loads) is reached in at  least  one element. 

3. 
one element. 

4. 
system can withstand at a given pattern of distribution and application 
of loads. 

5. The operating limiting states according to the system rigidity. 
These a re  states in which the displacements (deflections, angles of 
rotation, etc.) attain unallowable (from the point of view of normal 
operation) magnitudes. 

The use of the concept of limiting state in this sense greatly reduces 
the volume of output data. 

Knowing the limiting loads and the zones determining the onset of the 
limiting states, the design engineer can take measures to strengthen the 
structure whenever necessary. The same method can obviously be applied 
a s  well to the determination of weakly loaded zones (elements), which lead 
to an unwarranted increase of the system weight. 

The limiting states can similarly be used in theoretical calculations of 
systems 1 3 1 .  

Since the limiting states considered can also occur in the elastic- 
plastic stage and in the post-buckling zone, the connection between the 
parameter P, which determines the value of the load, and the magnitudes 
measured (the elongations E ,  the displacements v )  can be nonlinear. 
this case the functions E-P,  v--P will be nonlinear and their curves should 
be processed by means of nonlinear functions. 

In the practice of static tes ts  the nonlinear graphs a r e  sometimes dis- 
carded, while in thin-walled structures the use of such graphs can be 
necessary 141. 

1. 

2. 

The first collapse limiting state, in which collapse s t a r t s  in a t  least  

The limiting state corresponding to the maximum load which the 

In 

2. PROCESSING THE EXPERIMENTAL DATA 

Only linear displacements can be measured directly in static tes ts  
of thin-walled structures.  A l l  the other characterist ics of the stressed- 
strained state a r e  either measured indirectly (the elongations by 
means of strain gages) or calculated theoretically (the s t resses ,  the 
angular displacements, the shears, the moments of internal forces, etc.) .  

tions is impossible without a theory. In fact, even such a simple char- 
acterist ic a s  the s t r e s s  represents an abstract magnitude, which has a 
meaning in the computing model of a continuous medium only. 
of strains (s t ra in  tensor) and the theory of s t resses  ( s t r e s s  tensor) 
correspond to this computing model, 

It follows that the processing of experimental data in strength calcula- 

The theory 

Since the s t resses  a r e  not physical 
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magnitudes which can be measured directly, their  determination ne- 
cessi ta tes  using the formulas of the theories of elasticity, plasticity, and 
creep. 

The physical laws defining the relationship between the components of 
the s t r e s s  and s t r a in  t enso r s  are determined experimentally and have a 
statist ical  character .  

thinkable without a theory. At the s a m e  time, however, only the basic 
tenets of theory a r e  necessary in this processing, since the experimental  
mater ia l  obtained as a r e su l t  is m o r e  reliable than that obtained in the 
theoretical  calculation of complex sys t ems  (which necessitates the u s e  of 
computing models containing additional assumptions and hypotheses). 

In the processing of the experimental data re la t ive to t e s t s  of shel ls  
and plates we u s e  only assumptions such a s  the "hypothesis" of plane 
normals  and the assumption that the plane s t r e s sed  s t a t e  is the dominant 
one. When complex sys t ems  a r e  theoretically calculated, on the other 
hand, i t  is necessa ry  to introduce additional hypotheses: 
of plane sections, the law of sector ia l  a r eas ,  the hypothesis of absence 
of shears ,  etc. 

The processing of the experimental  data can b e  spli t  in two basic  
stages: p r imary  and secondary processing. 

The p r imary  processing includes the processing of the measurement  
r e su l t s  up to the determination of the s t r e s s e s  and displacements.  The 
limiting s ta te  and the danger zones a r e  determined in the course of this 
processing. 

The secondary processing is directed toward the solution of more  
complex problems: comparison of the theoretical  calculations with the 
experimental  resul ts ,  check-over of the additional hypotheses and assump- 
tions, and experimental reconstruction of the probable loads in several  
complex cases  of loading of the system elements.  The secondary process- 
ing is treated in 151,  and we shall  not dwell on i t  he re .  

strength problems. 
region has been made in Bolotin's paper / 2 / .  
methods s t ems  f rom the character  of the strength studies.  
of mathematical  s ta t is t ics  applicable to the problems of static t e s t s  of 
thin-walled s t ruc tu res  subjected to a nonrepeated loading a r e  t reated 
in 1 6 1 .  

Using the method exposed in / 6 /  i t  is possible to find some generalized 
polynomial approximating the experimental  relationships with a specified 
reliabil i ty and with known confidence interval.  The u s e  of the methods of 
statist ical  processing considerably inc reases  the computing work involved 
in  the processing and to  a l a r g e  extent necessitates the u s e  of automatic 
devices. 

discussion of the specific p rograms  and installations ensuring the automatic 
processing of the experiment a t  a high speed and with a known reliability. 

example of the behavior of an element of the skin of a thin-walled system 
i n  the post-buckling stage.  

It is thus seen that the processing of the experimental  d a t a i s  un- 

the "hypothesis" 

Statistical methods a r e  being widely used lately in the solution of 
A thorough survey of the theoretical  studies in this 

The interest  in probability 
The methods 

This  paper  makes no claims to thoroughness. I t s  scope prevents a 

To i l lustrate  the necessi ty  of such an approach, we give one specific 
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3. EXAMPLE 

Due to the influence of numerous factors (such as the eccentricity at  
the places of joining of the elements, the nonrectilinearity of the axes, 
etc.), the longitudinal elements of a thin-walled framed structure a r e  
subjected to a bending s t ressed state which, while not always dangerous, 
can greatly affect the pattern of the experimentally determined relation- 
ships between the load parameter and the elongations (s t resses)  at  the 
places where gages a r e  set  141. 
(linearity, nonlinearity, curvature) provides a means for estimating the 
correctness of the selection of the computing model, and for elucidating 
and predicting the character of the collapse of the system elements. 

Even more  complex relationships a r e  observed for gages set  on a 
thin skin. 
selected "rosette" of strain gages set  at  the middle of the wall of a two- 
belt thin-walled beam loaded by a concentrated force applied in the plane 
of the undeformed wall. 

The scheme of installation and disposition of the "rosette" gages is 
represented in Figure 1. 
the left and right surfaces of the wall, but the numbers of the left surface 
a re  accompanied by a stroke. 

The pattern of these relationships 

We give below the resul ts  of tes ts  recorded for one arbitrari ly 

The same numbering of the gages is used for 

1 By A-A 830 
I A  

Gage 1 / 
FIGURE 1. 

3 J A  

In Figure 2 the experimental data (for gage No. 3) a r e  represented by 

The problem of the processing consists therefore in selecting 
The ex- 

There is therefore no need to look 

tiny circles.  
sidered. 
the function best approximating the experimental relationship. 
perimental data, however, contain some er rors ,  which a r e  random 
magnitudes in the statistical sense. 
for a function passing exactly through all the points. 
approach will be more correct  here; it consists in finding the most probable 
function, which best approximates the experimental relationship allowing 
for the statistical pattern of the experiment e r rors .  
the dispersal of the measurements, then, by specifying some reliability, 
we can find even for a nonrepeated loading the confidence interval, and 
then plot by the method of least  squares the relationship E = E (  P I  which best 
approximates the experimentally determined function 1 6 1 .  
has been drawn in Figure 2 (the unbroken line). 
for 95 70 reliability is represented by the dotted line. 

The relationship E- Pis clearly nonlinear for the gage con- 

The statistical 

If we f i rs t  determine 

Such a curve 
The confidence interval 
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This method was applied to all the gages of the "rosette.  'I The 
approximating curves obtained for all  the gages are represented inF igure  3 
by unbroken l ines .  
selves the s t r e s sed  s ta te  a t  the place where the rose t t e  is placed. 
o rde r  to determine this  s ta te  i t  is necessary to make u s e  of the tenets 
of the theory of elasticity. 
s t ra in  tensor) a t  a point of the body (in an infinitely sma l l  vicinity of the 
point), we must  a s sume  that the gages give values of the elongations 
differing only l i t t le from the values a t  the point of intersection of their  
axes.  In other words, i t  is necessary to a s sume  that the s t r e s s  (s t ra in)  
field is homogeneous or weakly varying, i. e. ,  that the rose t t e  dimensions 
are so small  that in the region it occupies the increments  of the elongations 
( s t r e s s e s )  a r e  considerably smaller  than the elongations themselves.  

In this ca se  the values obtained for the elongations can be  considered 
a s  the elongations at  the point of intersection of the axes  of the gages. Since the 
gages a r e  s e t  on the plate surfaces  only, the measured elongations can be  
used directly only under the assumption that the s ta te  of s t r e s s  and s t r a in  
is plane. 
pendicular directions is constant 11 / 

Eight values of the elongations do not define by them- 
In 

Since the s t r e s s  tensor is formed ( just  a s  the 

In this c a s e  the sum of the elongations for  any mutually per-  

+ = e2 + E, = const, 

+ E~ = E* + e4 = const. 
(1) 

, O I  

In the example considered i t  turned out, however, that 

A = (E, + €5) - (€2 + E,) ;f. 0, 
, *  

A' = (€1 + ~ 3 )  - (e;+ 3;) # 0. 
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and, moreover, A and A’ a r e  of the same order a s  the sum of the 
positive (negative) magnitudes entering in the right-hand part  of ( 2 ) ,  

FIGURE 3. 

At the same time, assuming the correctness of the hypothesis of plane 
normals and passing to the elongations in the middle surface (the dotted 
lines on Figure 3),  we obtain 

In the example considered, the value of A,, turned out to be, in the entire 
range of variation of the load parameter P, of the order of one-tenth the 
minimum value of the sum of the positive (negative) te rms  in ( 3 ) .  
follows that in the middle surface the s t resses  vary more smoothly than 
on the surfaces, and the readings of the gages can be used to reconstruct 
with a sufficient accuracy the stressed state corresponding to the membrane 
computing model. 
state characterizes the basic components of the internal forces and moments 
equilibrating the external load, the experiment reveals with a sufficient 
accuracy these forces and moments. 

Collapse s tar ts  when the local strength of the elements is exhausted. 
The setting of eight-gage rosettes does not ensure a reliable study of the 
bending s t ressed state. The magnitude and sign of the curvature of the 
function e = c ( P )  can, however, characterize the onset of the bending 
stressed state; with the aid of some additional conditions they can also 
be used to control the cr i ter ia  of onset of dangerous limiting states.  

We note in conclusion that when the experimental data E - P  were 
approximated by linear functions the value of A. in the example considered 
increased considerably, reaching the order of magnitude of the sum of 
terms of the same sign in ( 3 ) .  

It 

Since in thin-walled structures the membrane stressed 
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CONCLUSION 

reliabil i ty of the processing of the experimental data. 
increase in computing work must  be offset by the u s e  of automatic high- 
speed processing installations. 

strained s ta tes  a r e  formulated in a form suitable for  experimental tes ts ,  
and provide a means for  establishing c l ea r  algorithms for  the analysis of 
the experimental  data. Their  use contributes to the automation of the 
data processing, with i t s  result ing speeding up of the calculations and 
inc rease  of their  accuracy and reliability. 

The setting of eight-gage roset tes  makes it possible to analyze 
successfully membrane computing models. The setting of gages on one 
surface only, o r  the use  of roset tes  with gages glued on less than three 
directions, is absolutely unacceptable in testing thin-walled s t ructures ,  
since the experimental r e su l t s  cannot be  checked by means of such 
roset tes .  

1. The use  of the methods of mathematical s ta t is t ics  increases  the 
The result ing 

2 .  The limiting s ta tes  ( §  1) based on the c r i t e r i a  of dangerous s t r e s sed -  

3. 
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STABILITY  OF UNSTIFFENED A N D  STIFFENED 
LONGITUDINALLY CORRUGATED CYLINDRICAL 
SHELLS 

G . L .  K o m i s s a r o v a  
(Kiev) 

Corrugated elements a re  being used increasingly in instruments, ships, 
aircraft, etc. 
been sufficiently developed so far, however, and only the particular case 
of a corrugated plate has been solved basically. The methods of calcula- 
tion of corrugated plates so  far  published can be split in two groups: 
1) calculation of corrugated plates a s  anisotropic plates. This method is 
used in instrument design in the calculation of corrugated membranes 
11, 8, 101; 2) calculation of corrugated plates a s  beams, by splitting the 
corrugated field in separate crimps and neglecting the interaction between 
them. This method is used in ship design in the calculation of corrugated 
bulkheads 1 5 ,  6, 91. 

shells a r e  Mushtari' s treatise on the strength calculation of longitudinally 
corrugated cylindrical shells with sinusoidal corrugation subjected to axial 
compression 1111, and the paper 1 2 1  on the determination of the stressed 
state of corrugated shells. 

Several buckling modes can be observed in tes ts  of longitudinally 
corrugated cylindrical shells a t  axial compression. 
is basically determined by the form and dimensions of the corrugation, 
i. e . ,  by the increase of the flexural rigidity in the axial direction relative 
to the smooth shell. The ratio of the moments of inertia of the c ross  
sections of the corrugated and smooth shells relative to the OX axis, 

The calculating methods suitable to such elements have not 

The only works known to u s  on the subject of calculation of corrugated 

The buckling mode 

k = 

of the flexural rigidity of the corrugated shell in the axial direction. 
OX axis passes through the center of gravity of the arc of the smooth-shell 

c ross  section having central angle -, where n is the number of corrugation 

waves along the circumference of the c ross  section of the corrugated shell. 
The corrugated shells tested can be arbitrari ly divided in three groups 
according to the value of the parameter k .  

(1< &<50). These shells buckle like smooth shells, with the formation of 
a large number of half-waves along the shell length and in the plane of its 
c ross  section. 

(Figure 1) will be taken a s  a parameter characterizing the increase 
Y+ 

The 

2 x  

n 

1. Corrugated shells of low flexural rigidity in the axial direction 

The buckling is accompanied by snap-through. 
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2. Corrugated shells of medium flexural rigidity in the axial direction 
(50 < k <  150). 
along their length, and three to five waves in the plane of the c ross  section. 
The buckles a re  stretched along the generator. 
by weakly expressed snap-through. 

3 .  
(k>150) . When these shells buckle, one half-wave forms along the length, 
and two to three half-waves in the cross-sectional plane. 
is not accompanied by snap-through. 

When these shells buckle, two to three half-waves form 

The buckling is accompanied 

Corrugated shells of high flexural rigidity in the axial direction 

The buckling 

N 

5 
Y 

FIGURE 1. FIGURE 2 .  

Different theories must obviously be used to calculate the different 
buckling modes. 
of a structurally orthotropic shell. 
calculated by Vlasov’s theory of thin-walled bars  1 3 1 .  Shells of the second 
group can be calculated by either one of these theories. 
be remembered that the number of waves formed in the longitudinal and the 
circumferential directions during buckling is limited. 

W e  shall consider the stability of longitudinally corrugated cylindrical 
shells of large and medium flexural rigidity in the axial direction, either 
stiffened or unstiffened. 

Consider a longitudinally corrugated cylindrical shell subjected to the 
simultaneous action of uniformly distributed axial and lateral  loads. Let 
n be the number of corrugation waves along the c ross  section circumference. 

Cut out a panel of central angle -. The reaction of the discarded con- 

straints will be replaced by a system of forces and moments which can 
be determined on the strength of Vlasov’s theory of folded systems 141. 

cross-sectional contour subjected to the action of uniformly distributed 
axial and la teral  loads and a system of forces and moments applied a t  the 

Shells of the first  group can be calculated by the theory 
Shells of the third group can be 

It should, however, 

2x 
n 

We pass  to the question of the stability of a thin-walled bar of arbi t rary 
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longitudinal ends of the panel (Figure 2). 
is in a state of central lateral  bending before buckling, i. e . ,  that the bar 
c ross  section is not subjected to deplanation and suffers only translatory 
displacements in i t s  plane. 
for an arbi t rary open profile subjected to the conditions of complex r e -  
sistance in the case of central lateral  bending accompanied by extension 
or compression a r e  

It shall be assumed that the bar 

The general differential equations of stability 

E J ~  €1"- [ N  (E' + uy e')]' + (mZ e)" =o, 
EJ, . I~ 'V-  [N(.II '-U,B')] '+(M,~)"- (T,,o)' 2wJ =o, 

E y,elv = ~ ( r '  N + 2py M,) e']' + [d  ( r ,  - a,) + d cry - a,)] e + mk e - 
- ~y (A' E')' f U x  (A'?')' 4- M x  E" 4- M v 9'' - T k  '1' 2 &=O. (1 1 

The unknown functions in (1 ) a r e  the displacements E = E(r),  7 = q(z), and 
O=O(z) appearing a s  a result  of the change in the fundamental bending mode 
of equilibrium at buckling. The coefficients of differential equations (1 ) 
depend on the elastic constants E and G ,  the geometrical characterist ics 
of the c ross  section J,, J , ,  J,, a,, uy, p,, By, r ,  and the functions N (z ) ,  Mx (2). 

My(t) ,  q:(z), & z ) ,  which depend on the external (relative to the bar) load 
and on the conditions of support of the bar at the ends. 
M y ( z )  a r e  the bending moments due to the external load, determined from 
the statical calculation allowing for the conditions of support. 

I t  is usually assumed in stability calculations of elastic systems that 
the external load i s  given with an accuracy up to a general coefficient of 
proportionality characterizing the load intensity. 
reduces to finding the minimum critical value of the generalized load at  
given boundary conditions. 

Let the longitudinally corrugated cylindrical shell be subjected to the 
action of auniformly distributed axial compressive load only. 
we have conducted have established that in this case the influence of the 
forces  and moments applied at  the longitudinal ends of the bar  cut from the 
corrugated shell on the value of the critical load is negligible. 
differential equations of stability of an open thin-walled bar of arbi t rary 
profile with one axis of symmetry (a, = BI=O) at central axial compression 
a r e  

Here M, ( 2 )  and 

The stability calculation 

The studies 

The 

( 2 )  
€Jy €1" + PE" + uy P8" 4, EJ,  q'V + 4" = 0, 

EJ, elv+ r*Pe" + aY PE" = 0. 

Equations ( 2 )  form a system of linear differential equations with constant 
coefficients. 
end conditions of the bar: 

We shall consider the solution of the problem for the following 

E=?=e=o, ~ " = ~ " = e '  (z=o, z = ~ ) ,  ( 3 )  

where I is the bar length. 
the displacements E, 7, 0 in the form 

Allowing for these end conditions, we select 

nlxz It,".? 
q = Bsin- 

I '  
E=Asin- 

I '  

where A,  B, C a r e  some constant coefficients, and It, is any positive 
integer ( n l = l .  2 . . . . )  . 
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System ( 2 )  will be solved by Bubnov-Galerkin’s variational method. 
The following equations a r e  obtained, after a se r ies  of transformations, 
for the determination of the critical value of the load: 

EJ, A:, - P=O (sa) 

where A,,,=?. 

root of equations (sa) and ( sb). 

tudinally corrugated cylindrical shell with an arbi t rary number m of 
stiffeners be subjected to the action of axial compressive forces. A s  

2x 
before, we cut out a panel of central angle - from the shell, and consider 

n 
the problem of the stability of a thin-walled bar stiffened by m stiffeners 
a t  axial compression. 
spot welding or riveting. 
built-in at  the points of its fastening to the stiffener. The elastic fastening 
of the bar prevents the variation of i t s  state of strain to a certain extent, 
hence increases the value of the cri t ical  force. Let k$, k$, k i ’  be the co- 
efficients of the elastic restraint  of the bar, h?), hs’ be the coordinates of the 
point of contact of the stiffener with the bar in the plane of the j - t h  stiffener 
( i = 1 .  2.-.,m; i =1,2.. ., mJ ; ml is the number of points of elastic res t ra int  of 
the bar in the plane of the 1-th stiffener). 
possess the following properties: 

The critical load will be equal to the smallest positive 
I 

We proceed to the case of a stiffened corrugated shell. Let a longi- 

The stiffeners a r e  bound to the bar  by means of 
We shall assume that the bar  is elastically 

The coefficients kl!’, k$, k(Bi) 

0 for z f z j  
30 for  z = zj , but kg) (2) dz=k{:”,  

kif ( z )  = { 
dz -+ 0 

0 for z f z j  

m for z = z j ,  but k(;i()(z) dz = k;?, 
k$’(z)= 

0 for z j z j  
M for  L = z j ,  but ki l j (7)  dz = k:?. 

k[{)(z)= { 
dz -+ 0 

The coefficients of elastic res t ra int  a r e  determined in each particular 
case by the methods of structural  mechanics. 

compression a r e  
The differential equations of stability of such a bar at longitudinal 

n mi  

1-1 I-I 
EJy Elv + P€”+ Q y f  8” + 2 2 Rli” [E - (hi?- a,)e] =o, 

I l l  mi 

,-I I - I  
E/ ,  qIv + P 1” -I- 2 2 k$ [q+ &)e] 4. (7 1 

m .mj = I  
u,P E” + E J,  elv + r* PB” - 2 2 kg (I@- ay )  E+ 2 2 k$) I+ 

1-1 1-1 J-1 1-1 

m m i  

1-1 1-1 
+ 2 [kll” (@- a , ) ~ f k ; ~ A Y + k ~ o j  B=O. 
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The coefficients of equations (7) depend on the elastic constant E ,  the 
geometrical characterist ics of the c ros s  section J,, J y ,  J,, a,,, r ,  the 
elasticity coefficients of the stiffeners k[{), k!$, k:?, the coordinates of the 
point of contact of the stiffener with the bar  h z ) ,  h$), and the compressive 
force P. 

for the displacements E, q, 6, allowing for  the boundary conditions ( 3 )  and 
the influence of the st iffeners on the mode of wave formation at  buckling, 
will then be: 

W e  shall consider the c a s e  of boundary conditions ( 3 ) .  The expressions 

We shall again use Bubnov-Galerkin’s variational method to solve the 
system of equations ( 7 )  and determine the critical value of the load. After 
a se r i e s  of transformations and using the properties of the coefficients of 
elastic res t ra int  of the bar  ( 6 )  we obtain the following equations for  finding 
the cri t ical  value of the load: 

where 
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aL2 = a2, = a,, = a,, = 02,= aJ2 = aJs = a,, = a,,5 = aS4 =O. ( 10 )  
(cont'd) 

The cr i t ical  load of a longitudinally corrugated stiffened cylindrical 
shell  a t  axial compression will be  

where $:)is the cr i t ical  load of the bar  cut f rom the shell  and n is the 
number of corrugation waves along the circumference of the c r o s s  section. 

shell, the cr i t ical  value of the load must  i nc rease  with the number of 
st iffeners.  I t  has been observed, however, in experimental  studies of 

stiffened shel ls  that, after a cer ta in  value has  been reached, P($does not 
i nc rease  fur ther  with the inc rease  of the number of st iffeners.  
in this ca se  is not a loss of the general  stability of the shell ,  but the l o s s  
of i t s  load-carrying capacity (warping in separate  sections).  Consider a s  
;n example a cylindrical  shell  with longitudinal rectangular or trapezoidal 
cr imps.  
stiffeners, fastened on the inside of the shell .  It has  been established that 
in this ca se  the maximum value of the cr i t ical  s t r e s s  of the shell  coincides 
with the minimum value of the cri t ical  s t r e s s  of the plates forming the 
cr imp.  Let the plates be simply supported on the two s ides  paral le l  to the 
direction of compression, and have different conditions of support a t  the 
other two s ides .  

i + 1 in number, and their  length wi l l  be -, where I is the shell  length. 

We shall  a s sume  the following boundary conditions for the plate s ides  
perpendicular to the direction of compression: 
st iffeners are hinged, and the s ides  coinciding with the shell  ends have the 
s a m e  end conditions a s  the shell .  
to  an inc rease  in the rigidity of the r e s t r a in t s  imposed on the plate, and 
lead to a fictitious inc rease  in i t s  stability. 

Obviously, in the c a s e  of a stiffened longitudinally corrugated cylindrical 

What occur s  

Le t  the maximum value of the cr i t ical  load be attained for  i 

The plates to  which the st iffeners a r e  welded will be 
1 

i + I  

the s ides  supported on the 

These boundary conditions correspond 

FIGURE 3 .  FIGURE 4 

We shall  now consider the r e su l t s  of the experimental  study of 
corrugated shells.  
shown in F igu re  3 .  
R, ,  = 70.5 mm, n = 32 .  The elast ic  character is t ics  of the ma te r i a l  of the samples  
are E = 7X105kg/cm2, 
are shown in Figure 4. 

The fo rm and dimensions of the corrugation are 
The  samples  had the  following dimensions: I = 200 mm, 

The profile and dimensions of the st iffeners Y = 0.3.  
Unstiffened corrugated cylindrical shel ls  and 
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I 1  

corrugated shel ls  stiffened by one, two, and th ree  st iffeners,  were tested 
a t  axial compression. 
calculation by the theory of b a r s  a r e  shown in Table  1 .  
coincidence is observed between the experimental and theoretical  r e su l t s .  
The maximum discrepancy for stiffened shel ls  turned out to  be 6.470. 
experiment to  determine the maximum cri t ical  load of a stiffened corrugated 
shell  a lso agreed well with the theoretical resul ts .  

The r e su l t s  of the experiments and of the theoretical  
A satisfactory 

The 

Unstiffened 

One stiffener 

T w o  stiffeners 

Three stiffeners 

Mushtari's example  (sinu- 
soidal corrugation) 
k =  945 

Rectangular corrugation 
k = 371 

Trapezoidal corrugation 
k =  1372 

Sinusoidal corrugation 
k -  15.7 

1585 
1825 
1830 

2020 
1990 
2000 

2450 
2325 

2750 
2550 

PCf kg 

(structurally 
orthotropic 

shell) 

4316 

2312 

6697 

2543 

1,<4R; 

1147 

2003 

2381.5 

2650 

LBLE 2 

Per* k 
(theoly 

bars) 

2859 

1568 

4126 

(theor) 
cr ' kg 

1568.2 

2028.4 

2258.5 

2488.7 

h 1 .  1 - = _ _ -  
R 250 300 

per* kg 
(other theories) 

6632 

Xscrepancy ,"lo 

11.4 

1.3 

5.7 

6.4 

Experiment 

1141 

4955 

1590 

We shall now compare the r e su l t s  of the numerical  calculation of cor-  
rugated shel ls  by the theory of b a r s  and by the theory of s t ructural ly  
orthotropic shel ls  (Andreeva's reduction method /1/) with the experimental  
data. It is seen from Table 2 that the cr i t ical  load Pito.)found by the theory 
of s t ructural ly  orthotropic shells is higher by 40 to 5 0 %  than the ex- 
perimental  value, while Fb!)found by the theory of b a r s  coincides sat is-  
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factorily with the experimental r e su l t s .  P::'.) can be considered a s  the 
upper boundary of the cr i t ical  load of a corrugated shell, and PA:) a s  i ts  

lower boundary. 

P::), and i s  nea re r  to Pi:! 
The t rue value of the cr i t ical  load l i e s  between P::''.)and 
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ON THE STABILITY OF SHALLOW CYLINDRICAL 
SHELLS SUPPORTED ON THE INNER SURFACE 
B Y  AN ELASTIC FOUNDATION 

B . A .  K o r b u t  

(Zaporozh ' e) 

Some character is t ic  f ea tu re s  of " large scale" buckling a r e  brought to 
light in the example of an elongated cylindrical panel lying on a n  elast ic  
Winkler foundation. 
of the generator  ( the length) is considerably l a r g e r  than the dimension in 
the direction of the a r c  ( the width); 
bent su r f ace  a s  likewise cylindrical. 
located along the generator and is subjected from the convex (outer) s ide 
to the action of a uniformly distributed p r e s s u r e  (F igu re  1 a).  

The stresses in the middle surface,  acting along the width, a r e  assumed 
to be  constant for  all points of the panel and equal to ay  ..= J. 

ax, r a r e  considered as equal to z e r o  111. 

foundation rigidity and the panel curvature.  
the method of Bubnov-Galerkin in two successive approximations. 

cylindrical shel ls  is 

It is assumed that the panel dimension in the direction 

this makes i t  possible to consider the 
The panel is hinged on fixed supports 

The s t r e s s e s  

The phenomenon of "snap-through" is studied a s  a function of the 
The problem is solved by 

The system of initial nonlinear differential equations for  shallow 

where w is the deflection; 4, is the s t r e s s  function; x ,  y a r e  coordinates; 
R is the panel radius;  h is the panel thickness; D is the flexural rigidity; 
E is the modulus of elasticity; 

deformation of the panel, and taking into account that 

f is the external load. 
On the strength of the assumptions made relative to the pattern of 

P = q-aw; * ,  ( 3 )  

equation (1 ) can be  written in the form 

where q is the external p r e s s u r e  and a is the foundation modulus, assumed 
to be constant. 
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The s t r e s s  a is taken with the minus sign, since the panel i s  compressed. 
The continuity equation ( 2 )  drops out, since the deflections a r e  in-  

dependent of x because of the assumption relative to the pattern of de- 
for mation. 

conditions . 
The problem reduces thus to integrating equation ( 4 )  for given boundary 

1. FIRST APPROXIMATION 

The following expression is selected as f i rs t  approximation for the 
deflections, satisfying the end conditions: 

m = f s i n  9, (5  1 b 

where f is the sag and b is the panel width. 
symmetrical  deformation of the panel. 

The Bubnov-Galerkin equation i s  

Expression ( 5 )  presupposes 

b 

JXsin dy = 0, 
U 

where X i s  determined from ( 4 )  and i s  equal to 

By substituting ( 7 )  and ( 5 )  in ( 6 )  and integrating we obtain 

115 113 h q = D- f - -faA + a - + 9. 
4b' 4b2 R 4  

The unknown o wil l  be determined from the expression for the strain 
E v  111: 

Since 

( 9 )  can be written in the form 

The boundary conditions for Y will be 

21 ly=o = 9 ly=* - - 0. 
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Integrating ( l l ) ,  and taking these boundary conditions into account, 
we obtain 

By substituting (13) in (8)  and introducing the dimensionless parameters  

we obtain 

Curves of q* as  a function of C have been plotted in Figure 1 b for k = X 3  

and different parameters of the foundation rigidity w . 

FIGURE 1. FIGURE 2 .  

It is seen from these curves that at  negligible w the curves q* =f(C) have 

From this 
the usual loop shape. 
more level. At o ~ 3 8 5  the zone of negative rigidity disappears. 
moment the phenomenon of "snap-through'' becomes impossible. 

of the snap-through q; for different w and k .  
a r e  represented in Figure 2. 

With the increase of w they go higher and become 

The study of the extrema1 values of (15) established the upper values 
The relationships obtained 



It is seen that the phenomenon of "snap-through" increases with the 
increase of the foundation rigidity w and the panel curvature k .  
shaded curve tn - n represents the boundary of the values of w for which 
a snap-through is still possible. 

The 

2 .  SECOND APPROXIMATION 

In the second approximation we consider both symmetrical and non- 
symmetrical deformations. 
represent the deflection in the form 

In the case of symmetrical deformation we 

where fi is the sag when the panel bends in one half-wave and fa is the 
sag when it bends in three half-waves. 

The Bubnov-Galerkin equations will be 
b 

andJX sin?dy=O. ( 1 7 )  
0 

By integrating ( 1 7 )  after substituting ( 7 )  and ( 1 6 )  into it we obtain 

where we have written for the sake of brevity p=A. b Introduce the designations 

We obtain then from (18 ) 

DpZ--ah + % 
B $-  - -  ~ . . ~ .  

3a 243DP2 - 27ah + 7 e 
The s t r e s s  a i s  found a s  above with the aid of (11) and ( 1 2 ) :  

Substituting ( 2 1 )  in (20) ,  and taking (14 )  and ( 1 9 )  into account, we obtain 
the following cubic equation relative to e :  

729Cp - ( 27C2 + $ kC ) e* + (7 UI + 81C' - 36 
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Having determined + from here  and substituted i t  in ( 2 1 ) ,  we determine 
02 with the aid of (14)  and (19) :  

From the f i rs t  equation of (18)  we find 9*: 

nj Ua 9" = 48 C - - 0°C + ko*+ 2. wc. 
4 4 

The symbols used in (23) and (24)  have the following meaning: 

Using equations ( 2 2 ) ,  (231, and ( 2 4 )  i t  is possible to plot the relation- 
ship @ = f (:) for different +, o, and k ,  and thus to study the phenomenon 
of "snap-through, " to determine the cri t ical  pressures ,  and to find the 
parameters  of the foundation rigidity io at which the snap-through disappears, 

A different procedure will be followed in the case of nonsymmetrical 
deformation 121.  

We take the variation of each te rm of the equilibrium equation ( 4 )  and 
the s t ra in  equation ( 9  ), and pass from the state of symmetrical deforma- 
tion in a f i r s t  approximation to the neutral state of nonsymmetrical de- 
formation. 

The calculations a r e  somewhat simpler in this case. 

We s ta r t  with equation ( 9 ) :  

where ai is the deflection in the symmetrical mode 

w =I% sin -Y , b 

and iw i s  the deflection in the nonsymmetrical mode 

2ZY 8w = 8ft sin - b '  

By substituting (27) and (28) in ( 2 6 )  and integrating we obtain 

( 2 7  1 

(29  1 2x -- 2:R sf, cos 7 Y +- c .  

To determine o and c we use  the boundary conditions ( 1 2 ) .  We obtain 
b 

c = ha Sf2, 

60 = 0. 

Take now the variation of the equilibrium equation (4) :  
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By substituting ( 2 7 )  and ( 2 8 )  in (31), and allowing for (14 ) ,  (25 ) ,  and (30 ) ,  
we obtain: 

112 w 
a * = %  + 4 ~ "  

To find the relationship q * = f ( L )  we use the equilibrium equation ( 4 )  
Solving it by the Bubnov-Galerkin method, and taking as deflection the 
sum of ( 2 7 )  and ( 2 8 ) ,  we obtain 

The substitution of (32)  in ( 3 3 )  yields finally: 

Using (34)  i t  is possible to study the phenomenon of "snap- through" 
to find the cri t ical  pressures ,  and also to determine the boundary of the 
values of w for which snap-through i s  st i l l  possible. 

We now turn back to the resul ts  obtained in the second approximation 
for the symmetrical modes of equilibrium of the panel. 
for different w were plotted with the aid of ( 2 2 ) ,  (23 ) ,  and (24) .  Such 
relationships a r e  given in Figure 3 a for k = 11'. Since equation ( 2 2 )  i s  
cubic relative to +, we have three roots; 
a particular equilibrium mode (Figure 3b) and a pressure  9*. 
I ( +  negative) the pressure curve has the usual loop shape, while I1 and 
I11 ( q~ positive) correspond to closed eights /I /. With the increase of w 
the curve of mode I goes up, straightening a t  the same time. At - w > 7 5  
the zone of negative rigidity disappears, and a snap-throughbecomes im- 
possible. 
same value - w > 7 5  (the dotted branch of the eight becomes horizontal). 
With the further increase of w the eight goes up and rotates, occupying 
a position at which the second branch likewise (the dash-dot line on 
Figure 3a)  becomes horizontal; this happens at  w = 385. Starting with 
w = 385, the panel deformation by symmetric modes becomes therefore 
smooth, without snap-throughs. 

tion IV obtained by ( 3 4 )  have also been plotted in Figure 3a. 
increase of w they go up and rotate. A t  w = 102  the straight line occupies 
a horizontal position. 
metrical  mode becomes impossible, and the deformation increases 
smoothly. 

cri t ical  pressure,  this pressure  should be determined from the simultane- 
ous consideration of the curves of symmetrical  and nonsymmetrical de- 
formation. It is seen from Figure 3 a  that at  the beginning deformation 
proceeds by the symmetrical mode I (OA). A t  point A there occurs a 
jump to the nonsymmetrical state IV with the simultaneous realization of 
the symmetrical modes I, 11, III ( the horizontal line drawn through 

Curves of q * = f ( C )  

to each root there corresponds 
For mode 

In mode I11 snap-through also becomes impossible for the 

Curves of the pressure,  corresponding to the nonsymmetrical deforma- 
With the 

From this moment snap-through by the nonsym- 

Since actually snap-through by a given mode is determined by a lower 
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point A intersects the descending branches of these modes). 
snap-through by the f i rs t  mode becomes impossible - the horizontal line 
does not intersect the corresponding loop curve. 
the horizontal line does not intersect the descending branch of mode 111, 
and snap-through by this mode becomes impossible. Finally, at  w = 102 
snap-through by the nonsymmetrical mode IV becomes impossible, since 
the corresponding branch becomes horizontal. With the further increase 
of w the deformation develops at  first by branch OB, and then passes over 
smoothly to the nonsymmetrical branch BC. A snap-through by mode I1 
takes place at  the point of intersection with the descending branch of this 
mode (C). Starting with w=: 300 the branches do not intersect (the curve 
of mode I1 r i s e s  more swiftly than the curve of mode IV), the possibility 
of snap-through by mode II disappears, and the panel deformation can be 
only smooth. At w >  300 none of the modes studied gives a snap-through. 

At o ~ 4 5  

Starting with o=. 65 to 75 

FIGURE 3 .  

The resul ts  obtained a r e  illustrated graphically in Figure 2 .  In region 
(A) the snap-through is realized by all four modes. 
through in the new state is possible by modes 11, 111, and IV only. 
region (C) there correspond modes I1 and IV. 
can be r ed ized  by mode I1 only. 
increases smoothly, without snap-through. Naturally, panels with different 
values of the curvature will have different values of o at which the possibility 
of snap- through disappears. 

In region (B) the snap- 

In region (D) a snap-through 
To 

Finally, in region (E) the deformation 
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The relationship between the upper cri t ical  p ressure  q; and the founda- 
tion rigidity ‘ W  is represented graphically in Figure 2 for panels of different 
curvature k .  
the foundation rigidity and the panel curvature. 
indicates the boundary to the right of which snap-through is no longer 
possible. 

A s  expected, the pressure  increases  with the increase of 
The shaded curve m ’ - d  
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BENDING OF A N  ELASTIC THIN PLATE 
SUPPORTED B Y  RIGID COLUMNS 

A .  S .  K o  s m  o d a  m i a n s  k i i  
(Saratov) 

The bending of a finite isotropic plate supported by rigid o r  yielding 
columns is considered. The problem of the stressed-strained state of a 
plate rigidly bound to the columns is treated in detail. 

The plate is 
supported on rigid columns, on which it is either rigidly bound or simply 
supported. 

of which a r e  specified some boundary conditions. It shall be assumed that 
the plate is either rigidly clamped or simply supported on i t s  outer contour 
a s  well. 

applied on the simply supported contours of the plate. 

and the determination of the deflections of such a plate reduces, a s  known, 
to integrating the equation 

1. Consider an isotropic thin plate of finite dimensions. 

Such a plate can be considered a s  a plate with holes on the contours 

The plate bends under the action of a lateral  load and bending moments 

The problem of the distribution of the moments and shearing forces, 

The boundary conditions on the contours where the plate is rigidly 
clamped a r e  

dw w=- = 0, 
dn 

and on the contours where it is simply supported 

w = M, =O. ( 1 . 3 )  

The solution of this problem can be reduced to determining two functions 
of a complex variable 9 ( 2 )  and ~ ( z )  from the corresponding boundary con- 
ditions on the contours of the holes and on the outer contour of the plate 
11, 21 .  In the case of simply supported contour the boundary conditions 
reduce to 

Re [F? (t) + x ( I ! ]  + m0 =O. 
(1.4) 

530 



and in the case of rigidly clamped contour to 

Here t is the affix of the point on one of the contours; 
ratio; ts and tss are,  respectively, the first and second derivatives of f 
by the arc: of the contour considered; w,, is a particular solution of (1.1 ); 
M! is the moment corresponding to w,,; M represents external moments. 

boundary conditions it is easy to find the plate deflections and the moments 
and shearing forces appearing in the plate. They a re  expressed a s  follows 
through these functions 121: 

v is the Poisson 

After the functions 7 ( 2 )  and x ( 2 )  have been determined from the 

QJ = w, + Re lz 7 ( 2 )  i- x (~11. 
. __ 

M, + My=& +M;-2D ( 1  + v) [y'lz) + ?' ( z ) ]  . 
( 1 . 6 )  

M , - M ~ + ~ ~ H , ,  = M ~ - M I : + ~ ~ H O ~ , + ~ D ( ~ - V )  [zcp"(z)+x" 

N , - i N ,  = &-i N ; -  409'' (2). 

2 .  We shall consider the case of a doubly-connected region. Let the 
external contour Lo be circular, and the interior L ,  curvilinear (Figure l) ,  
and let  L ,  be rigidly clamped while L o  is simply supported. 
bends under the action of moments distributed uniformly over the contour. 

The plate 

t" 

FIGURE 1. 

In this case we shall represent the functions ~ ( z )  and ~ ( z )  in the form /3/ 
m 

cp(z) = Az In C + 2 a z k +  cp*(C). 

D 

x ( t )  = BhC+ C, zk + x:% (C). 
k d '  

Here cp*(C) and x*(C) a r e  functions holomorphic outside the curved contour 
L, ,  and 
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is the function which conformally maps the region outside the unit c i rc le  
y onto the region outside the contour L,; 
contour L ,  is elliptical, then 

mk and r a r e  constants. If the 

( 2 . 3 )  
m 
I 

2 = o ( C ) = C +  -. 

The functions ?*(I) and X*(C)can be represented in region (C) by means of 
the following series:  

(2.4) 

The f i rs t  and third t e rms  of ( 2 . 1 )  will be functions of the small para- 
We can therefore expand them in ser ies  by meter  R-lon the contour L o .  

powers of R-'and neglect all  t e rms  of power higher than some power p .  
Using boundary conditions (1.4), in which we write wu=M: = 0 we use 
se r i e s  to express the coefficients a, and Cr through the remaining co- 
efficients. Considering the coefficients ak and Ck as known magnitudes, 
we find the functions Tz;C) and y.*(C) from the boundary conditions (1.5),  in 

which we write w o =  -"=O (using Muskhelishvili's method /4 / ) ,  and 

obtain an algebraic system for determining the unknown coefficients 
introduced. 

dw 
dti 

In a f i rs t  approximation, corresponding to p = 2, we obtain 

(2.5) 

The coefficients in (2.1 ) and (2.5) a r e  determined from the system 
ARY In H f a ,  R2+ B In R-tC,=O. 

B M 2a, ( 1 4  Y )  + A 12 ( I + .J) Ink' +3+ VI -- ! 1 - v) = - - . 
R' D (2 .6 )  

2n1 ( 1  - m') -2nb, + A  ( I  + m') + B =O. 
Co= -a, (l+m*)-mmb,, bl=-m(2a,+A). 

In a second approximation p = 4 we obtain 

1 
(1 

f(C) =-I(++ mC) cp*(C) + mbl - - [2a,m + uJ ( 1  + 6ma+ ma) + (2.7)  

The system for  determining the unknown coefficients becomes 

AR21nR + a,Ra + BlnR + C,=O. 

--~m+a,R~+b1-- Bm + 2 +C,R'.=O, 
Ra R' 

(2.8 1 
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B M 2 q ( l + v ) + A  [2 (1+v) InR+3+v] - -  ( I - v ) =  - - 
R1 D '  

(2.8) 
(cont'd) 

- 2 ( l - v ) C * = O ,  
+ 2d2!zv) 
C, = - n, (1- m') +6a, ma + Am*, 

d, = Am +2a, ( 1+3ma) 3. C, (1- ma), 
B =  - 2 u 1 ( 1 + m 2 ) - A  (1+3m*)-4mC,--12m(1+m2)ua, 

4= - [ (A+2u,)m+2C,+3a,(1+3ma)].  

If the column is of circular c ross  section, this method leads to a 
rigorous solution of the problem. In this case 

'p ( 2 )  =Azlnz + a,z. ~ ( z )  = Blnz + C,. (2 .9 )  

The system for determining the constants in (2.9)  will be 
ul (Ra- l ) - ln  R ( 2 q + A ) f A R ~ l n R = O ,  

R" 212, ( 1  4- y) + I--v (2a, + A )  + A [ (3+ v)+2 ( 1 + v )  lnR] = - 7 , (2.10) 

B =  - ( 2 ~ 1  + A ) ,  C o s  - 4. 

We conducted numerical calculations for determining the deflections, 
moments, and shearing forces for the case R = 10, m = 0.5 (the la rge  axis 
of the ellipse is three times larger  than the small axis), v = 1/3. 
values of the unknown coefficients a r e  given in Table 1 with an accuracy 
up to MID. 

a circular column: 

The 

. The following values of the coefficients were obtained for the case of 

A = -0.33; a, = - Co=O.80; B=-1.27. 

known, which makes it possible to determine by ( 1 . 6 )  all the magnitudes 
which characterize the stressed-strained state of the plate. 

After these coefficients a r e  determined the functions rp(z) and ~ ( z )  become 

First 
Second 

0.81 
0.81 

TABLE 1 

- 
0.00003 - 0.16 - 0.00002 

The values of the deflections, moments, and shearing forces a t  the 
points of the horizontal and vertical diameters of a plate with elliptical 
column a r e  given in Tables 2 and 3 with an accuracy up to M .  Table 4 
is given for comparison: it corresponds to the case of a plate with circular 
column. The values of the shearing forces a r e  not given in this table, 
since these a r e  calculated by the elementary formula 
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1.5 9pprox i- 
marions 

3.33 
3.46 
0.32 
0.32 
0.10 
0.09 
0.30 
0.31 

0 0  

5 6  

3.86 
4.06 
0.51 
0.51 
0.08 
0.09 
0.24 
0.25 

Second 
E lrst 
Second 
F lrst 
Second 
F m r  
Second 

~- 

1.28 
1.32 

-0.28 
-0.29 
-0.63 
-0.63 
0.64 
0.65 

0 0  
~ 

0.5 

0 
0 

-0.36 
-0.35 
-1.08 
-1.05 

0 

0.16 
0.13 

__ 

2.40 
2.48 
0.08 
0.07 

-0.32 
-0.31 

0.41 
0.41 

. 

2 

0.25 
0.26 

-1.08 
-1.11 
-1.19 
-1.20 

1.82 
1.86 

0 

E u t  
Second 
E irst 
Second 
F irst 
Second 
First 
Second 
E u s 1  
Second 

_ _ ~ - _  

0 
-1.88 
-0.63 

M ,  

0 
0 

-4.38 
-4.49 
-1.46 
-1.50 
22.46 
23.35 

0 

1 

0.13 
0.12 

-0.41 
-0.40 
-0.88 
-0.86 

0 

0.30 
0.28 

0.94 
0.92 

-0.38 
-0.38 
-0.43 
-0.42 

0 0  

0.38 
0.37 
. .  

2.11 
2.05 

-0.25 
-0.25 
-0.08 
-0.07 

0.34 
0.33 

TABLE 3 

2.26 
0.90 
0.46 

0 
1.0 
0.65 

4i 

3.29 
3.18 

-0.09 
-0.10 

0.18 
0.18 

0 

0.28 
0.28 

TABLE 4 

.- 

Si 

4.24 
4.09 
0.05 
0.04 
0.38 
0.38 

0 

0.24 
0.24 
. .  

6 

4.37 
0.53 
0.14 

I 

3.85 
4.12 
0.66 
0.66 
0.22 
0.24 
0.20 
0.21 

0 

6i 

4.78 
4.57 
0.1 8 
0.17 
0.55 
0.55 

0 

0.21 
0.20 

7 

4.36 
0.67 
0.27 

- 

8 

.19 

.52 

.78 

.79 

.35 

.36 

. I 8  

.18 

7i 

4.78 
4.50 
0.30 
0.29 
0.69 
0.68 

0 

0.18 
0.18 

8 

3.69 
0.80 
0.38 

9 

1.78 
2.18 
0.90 
0.90 
0.46 
0.47 
0.15 
0.16 

0 

8i 

4.12 
3.78 
0.41 
0.30 
0.41 
0.80 

0 

0.16 
0.16 

10 

-0.49 
-0.002 

0.99 
1.007 
0.55 
0.51 
0.14 
0.14 

0 

9i 

2.71 
2.31 
0.50 
0.49 
0.91 
0.90 

0 

0.14 
0.14 

ioi 
-. 
0.47 

-0.004 
0.59 
0.57 
1.007 
0.99 

0 

0.13 
0.13 

Figure 2 represents the distribution of the moments M, and M, and the 
deflections along the diameters of a plate supported by an elliptic column. 

Tables 2 to 4 show that the pattern of distribution of the moments and 
the shearing forces along the plate diameters is the same for all types of 
column cross  section considered here. A concentration of these moments 
and forces i s  observed only near the column. Of greatest  interest  a t  the 
points of the clamped hole contour is the determination of the moment M,, 
since M e  = YM,, while the moment H,Q has values considerably smaller 
than M,. The moment M,  should be determined by the formula 

M ,  = - 4 DRe 9’ ( z ) ,  (2 .12 )  

which is easily obtained from the second formula of (1 .6)  by taking into 
account that in the given problem Me =VM, and M,+ M ,  = M ,  + M e .  The 
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shearing forces N, and NC a r e  determined by the formula 131 

-1.11 
-1.08 
0.10 
0.07 
0.16 
0.16 

N,- iNa = - 4DeiB y’’ ( 2 ) .  (2.13) 

-1.08 
-1.05 
0.16 
0.13 
0 
0 

I 

FIGURE 2. 

The values of M,, N,, and Ne, calculated for several  points of the con- 
tour of an elliptical hole with an accuracy up to M, a r e  given in Table 5.  

TABLE 5 

I 
M, First 

N, First 

Na First 

Second 

Second 

Second 

0 I 1, 

11.06 
11.52 

30 1 45 

-1.91 -1.41 
-1.91 -1.39 
-1.96 -0.52 
-2.10 -0.58 

2.76 

60 

-1.20 
-1.17 
-0.11 
-0.16 
0.38 
0.38 

I 

The analysis of these tables shows that some of the laws in force in this 
case can be determined from the f i rs t  approximation. 
concentration is much la rger  in a plate with elliptical column than in a plate 
with circular column. 
maximum values for the shearing forces. 

a yielding column. Such a case can occur, for instance, when the foundation 
under the column collapses. 
applied to the contour L, will be equal to zero. 
the coefficient A in ( 2 . 1 )  will likewise be equal to zero.  
condition of ( 1 .5  ) becomes 

Thus, the s t r e s s  

This is particularly noticeable when comparing the 

3. It is of interest  to consider for  the sake of comparison the case of 

In this case the principal vector of forces 
Then, a s  follows from 131 ,  

The first boundary 

Rel&(l)+ x(0l = C, (3.1 1 
where C is a constant. The other boundary conditions remain unchanged. 
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The equations for determining the unknown coefficients in (2.1 ) a r e  

The values of 
obtained as in the preceding problem: the first equations of ( 2 . 6 )  and 
(2.8)  a r e  discarded, and the value A = 0 is substituted. 
the remaining coefficients for the same plate a s  in the f i rs t  problem a r e  
given in Table 6. 
yielding column will be designated by an asterisk. 

Here and below the magnitudes corresponding to a 

TABLE 6 

~- 

0.64 
0.62 
1.29 
1.32 

-0.06 
-0.06 
_ _  

First  
Second 

0.53 0.50 
0.50 0.47 
0.97 0.88 
0.99 0.91 

-0.01 0 
-0.01 0 

.~ 

35.12 
35.10 
- 

.._ . 

3 

d; B* 

0 I O .  93 
0.000009 0.94 

~- 

0.37 I 0 
0.38 -0.000015 

A s  explained in Section 2, the most important problem is that of de- 
termining the moments and shearing forces near the column. 
of the corresponding calculations for a plate with yielding ell ipti t  column 
a r e  given in Table 7. 
contour of the elliptic hole is represented in Figure 3.  

The resul ts  

The distribution of the moments M, and MI over the 

TABLE I 

0 mations 

Second 
.~ 

0 

. .. . 

4.47 
4.45 

-23.85 
-24.45 

0 
0 

- ~. 

1 5  

2.91 
2.95 
2.47 
2.53 

-12.28 
-12.59 
- - . 

30 

1.49 
1.49 
3.98 
4.07 

-2.3 0 
-2.35 

- 

45 

0.89 
0.88 
1.63 
1.67 

-0.30 
-0.30 

FIGURE 3 .  
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The value obtained for the deflection of the points of a fastened elliptical 
contour was 34.5 MID. 
efficients different from zero corresponding to a circular column ( m  = 0): 

The following values were obtained for the co- 

a, = -0.37; B =0.75; C, -35.60. 

The deflection for the points of the fastened circular contour was 
35 .2  MID. 
a i s  is given in Table 8. 

The variation of the deflection and moments along the real  

2 8 

D.W. 35.22 34.62 33.06 30.66 21.47 23.50 18.76 13.27 
1.49 1.12 1.05 1.03 1.01 1.01 1.01 1.00 
0.50 0.81 0.94 0.96 0.98 0.98 0.98 0.99 

M: 
M; 

TABLE 8 

9 1 0  

7.01 1 
1.00 1.00 
0.99 0.99 

It is seen from a comparison of these tables that the concentration of 
bending moments and shearing forces is somewhat la rger  in a plate with 
yielding elliptic column than in a plate with rigid column, while in the 
case of circular column the reverse  is true; in addition, the sign of these 
forces and moments is reversed in th$ case of yielding column. A s  to the 
deflections, they are roughly the same in the cases  of circular and 
elliptic columns. 
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CENTRAL IMPACT ON A CIRCULAR PLATE OF 
UNIFORM THICKNESS 

V .  V .  K o s t y l e v  
( L  eningvad) 

The problem of determining the external forces in the case of central 
impact of an axisymmetrical body on a circular plate of uniform thickness 
with various conditions of support a t  the edges is treated on the basis of 
Timoshenko' s theory. 

conditions of support (including the case of an unsupported plate) represents 
The impact of an axisymmetrical body on a circular plate with arbi t rary 

a fairly complex phenomenon. 4 
The impact is accompanied by local deformations on the a rea  of contact 

of the two bodies, and by plate vibrations symmetrical relative to the 
center; in addition, the points of a f ree  plate s ta r t  to execute a complex 
motion, representing the superposition of vibrations on the translatory 
motion of the system. 

to have a solution of the problem of f ree  and forced vibrations of the plate 
and to study the processes accompanying impact. 

In order  to study the phenomenon a s  a whole it is therefore necessary 

1. VIBRATIONS OF A CIRCULAR PLATE 

The differential equation of symmetrical vibrations of a f ree  plate of 
uniform thickness can be presented in the form 

where w = W .  t )  is the plate deflection; A, R a r e  the thickness and radius 
of the plate; p is the density per unit surface; r is the polar coordinate; 

is the 
r .  t is the time; 5 =--IS a dimensionless coordinate; D = 

flexural rigidity; E is the modulus of normal elasticity; 
R 12 (!- $1 

p is the Poisson 
ratio; p = p  (E, t )  is the external load; A A  is the double Laplacian 
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A s  known 11 1, the solution of this equation can be found by Fourier ' s  
method: 

(E, t )  2 f n  G). 4n ( t ) .  
n 

Here f n  (E) are vibration modes, representing a solution of Bessel 's  
differential equation 

1 df + - - + a a J = ~ ,  
E dE - ( 3 )  

where a4 = 's I?, l.2 a r e  essentially positive numbers and Qn (f) a re  

generalized coordinates, determined from the equation of vibrations of a 
system with one degree of freedom: 

D 

where 

The vibration modes of the plate for various conditions of support were 
determined on the basis of 1 3 1 .  The resul ts  of the calculation are r e -  
presentedinthe table. In the last  line of this table a r e  written the first 
three normal functions fn ( E )  for the case when the integration constant 
C,  is determined from the condition f,, (0) = 1.  

A t  zero initial conditions the solution of equation (4) will be, a s  known, 

2. IMPACT OF A N  AXISYMMETRICAL BODY O N  A 
CIR CULA R P L A T  E 

The displacement of the points of the striking body during impact can 
be represented a s  the sum of three components: the displacements result-  
ing from local warping, from the plate deflection, and from the displace- 
ment of the plate a s  a rigid body: 

2 = 1 + 291 + w,, ( 6 )  

where z is the total displacement of the body points; 1 is the local warping; 
w is the plate deflection; 
body. 

wo is the displacement of the plate a s  a rigid 
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TABLE 

Roots of the 
frequency 
equation 

VI 
P 0 

a, 
a, 
a, 

Conditions of 
support 

First three normal 
functions f n  

Boundary conditions 

f€=O) 

f o  
fi 

Rigidly built-in plate 

d t  
dE 

f= -=o  

J ,  Io+Jo I,=O 

3.20 
6.30 
9.43 

0.4224 [J0(3.2E) f 1.36751,(3.25)] 
-2.6364 [J,(6.3[) -1.379310(6.3€)] 
1.4149 [ J ,  (9.43E)+1.4103310(9.43i)l 

~~ 

Simply supported plate 

f =o 
d'f 1 df _- + - - - = g  
d P  E dE 

JlIO + JOll = - Jolo 2a 
1- P 

2.23 
3.45 
b.61 

1.479 [J0(2.23~)-0.3247,(2.23E)] 

0.879 [J0(5.45E) $0.1368 I, (5.45E) 
1.093 [Jo (8.61E)- 0.0556 Io(8.61E) 

Free plate 

-1.3862 [ J o  (31)--1.7214 Io (301 
0.3918 [Jo (6.2QS1.5523 lo (6.2E)] 
- 1.9697[4(9.37+- 1 .5077lu{9.37E)] 

J,(UnE). I,(uk)-are a Bessel function and a modified Bessel function of zero order. 



The displacement z satisfies the equation 

8 2  

d f  
m, - = - P(t )  

and the initial conditions 

a t  t=O z=O, - dz = v0. 
d t  

Here m, is the mass of the striking body; P(t )  is the total acting force; and 
vo is the velocity at the beginning of impact. 

The integration of ( 7 )  with initial conditions (8 )  yields 

The displacement of the plate a s  a rigid body can be found from the 
equation 

By integrating (10 )  with zero initial conditions we obtain 

In the case of elastic-plastic impact / 2 /  

where +. IL, are experimentally determined coefficients. 

authors. 
conducted by Valkenburg, Clay, and Huth 13 ,  41, the expression for x 
can be written in the form 

The experimental coefficients q have been determined by several 
On the strength of the studies of high-speed impact phenomena 

where P. is the density of the striking body; p is the 
density of the obstacle; c is the velocity of sound in the obstacle; &, R; 
a re  empirical coefficients. The following values of k and R,  were ob- 

tained in experiments with ( i y  pellets /4/:  k, = 25.4, k,= 1.66. 

The coefficient X, can be determined theoretically. Shtaerman / 2  / 
found the following expression for this coefficient by solving the contact 

V, is its volume; 

541 

I 



problem under conditions of sufficiently close contact: 

where 

E,, pl a re  the modulus of normal elasticity and the Poisson ratio for the 
striking body; E2, p2 a r e  the same for the plate; n is the order of the 
equation of the relative indicatrix of the surfaces of the two bodies. 

of an axisymmetrical body on a free plate will be 
Taking ( 2 ) ,  ( 6 ) ,  ( 9 ) ,  ( l l ) ,  and ( 1 2 )  into account, the equation of impact 

where m = m; here  we have taken n = 1, which corresponds to the 

case of elastic impact according to Hertz 121.  

edges, the value m = m, is obviously to be introduced in (1 5 ) .  

mx, + pa 
In the case of impact on a plate with rigidly clamped or simply supported 

Note further that if  the impact area is considerably smaller than the 
a plate area,  i. e. a - << 1 ( a  is the radius of the region of contact), then 
R 

2n 
P( 4 

Qn ( t )  = ~. 
We obtain then instead of ( 1 5 )  Timoshenko's equation 

t fi 

got- 'JJ P (f2) dt, .dt ,=xP + x,P"* + 
m 

0 0  

t 

+ E--!-- Jf$ sin 'h, (t- t,)dt,. 
adn 

n 

Equation (1 6 )  can be solved numerically by iterations with as high an 
accuracy a s  desired 1 2 1 .  

Consider the case at the boundary of applicability of the Timoshenko 
theory; we shall consider x1 = 0, and in the case of f ree  plate we shall 
take approximately mzm,; 6s is the integration step. 

The initial conditions for the displacement, bending, and velocity of 
the mass %are :  t =  0, Z =  0, w = 0, z = v o .  

Firs t  stage: 
v, is tl = 8s. E l =  vo 67, w, =o, PI= - , 
I 

acceleration %= - 5. velocity ;,= v,. 
m1 
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Second stage: 

t ,  =2. ET, z, = 2, + il 8, + ';1(87)2> 2 , 

r -th stage: 

BF 1 '-I 

2x " ankn 1 
wr= - x-2 pr sin A,, ( r - i )  ~ r ,  

p,=z?z?L, z,= - -, 
zr  = Zi-1 +;,-I FiF . 

.* Pr 
Y m1 . .  

Calculations by this scheme were conducted by means of a computer 
for different cases of fastening of the plate edges. 
calculations a r e  represented in the figure. 

The resul ts  of the 

- Free ---- Simply supported -.-.- Rigidly built- in 

FIGURE. 

The following initial values were used in the calculations: ml=m= 5.61 
kg-sec2/m, v,, = 800m/sec,  x = lO-'m/kg, p = 795kg.sec2/m4, h = 0.15m, 
E = 2X1010kg/m2, p = 0.3, R = 0.5m; only the first three modes of f ree  
vibrations of the plate were kept in the calculation. A s  follows from the 
figure, the impact time in the case of impact on a f ree  plate is 7 = 2500 psec, 

while according to the elementary theory / 2 /  F = X  

maximum value of the interaction f o r c e i s  
elementary theory yields Pmu=v,, {? = 5.98X103 t. 

= 2340 p sec. The 
P,,, = 6.04X103 t, while the 
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The pattern of increase of the force with the time is likewise represented 
in the figure. It is seen from the curves that Timoshenko’ s theory of im- 
pact does not lead in the case considered to essential corrections in the 
determination of the impact time and of Pm,= of the bodies considered, but 
can be used to determine the pattern of variation of the force with time. 

The conditions of edge fastening in the case considered (rigid plate, 

6r  = where 7 is the period of natural vibrations of the plate in the 

lowest mode) do not substantially influence the phenomenon of impact, 
since w is very small. 

40 ’ 
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VIBRATIONS OF A PLATE LYING ON AN ELASTIC 
FOUNDATION WITH AFTEREFFECT, ALL0 WING 
FOR THE MASS OF A MOVING LOAD 

Z . A .  K r i t s u k  
(L ' 21021) 

Consider the vibrations of a system consisting of a rectangular elastic 
plate and an elastic-viscous foundation lying on a half- apace characterized 
by a foundation modulus. The foundation itself wil l  likewise be considered 
a s  a plate made of elastic-viscous material  capable of showing resistance 
in bending. Let the system be acted upon by a moving load, whosevelocity 
of motion will be considered a s  constant (figure). This system represents  
the mechanical model of concrete-coated highways, airfields, and special 
foundations 11 1. 

FIGURE. 

We shall take as computing model of the foundation an isotropic medium 
linearly deformed with time, whose state of strain will be represented in 
an integral form, expressing the properties of creep and relaxation. 

The vibrations of an elastic plate a r e  determined from the well-known 
differential equation 

where m, is the plate mass  per  unit area;  wl ( x .  y ,  t )  is the dynamic deflection 
of the middle plane of the plate; t is time; Dl is the flexural rigidity of 
the plate; p is the external load; 9 is the reactive pressure of the founda- 
tion; A is the Laplacian. 

we shall use  Volterra's relationships between the stress and strain 
To obtain the equation of vibrations of the elastic-viscous foundation 
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components i n  time. In the two-dimensional case we shall have / 3 /  

where a,, ,  azZ. =12, ill. and ex* a r e  the s t r e s s  and strain components, 
respectively; E is the modulus of elasticity of the foundation material; v is 
the Poisson ratio; fl ( t  - T), f, ( t  - T), and f, ( t  - K )  a r e  experimentally de- 
termined aftereffect functions; 
time of application of the load. 

t is the running time coordinate; T is the 

The following relationship exists between fl, f 2 ,  and f 3  131: 

fi =ti + 2f3. 
Using the formulas 

allowing for ( 2 ) ,  and writing 

we obtain the following relationships for the moments in the foundation: 

where z is the distance of the layer considered from the middle plane of 
the foundation; 
deflection of the middle plane of the foundation. 

h is the foundation thickness; W, ( x ,  y ,  i) is the dynamic 
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The conditions of equilibrium of an infinitesimal element of the foundation, 
of height h ,  yield 

where q is the load acting on the foundation; k is the foundation modulus 
of the half-space. 

Substituting the values of the moments M,, My, and M r y  from ( 4 )  in (5  ) 
and applying the d'Alember-t principle, we obtain the law of vibrations of 
an elastic-viscous foundation in the form of the following integral- 
differential equation: 

where m, is the foundation mass per unit area; D is the flexural rigidity 
of the elastic-viscous foundation 

Eh3 
12(1 - V * )  * 

D= 

Considering that the deflections of the elastic plate and the elastic- 
viscous foundation a r e  equal (wl=w2 = w), and adding equations (1 ) and ( 6 ) ,  
we obtain the following integral-differential equation of vibrations of the 
plate together with the elastic-viscous foundation: 

@W h3 
I 

m-+ (D, $- D) AAw 3- hf -- fi(t - T)AAw (T) d7 s i p  ( x ,  y ,  t) ,  ( 7 )  d 22 12 \ 
6 

where m = m,+ m2 is the mass  of the system (plate and foundation) per  unit 
area; w ( x ,  y .  t )  i s  the dynamic deflection of the middle plane of the plate 
when i t  is deflected together with the foundation. 

Equation ( 7 )  will be solved by Galerkin's variational method / 4 / .  
Represent the dynamic deflection of the plate w ( x .  y,  f )  in the form of 

a se r ies  by the f i rs t  n modes of natural vibrations of the system y , i ( x ,  y ) :  

where Tfi(t) is an unknown time function for the present; 
modes of natural vibrations of the system satisfying the boundary conditions. 

that the result  of the substitution be orthogonal to each of the fundamental 
functions 'pli(x, y ) .  We obtain a s  a result  the following system of ordinary 
differential equations, solved relative to T i / ( l ) :  

v f i (x ,  y )  a r e  the 

Substitute (8 ) in ( 7  ) and require, in accordance with Galerkin' s method, 
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Here and below it will be assumed that the integration is conducted over 
the entire a rea  of the plate. 

differential equation 
The modes of natural vibrations of the system ptj(x,  y )  satisfy the 

AAvij- "jy i i=O,  (10) 

in which l1, represent the fundamental numbers (eigenvalues) of the 
problem, expressing the frequencies of natural vibrations. 

the function yr, ( x ,  y )  
Taking (10 )  into account and using the condition of orthogonality of 

'pl ,  cp,,dxdy = 0 a t  i + g and j # I ,  ss 
we obtain from ( 9 )  an equation of the type 

J ! P ( x ,  Y, t )  dxdJi 
- _-- - ( g , I = 1 , 2 ,  3 , . . . n )  . ( 1 2 )  ss ( x .  Y )  d x d y  

Proceeding to the statement of the problem, we substitute in the right- 
hand part  of equation (1 2 ) the value of a moving load, allowing for its mass.  

Designating the load in the reference frame linked with the moving 
system by P (E, ~ , . t ) ,  and the corresponding mass by mp(E, 1) ( see  figure), 
we obtain 

1=v t-y 

where wx and wy a r e  the x and y components of the velocity of motion. 

and that traffic has practically no influence on the surface of the road 

left behind, we can write w y  = 0. 

through partial derivatives, we obtain 

Assuming that traffic on the road proceeds mainly in  a straight line, 

Then, using(8) and expressing - de& ( x ,  Lot)_ 
dt2 

P ( x ,  Y, t )  =P(E. T, t )  - 

The substitution of ( 1 4 )  in the right-hand par t  of ( 1 2 )  yields 
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where 

N,I are n o r m s  of the fundamental functions. 

c a r s  151, whose total length exceeds the length of the plate between seams,  
the moving load can be  represented a s  a continuous load uniformly 
distributed over  a l a r g e  length, and its m a s s  can be assumed a s  constant 
14, 6 1 ,  i .e.,  

Since the roads can be  used by c a r s  with t r a i l e r s ,  or by columns of 

nIp ( E .  7) = mp = cor1st. 

Since the external load acting on the system i s  symmetrical ,  and since 
damping is not allowed for directly in the problem, the third t e r m  of ( 1 5 ) ,  
which determines the Coriolis component of the moving load, can be 
neglected 171. 

Assuming that the plate is hinged along i t s  contour, writing 

where a and b a r e  the dimensions of the plate sides,  and substituting this 
value in ( 1 5 ) ,  we obtain after some transformations the following integral- 
differential equation of vibrations: 

On the basis  of the experimental data on the deformation of natural  and 
stabilized soils with t ime under a constant load we conclude that the kernel 
f, ( t -  7)describing the laws of variation of the s t r a in  r a t e s  of elastic- 
viscous bodies with t ime is satisfactorily approximated by an exponential 
function of the form Ae-"+'), where A and a a r e  empirically determined 
pa rame te r s  . 

Writing 
fl ( t  - 7 )  = Ae-i(t-r), 

we can reduce the integral-differential equation (17 )  to  the following 
differential equation with constant coefficients: 
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Dividing (18 ) by 1 + 2, and introducing the designations 

VX= mP m 

m 

-PI. = q;.; - = p ;  - = 
(Dl+ D)E.;i+ k 

.m + mp a m+m,  '; m f -  

w e  obtain the following differential equation: 

T;,:'+r&+ T i I (+ f j - i9*p)  + Ti/ [ ( ~ : j - i * ~ * ~ ) a l / + A l j ~ l ]  = 

[ P ' ( f ) + a l j P ( t ) ]  ( i i=  1, 3. 5,. . . )  ( 1 9 )  16 
?r*i j ( m  + m,) 

- - 

(here  and in what follows the strokes represent differentiation with respect 
to the time t ) .  

load of the type 
Let the system be subjected to the action of a periodic moving fluctuating 

P ( t )  = Po + &sin et. ( 2 0 )  

The periodic component of the load allows for the influence of the im- 
balance of the wheels of the cars ,  and has a frequency equal to 

where Do is the diameter of the wheels. 
Substitute ( 2 0 )  in the right-hand par t  of (19) :  

Ti;' + T;)i/ t Ti/ (+:j - i*lJ2p) + T;j[($:/ - i W )  ai/ + &jp1] = 

We have obtained a nonhomogeneous differential equation with constant 

This equation will have a cubic characteristic equation, with either one 

When the aftereffect kernel is represented through an exponential 

coefficients. 

rea l  and two complex roots, o r  three rea l  roots. 

function, the characteristic equation has always one real  negative root 
and a pair of complex conjugate roots, whose real par t  is likewise 
negative 18, 91. 

which actually does not take place in the case considered. 
If al l  three roots were rea l  the system would have an aperiodic motion, 

We shall look for a particular solution of (22 ) in the form 

T~~~ = B~~~ COS e t  + B~~~ sin et  -I- Bsfi .  ( 2 3 )  
The general solution of ( 7 )  will therefore be 
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The constants cl. c,,and c, a r e  found from the initial conditions 

( 2 5 )  
m " l r  (;;:' + (Dl + D) AAu (x, y ,  0) = 0, 

where u is a solution of the homogeneous equation corresponding to (7). 
By substituting the general solution of the homogeneous eqxiation 

corresponding to ( 7  ) in the initial conditions ( 2 5  ) we obtain the following 
system of equations for determining the constants cl, c,, and ca: 

n h  

By substituting ( 2 3 )  in ( 2 2 )  and equating the te rms  with identical 
coefficients we obtain the following system of algebraic equations for de- 
terming the constants & s,, and 8,: 

The frequencies of natural vibrations of the system a r e  obtained by 

Let the approximate values of the roots of the characterist ic equation 
solving the characterist ic equation. 

a t  L j  = 1 be, according to Volterra 191, 
(+? - P'P) a1 + Alp1 

+: - B'P 
x --rl=----- 
1 -  I 

where i is the imaginary unit. 
imaginary term, will be 

The natural frequency, equal to the 
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It  is seen from formula (28) that the moving external load reduces the 
natural frequencies of the system, and that the la rger  the mass  of the load 
and the larger  its velocity, the larger  is the period of natural vibrations. 

Since the road is used by heavy vehicles traveling at  high speeds, it 
is impossible to neglect the mass  and velocity of the moving load in the 
calculation of concrete coatings of highways, all the more  S O  since a 
majority of the vehicles using the road have a weight and mass  several  
t imes exceeding the weight and mass  of the plate itself with the foundation. 

The amplitude of the dynamic deflection at the middle of the plate under 
the action of load (20) is, for the first  vibration modes, 

The first term represents the amplitude caused by the fluctuating com- 
ponent of the external load, and the second, the amplitude caused by the 
constant component of the load. 

value 
By substituting in (29) the values of Bl and B, found from (27), and the 

we obtain the following expression for the amplitude of the forced vibrations: 

where 

It is seen from (30) that the phenomenon of resonance, a s  met in 
absolutely elastic media, cannot occur here.  In fact, for the amplitude 
R to increase to infinity for some values of the frequency 0 it is necessary 
that the denominator in (30) become equal to zero; this is possible only 
when the following equalities a re  simultaneously fulfilled: 

+!-ez (1 1- 0%) = 0, +;%+A~R - e'(1 + 0%) pi 0, 

These two equalities cannot occur at the same time since +; # $Pl+Alp.  
Note further that, a s  seen from (24), the rheological properties of the 

foundation lead to rapid damping of the free vibrations, so that the system 
considered actually l ies  in the region of stable vibrations. Cases of road 
vibrations with beats a r e  possible when a column of ca r s  moves along 
the road. 
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ON THE FLUTTER OF ELASTIC CYLINDRICAL 
COAXIAL SHELLS BETWEEN WHICH FLOWS 
A COMPRESSIBLE FLUID 

E .  P.  K u d r y a  vis e v 
(Moscow) 

The flutter and stability of coaxial elastic circular cylindrical shells 
of infinite length in the s t ream of an ideally compressible gas a re  con- 
sidered. The gas s t ream flowing between the cylindrical shells is con- 
sidered a s  potential, and the disturbances a r e  considered as  small. It 
is assumed that the equations of the moment shell theory a r e  applicable 
to the shells. 

each of them can be written in the following form / 1 /  in a cylindrical 
system of coordinates: 

Consider two coaxial shells (Figure 1). The equations of motion of 

d2 1 - p  d' P d2 
(ZF + -2 -33)  + (% m) 

Here u, v ,  and w a r e  displacements of the middle surface; p is the Poisson 
ratio; E i s  the modulus of elasticity; h is the shell thickness; p,, is the 
density of the shell material; 

the upper sign in the right-hand part  of the third equation corresponds to 
the inner shell, and the lower sign to the outer shell. 



7 
N oc 

ru 
I 

FIGURE 1. 

The disturbance potential p for  the gas  s t r e a m  sat isf ies  the well-known 
linearized equation 

( 1 - M z )  day +-+--+ day 1 dcp - -__-__--=I )  1 d2p 2 M  d'cp 1 d'cp ( 2 )  
dx Orz r d r  rz dB2 c, d x . d t  cz dtx ' 

where c, is the velocity of sound in the undisturbed s t r eam;  M = U/C,;  
0 is the velocity of the gas  s t ream. 

The fluttering walls must  fulfill the conditions of unpenetrability 

and the p r e s s u r e s  pl and p2  can be determined from the formulas following 
f rom the Cauchy integral  for an unsteady potential flow: 

( p is the gas  density). 

c l a s s  of waves propagating along the shells.  
Consider a shell  of infinite length. W e  shall  look for a solution in the 

W e  can write, therefore 111, 
cp = f ( r )  er(.2f-k) cos no, 

ul = i ( l e U Q f - k x )  cos no, u, = iE2et'Qf- k x )  COS ne, 

vl = q,e'(Qf-b+) sin ne, v2= q#Q'-kx) sin ne, 

W, = Clew--w COS ne, w2 = C2e1(Qt-kx) COS na. 

( 5 )  

The substitution of ( 5 )  in the l inearized potential equation l eads  to  the 
e qua ti on s 

where 
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V is the propagation velocity of the elastic wave in the shell 

ro= Yr; Y = & f I M : - l I .  

The solutions of equations ( 6 )  a r e  expressed through Bessel functions 
of an imaginary (M,< 1) or  real  (M,> 1) argument: 

(7) 
f ( r o )  = CJn ( T O )  + C2Kn (ro) 

f ( ro)  = CiJn (ro) + CJ" (ro) 

(MI < 1). 

(Mi > 1)- 

Consider the conditions a t  the boundaries of the gas s t ream. The 
constants C, and C, can be determined from the conditions of unpenetrability 
of the cylinder walls, and a s  a result  the gas pressure on the walls can be 
expressed through the displacements w1 and w2: 

The coefficients ai1 in these formulas a re  expressed through Bessel 
functions: 

We shall consider the case when one of the two shells is absolutely rigid. 
The equations of motion of the elastic shell can then be determined by 

substituting ( 5  ) and (8 ) in (1 ): 
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Here 

~ ~ ~ - u ~ [ ( m ~ + n * ) ~ - 2 n ~ +  11+1,  

alf = a,,= mn, a, = a,, = mp + a2m mz - 9 n*) 

aS3 = a,, = n + -~ dm%, 

( 
3--P 

2 

ZR 
A m = bR= -, 

PR 
PC4 q = G ,  '1. C), 8,3=(0, 0, 1 ) .  x=--0 

( A 8 i s  the half-wave length). 

a r e  found from the equation 
The frequencies of the flutter of the elastic shell in the gas s t ream 

which can be reduced to the form (cf. / l / )  

Here E,, q. ,and t. = 1 a r e  elements of a matrix formed from the coefficients 
for the modes of natural vibrations of the shell in vacuum. 

frequencies (corresponding to mainly bending vibrations) is considerably 
smaller than the two others: 

When the wave numbers n a r e  sufficiently large one of the natural 

Q:<<Q:, Q:<<Q:, ~ i z 1 .  

In this case equation ( 1 2 )  can be represented in the form 

Q:-Q2- x (Q - kU)2=0. (13) 

The natural frequency 9, can then be determined by the formula 

where 

The parameter x is a complex transcendental function of the s t ream velocity 
U and the frequency Q . 
of a shell interacting with a flowing gas can be obtained by the method of 
successive approximations. 

The numerical solution of the frequency equation 
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We shall  now transform the equations obtained into a fo rm suitable fo r  
graphic solution. We take into account that 

The upper sign corresponds to  the case  MI< 1, and the lower sign to M,> 1 .  

be reduced to the fo rm 
Introduce the designation Y/Y,=cp, ( a =  1, 2, 3). Equation ( 1 2 )  can now 

and equation (13 ) ,  co r rec t  a t  l a r g e  n, to the form 

The left-hand p a r t s  of equations ( 1 6 )  and ( 1 7 )  a r e  functions of the 
pa rame te r s  vR and n, and the right-hand p a r t s  of the pa rame te r s  vR. k R ,  'p,. 
Using equations (1 6 )  and (1 7 ) ,  we determine in a graphical or tabular 
manner the frequencies 9 corresponding to any fixed values n, vR , and kR. 

The relative velocity of the gas  s t r eam g, corresponding to  the problem 

considered, is determined, a s  follows from ( 1 5 ) ,  f rom the relationship 

The upper sign in (13 ) corresponds to the forward-facing wave, and 

Assume some specific values for  n and kR .  
the lower sign to  the backward-facing wave. 

Assuming different values 
in turn f o r  vR, and plotting the curve U / c m = f ( Q )  with the aid of (1 6 ) ,  ( 1 7 ) ,  
and ( l a ) ,  we can find the l a rges t  velocity of the gas  s t r e a m  (U**) for 
which the frequencies r ema in  real .  The critica.1 velocity can be found by 
minimizing the solution by the pa rame te r s  k R  and n. 

The cr i t ical  gas  velocities were calculated for shells of thickness 
0.01 R .i h <0.03R for ra t ios  of the radi i  of the coaxial shel ls  RJR, = 1.1, 
1.5, 3. 

A s  an example, the r e su l t s  determining the cr i t ical  velocity a t  
h = 0.01R, R,IR, = 3, and an absolutely rigid outer shell  a r e  represented 
in Figure 2. The unbroken curves M** = U**/c, = f, ( k R )  were plotted by 
( 1 3 ) .  The curve portions for  n = 1, 2 a t  kR43.14. a r e  an exception: the 
values of M** for them were calculated both by (13)  (the broken l ines) 
and by (1 2 )  ( the unbroken l ines).  

of M*l under the assumption M ,  = 1: 
The dotted l ines in Figure 2 represent  the r e su l t s  of the calculation 

Q1 M** = - =-+I. 
u* * 
c ,  kc,  
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Here :- is the propagation velocity of the elastic wave for a shell in 

vacuum. 

FIGURE 2. 

The following conclusions can be drawn from these results: 
1. 

2. 

3. 

I? the range of values R,/R, studied the critical velocity is practically 

At equal values of h/R the case of rigid inner shell and the case of 

In the case of not too slender shells (h/R>0.01)  the critical velocity 

independent of the value of the ratio RJR,. 

rigid outer shell a r e  characterized by almost equal cri t ical  velocities. 

can be found with a sufficient degree of accuracy by the Miles formula 131: 

where 
the shell. 

is the minimum propagation velocity of the elastic waves in  
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ON THE GEOMETRY OF HANGING ROOFINGS WITH A 
RADIAL GUY N E T  AND MOMENTLESS CONTOUR RING 

E . N .  K u z n e t s o v  
( l ~ f o s c o w ~  

1. STATEMENT O F  THE PROBLEM 

The interest  in hanging roo f s  is increasing among building engineers 111. 
This paper t r e a t s  the question of hanging roofings in which the basic load- 
carrying element is a guy net with radial  disposition of the guys in the plan. 
The behavior of the radial  nets under s ta t ic  s t ra in  distinguishes them 
favorably from the other types of guy nets.  An elementary calculation 
shows that, al l  other conditions being equal ( s ame  contour in the plan, 
s ame  sag, distributed load of the same  intensity), one and a half t imes 
less ma te r i a l  is necessa ry  for a radial  net than for a c r o s s  net with guys 
arranged orthogonally in the plan. 

direction ac t  on the contour ring limiting it, to  which the guys a r e  fastened, 
a t  l ea s t  under the basic type of loading. The object of the present  paper is 
to  determine the geometrical  form of hanging roofings with a radial  guy net 
and a momentless contour r ing of a r b i t r a r y  outline in the plan. 

The radial  net gives a maximum effect when no moments in the horizontal 

The following assumptions a r e  made: 
1) the radial  net is considered a s  a s e t  of flexible fi laments unconnected 

in the per ipheral  direction and arranged continuously along the angular 
coordinate; 

2) the contour r ing  is considered a s  plane and undeformable, and the 
inner r ing of the net is treated a s  a nodal point (net node). 

2 .  CONDITION O F  MOMENTLESSNESS O F  A NET 
OF ARBITRARY SHAPE 

Let  a plane r ing  of a rb i t r a ry  shape be loaded by a system of arbi t rar i ly  
directed fo rces  per  unit length H, acting in the r ing  plane. 
of bending moments and shearing forces  the conditions of equilibrium of 
a r ing element will be, in projections on the tangent and normal  (Figure 1): 

In the absence 

1% + H, cos 1 = 0, 

I N  - p ~ ,  sin-, =o. 

Here N is the longitudinal force in the ring, p is the radius  of curvature  
of the r ing axis, and 7 is the angle between the direction of the force 
Us and the positive direction of the tangent. 
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FIGURE 1, 

The elimination of N f r o m  system ( 2  .I  ) yields 

d - (p Hs SIn 7 )  3. Hs COS 7 -0, 
tis 

The general  integral  of this equation is 

where 
dS d w =  - 

P 

( 2 . 3 )  

( 2 . 4 )  

If the forces  H, a r e  everywhere directed along the normal to the r ing 
axis,  then by writing in (2 .3)  7 = x / 2 ,  we obtain the following obvious result :  

pH,= N = C ,  ( 2 . 5 )  

i. e . ,  in the absence of a tangential component of the load the longitudinal 
force appearing in the r ing will be constant, 

In the case  of a central  force field, when the lines of action of all  the 
fo rces  intersect  a t  the same  point (pole), we have 

w = T + T -  5. 
2 

(2.6) 

On the strength of this equality and of the following relationship, knswn 
f rom differential geometry, 

( 2 . 7 )  

we can calculate the integral  in ( 2 . 3 ) ;  we obtain the following expression 
for the radial  thrust  per  unit length 

C 
pl?sina 7 

H,= -. 

Using the formulas of differential geometry i t  is posgible to pas s  f rom 
h e r e  to the thrust  pe r  unit polar angle: 

or R2+2W'--RR' , H, = C 
R' 

(2 .9)  

(2.10) 
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Relationships (2 .8)  to (2.10) give the law of loading necessary and 
sufficient for the equilibrium of a momentless ring of arbi t rary shape in 
the case of an arbi t rar i ly  located pole of radial forces. In addition, re- 
lationship (2.10), considered a s  a differential equation, makes it possible 
to solve the inverse problem: for a given system of radial forces, to 
find the outline of the axis of a momentless ring R = R ( p ) ;  this fact will 
be used below. 

3. SOME PARTICULAR CASES 

The resul ts  obtained will be used for determining the shape of a 
momentless contour r ing of a uniformly loaded radial net in which the guys 
in the deformed state horizontally approach the net node (Figure 2) .  
condition of equilibrium of a sector of unit central angle yields 

The 

where q is the load per  unit area of the horizontal projection of the net and 
f i s  the sag. 

FIGURE 2. 

The substitution of (3.1) in (2.10) leads to the following differential 
e quati on: 

CR8= R2 + 2Rf2 - RR". (3.2 1 
This equation is reduced by a number of substitutions and transformations 

into an Abel differential equation of the second kind 121, of a particular 
type which allows separation of the variables. The solution of ( 3 . 2 )  can 
finally be represented in the following form: 

( 3 . 3 )  

Relationship (3.3) describes in polar coordinates a three-parameter 
family of integral curves of equation (3.2) .  
family of ellipses of arbi t rary shape and arbi t rary orientation with common 
center a t  the origin of coordinates; 
of hyperbolas. 

elliptic outline is of basic interest. 

At O<C,< 1 this will be a 

at  C,<O this will be a similar family 

The conclusion relative to the momentlessness of a contour ring of 
Since this result  was obtained by 
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integrating a differential equation describing all shapes of momentless 
ring, it can be asserted that the ellipse represents the only shape of com- 
pressed momentless contour ring of a radial net of the type considered 
(Figure 3, a).  

a b 

FIGURE 3. 

A s  a second example we shall determine the outline of the momentless 
contour ring of a radial net with constant thrust p e r  unit angle. 
H, = constant, in (2.10), we obtain 

By writing 

- 
CR' = R2+2R"- RR". (3.4 1 

This equation can be integrated just a s  (3.2); we obtain 

The integral curves represent a three-parameter family of ellipses 
(0< C, <1) or hyperbolas (C,<O) of arbi t rary shape and arbi t rary orientation, 
with common focus a t  the origin of coordinates. 

The ellipse is thus the only shape of compressed momentless contour 
ring of a radial net in which the thrust per angular unit is constant, and 
the projection of the node in the plan coincides with one of the foci of the 
ellipse (Figure 3,b). 

4. GEOMETRICAL PARAMETERS OF THE HANGING 
ROOFING 

The law of thrust distribution ( 2 . 9 )  necessary to ensure the momentless- 
ness of a contour ring of arbi t rary shape can be realized by means of a 
special selection of the geometrical parameters of the guys, Consider 
the equilibrium of a radial guy net in i t s  deformed state under the action 
of an arbi t rary vertical load q ( r ,  rp). Removing a sector of central angle 
dv = 1 from the net, we write the condition that the moment of all  the 
forces relative to the axis of the contour ring is equal to zero (Figure 4). 

Hq f - Hq BR-S, =O. (4.1 

Here !(y) IZ: Ig p is the slope of the tangent to the line of equilibrium of the 
guys in the net node and S, is the static moment of the external load relative 
to the axis of the contour ring. 
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FIGURE 4 

The value of the thrust per unit angle will be 

H P = % ,  
R9 

where 

(4.2 1 

The geometrical parameters a t  our disposal 7 and p can always be 
selected in such a way a s  to obtain the law of thrust distribution required. 
What i s  more, these parameters create a surplus of arbi t rary elements, 
which gives a certain freedom in the selection of the roofing contour. 

the parameter 7 (y) = f is strictly determined, and we obtain in accordance 

with (4.2) and (4.3) 

At given outline of the contour ring axis and position of the net node, 

R 

(4.4) 

The value of H? entering here, found from (2.9), contains an arbi t rary 
constant C, which must be calculated from the condition of net equilibrium 
in the vertical direction: 

7 H? B ( c p )  drp = Fw (4.5) 
0 

Here F, is the external concentrated load applied a t  the central node. 
From (4.4) and (4.5) we obtain 

F c =  - 
A '  

where 

(4.7 

(4.8 

The parameter p(p) is completely determined from the formulas obtained. 
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A s  an example we shall calculate the parameter p('pp, for a uniformly 
loaded roofing of elliptic outline in the plan with radial net node a t  the 
ellipse focus. Formula (4.7)  gives under a uniform load 

where B=?iab is the ellipse area.  

write 
In a polar system of coordinates with pole at  the ellipse focus we can 

p sinJ 7 = p, P R =  
I +  ecosp ' 

where p = ba/a is the latus rectum and e= -/a is the eccentricity. 
With the aid of these equalities we find by (4.8) 

after which we obtain 

The magnitudes S, and HT in (4.4) acquire the following values: 

We finally find by (4.4) 

This is the law according to which the guy slope at  the net node must 
vary in order that the plane elliptic contour ring be momentless in the 
case of uniform load on the net. 

The case when the shape of the contour ring in the plan is given 
graphically i s  of considerable practical interest. 
calculations a r e  conducted in this case numerically, and to that end the 
ring axis is split into small segments, and the values of R ( ' p 1 )  a re  measured 
directly from the drawing for each division point. The values of p and 
sin can either be taken from the drawing or determined from the formulas 
of differential geometry using difference differentiation. 
calculations present no basic difficulties. 

Note that the resul ts  obtained can be approximately extended to the case 
of a deplanated contour ring, provided that the magnitude of the deplanation 
is not large.  In this case all the formulas remain in force, and only f will 
become a function of the angular coordinate 'p. If, a t  given shape of the 
roofing in the plan, we require that p(p)=O, then the momentlessness of the 
contour ring can be achieved, generally speaking, only by i ts  deplanation. 

All  the necessary 

The subsequent 
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We have in fact for p = 0 from (3.4) 

(4.9) 

5 .  ALLOWING FOR THE ELASTIC DISPLACEMENTS 
AND OPTIMUM STATE OF THE GUY NET 

The geometrical parameters  of the roofing were determined for the 
deformed state, and were accordingly based on relationships obtained under 
the assumption of unextensible guys. In the case considered this is not 
a simplifying hypothesis, which facilitates the solution while making it 
l e s s  rigorous. In fact, in accordance with the principle of hardening of 
the theory of flexible filaments, the flexible filament can be considered 
in i t s  final deformed state a s  unextensible. The thrust is determined in 
this case by the conditions of statics only, and there a r e  no displacements 
or strains.  It follows from here,  on the one hand, that a complete moment- 
lessness  of the contour ring can be achieved in the general case only for 
one specific load on the roofing; the variation of the law of distribution, 
or even of the intensity, of the load, and the kinematic and elastic dis- 
placements of the guys resulting from this variation alter the pattern of 
the diagrams of the thrusts transmitted to the contour ring. 
hand, by applying the hardening principle to the state of the guy net a t  
which there is no bending in the ring (this state will be called the optimum 
state), we can achieve the momentlessness of the ring a t  any specified 
load on the roofing. 
initial (unloaded) position of the guy net from which i t  would have passed 
into the necessary optimum state under the action of the specified load 
(and allowing for the elastic elongations). 

This initial position of the net is realized by fixing the corresponding 
initial lengths of the guys, which differ from the lengths in the optimum 
state by the magnitude of the elastic elongations. 
sections of the guys a r e  known, the elastic elongations a r e  easily de- 
termined; there remains to calculate the length of the guys in the optimum 
state from the given geometrical parameters of the net. In the cases  
interesting u s  the l ines of equilibrium of the guys have small slope, and 
the following approximate formula of the a r c  length can therefore be used: 

On the other 

It is true that the question a r i ses  of determining the 

When the forces and 

where 

Here M b  is the bending moment under the action of the external load, 
calculated a s  for a simply supported beam. 
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We shall res t r ic t  ourselves to the case of a uniform load on the net, 
for which 

( 5 . 3 )  

By substituting ( 5 . 3 )  in (5.1) we obtain the following expression, 
sufficiently accurate for practical calculations, of the guy length through 
its  geometrical parameters  

(5.4) 

The case of two-belt prestressed radial guy systems is somewhat more 
complex. By using the hardening principle i t  is, however, possible to 
determine in this case a s  well, without particular difficulties, the geo- 
metrical  parameters  of the optimum state. 
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ON THE BEST INITIAL APPROXIMATIONS IN THE 
EIGENVALUES PROBLEM OF THE RITZ AND 
BUBNOV- GALERKIN METHODS 

S . N .  K u k u d z h a n o v  

(Tbilisi) 

The problem of finding the best approximations for the minimum eigen- 
value in the Ritz and Bubnov-Galerkin methods i s  considered for some 
cases  when the solution by these methods is considerably complicated by 
the necessity of taking a large number of te rms  of expansion (1 ). 

When solving problems by the Ritz or the Bubnov-Galerkin method, the 
solution is represented in the form of a l inear combination of the co- 
ordinate functions 'pk : 

n 

where ak a r e  some parameters which must be determined. Usually, some 
known complete system of linearly independent functions is selected a s  
system of coordinate functions. The summation in expansion (1 ) is then 

conducted in the order  of increasing index k .  If thus (ypr ] is 

?rX 5T.C v=ua , s in -  +a,sin2- + e * -  

I I 

In some cases  this standard approach corresponds satisfactorily to the 
exact solution even in the initial approximations, while in other cases this 
is not so at  all; 
in the given region, the approximation of such a function by the initial 
harmonics leads to very unsatisfactory results.  It is then necessary to 
take a large number of te rms  in (1  ), a s  a result  of which the solution of 
the problem frequently becomes very complicated. 

Many examples can be given when the function can be approximated with 
a sufficient accuracy by several harmonics, not necessarily of low indices 

Bearing in mind several  problems of shell stability under the action of 
variable loads, it is natural to adopt a method such that the fundamental 
harmonics a r e  determined in the solution. Problems of this type a r e  met 
frequently in a i rcraf t  engineering and other branches of engineering. 

In expansion (1 ) there a r e  usually principal functions (principal 
harmonics), i. e . ,  functions nearest  the exact solution. If we establish 
these principal harmonics, the corresponding approximations will naturally 
be the best ones. 

thus, if  the solution represents a large number of waves 
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There a r i s e s  therefore the question how to find these principal functions. 

In contradistinction to the usual procedure, w e  do not fix beforehand the 
The following approach is thus proposed. 

indices of the coordinate functions. 
unknown sequence (rill ). 

Let the indices be arranged in some 
The function 'p is then represented a s  follows: 

P 

p = 2 ak ?"*. 
k-  I 

Next, by using the condition of functional minimum of the Ritz method, 
o r  the condition of orthogonality of the Bubnov-Galerkin method, we obtain 
the following system of algebraic equations: 

1;" a k  [(Apn,, pn, , , ) -k  (BY,),, %I,)] =O ( / ? z = l , * * ' ,  P I ,  ( 3 )  
A - l  

where A and B a r e  some operators  of the equation to be solved. 

the determinant of the homogeneous algebraic system ( 3 )  must  be equal 
to  zero,  i .e . ,  A = 0. 

In a p-th 
approximation we obtain p roots.  The minimum root will be designated 
byW"=f(n, , . . .  . n p ) .  

A s  known, both the Ritz and the Bubnov-Galerkin methods give the 
eigenvalues with an excess ,  and in such a manner that 

F rom the condition of nontriviality of ( 2 )  (not all  ub = 0) we obtain that 

The expansion of the determinant yields an equation fo r  i . .  

).(I, > ).W >. . . >) . IN  > . . . ---f ).. ( 4 )  

If then we take a s  f i r s t  approximation one t e r m  of expansion ( 2 ) ,  where 
n, is some variable index, w e  obtain on the strength of (4) (s ince MI) > X )  
that the best  f i r s t  approximation will be 

min XI') (n,) = A ( ' )  (n?). 

and therefore it'; corresponds to the principal harmonic nea res t  to the 
exact value. 

(likewise from ( 4 ) )  
If we take two t e r m s  in ( 2 ) ,  the best  second approximation will be 

min ~ ( 2 )  (nl, n2) = W) ( i y ,  n3 ,  

where xy and n: correspond to the pair  of principal harmonics  nea re r  the 
exact solution than al l  the other possible pairs ,  etc.  

It follows that the determination of the best  initial approximations of 
the eigenvalue and the principal harmonics of expansion ( 2 )  reduces to  
determining the indices nk making the corresponding approximation 
minimum a t  a fixed number of harmonics. 

In practical  applications the physical pattern is frequently known. 
i t  is known, for  instance, that the bar,  shell,  or any other s t ruc tu re  buckles 
with the formation of a l a rge  number of waves, then i t  is clear  that the 
principal harmonics  will be f a r  from the initial harmonics,  and the approach 
proposed will be suitable for  obtaining satisfactory initial approximations. 

The following approximate method for  determining the indices of the 
7rincipal harmonics  can be proposed in this  case. 

If 
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We determine f i r s t  the index of the f i r s t  approximation nt 
min ~ ( I J  (n,) = ( n t ) ;  

nf corresponds to the principal harmonic n e a r e r  the exact solution than al l  
the other harmonics;  
the region of this  value. 
considered a s  approximately equal to nr, and we have to look for  amin imum 
by the second index n, only: 

min ~ ( 2 )  (nt, n, )  =XP) (nf, n:). 

the other principal harmonics must  therefore  be in  
In a second approximation n, can therefore be 

The same  procedure is used for  the third approximation 

0 0  min h@J (d, n:, n 3 )  - A W  (ny, nz. n3), 

etc .  

series ( 2 )  in the f i r s t  step, or if  the determination of the minimum by two 
indices is not difficult, the i terative p rocess  begins with the determination 
of the minimum by two indices. 
of minimum of the corresponding approximation A ,  we substitute them in 
the next approximation and determine the minimum of this approximation 
by only, etc.  

Such was, for  instance, the procedure used for  solving the problem of 
the stability of a shell  under the action of torques applied a t  the end. The 
unknown function w was represented a s  a double s e r i e s  

If the problem solution necessitates taking into account two t e r m s  of 

Having determined ny, 4 f rom the condition 

which sat isf ies  the boundary conditions. 
the values 1, 2,  3 ,  . . . , while the indices ( r ? k  ) r ep resen t  some unknown 
subsequence taken out of the natural  s e r i e s  of numbers.  Since the shell  
buckles a t  torsion in a quasisinusoidal mode with a l a rge  number of half- 
waves in the peripheral  direction, the harmonics  for  which the numbers 
(n,) will be near  to  the number of half-waves formed a t  buckling will 
naturally be the principaI harmonics in expansion ( 5 ) .  

problem solution: 

The indices m successively take 

The following t e r m s  were considered on the bas i s  of the data of the 

In the given case  the problem solution necessitates allowing for  two 
t e r m s  of series ( 5 )  in the f i r s t  step. 
expression in a f i r s t  approximation: 

We obtain therefore  the following 

where 'p (nl, nl) =(nI-n:)l and the given function is equal to z e r o  a t  point 

n,=nl. In addition, (n,=const, n,)>O and therefore the minimum value 
of A(') is attained a t  point n,=n,+l, where p (4, n , ) = l .  Taking this into 

4n,n2 
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account, we find the minimum of A[[) a s  a function of one index n,only. 
In a second approximation we r e s t r i c t  ourselves to three t e r m s  in 

expansion ( 2  ) . We obtain the following expression fo r  A :  

A s imilar  investigation shows that 
n 3 = 4 + 2 .  

becomes minimum at  the point 

In a third approximation, when w e  r e s t r i c t  ourselves  to four terms:  

It is established in the same  manner a s  above that A(3) becomes minimum 
a t  the point n,=h. 

The calculations show that the cri t ical  load in the third approximation 
differs by 2 to 4% f rom the r e su l t s  of the known solution, while the value 
A a t  the initial harmonics differs f rom this solution by a factor l a r g e r  than 
two. The comparisons showed that the discrepancy between the value of 
the exact minimum of A and the value of the minimum of X obtained by the 
above-considered i terative method will be about 1 to  2%. 

of stability problems. 
method, in particular the problem of l inearly distributed torques /4/. * 

This method can likewise be used for determining the cr i t ical  loads of 
shells subjected simultaneously to torsion and a variable p re s su re ,  since 
in such problems an increase in the number of t e r m s  of s e r i e s  (1)  leads to 
an increase in the o rde r  of the corresponding secular  equation, which 
considerably complicates the determination of the roots.  
which makes the use  of a l a rge  number of t e r m s  of the s e r i e s  necessary 
is the fact that the principal harmonics a r e  in this ca se  f a r  f rom the 
initial ones.)  

An additional corroboration of the fact that the principal harmonics can 
be far  from the initial ones can be found in Flugge's problem of the stability 
of a cylindrical shell under the action of a variable axial load / 5 / .  Fliigge 
calculated the coefficients and determined through them the principal 
harmonics.  
coefficients of expansion ( 2 ) :  
determined from the condition of minimum of the corresponding approxima- 
tion of the eigenvalue. 

determined so far;  they seem, however, fa i r ly  wide both for  static and 
for  dynamic problems. 

Thus, without pretending to the universali ty of the approach suggested, 
it can be shown that in many cases  i t  considerably simplifies the solution, 
by reducing the number of t e r m s  taken into account without impairing the 
accuracy of the solution. 

The main field of application of the method considered lies in the r ea lm 
Many such problems have been solved by this 

(Another factor 

In the method proposed there  is no need for determining the 
the principal harmonics  a r e  directly 

The l imits  of applicability of the method proposed have not been 

Reported to the All-Union Symposium on the Theory of Plates and Shells held at Kazan' in 1960. 
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SOME STABILITY PROBLEMS OF SANDWICH SHELLS 

L . M .  K u r s h i n  
(Novosibirsk) 

Sandwich shells with a fi l ler  a r e  usually treated in the l i t e r a tu re  a s  
shallow shells.  This assumption s t e m s  f rom the fact  that interest  h a s  
been paid mainly to stability problems, for  which the theory of shallow 
shells is usually sufficiently accurate .  

for  the study of problems of shell  bending and for  some special  types of 
stability problems. 
cylindrical shell  under the action of an external p re s su re ,  under the 
simultaneous action of p re s su re  and compression: the buckling of a 
cylindrical shell  under compression with the formation of long waves. 

of the sandwich shell a r e  derived here  with a number of assumptions, 
which lead to Re i s sne r ' s  elasticity relationships 11 1. 
a r e  a s  simple a s  Love's relationships, and differ f rom them by the ex- 
pression for  torsion only. 
ships lead, we obtain in this ca se  the equations in displacements with a 
symmetr ical  ma t r ix  of coefficients. 

for  deriving the equations of a sandwich shell  a r e  obtained in the paper 
f rom the equations of the tridimensional theory of elasticity, allowing for  
the Kirchhoff-Love hypothesis and using the s a m e  system of approximations 
a s  in the derivation of the elasticity equations. 

The development of the theory of nonshallow shells is of interest  both 

Such is the problem of the buckling of a sandwich 

The equations of the simple nonshallow shells forming the outer l a y e r s  

These relationships 

Unlike the equations to which Love's relation- 

The l inear  and nonlinear equations of simple nonshallow shells necessary 

The shell  s t r a ins  a r e  represented a s  follows: 

where 

e, = --I+ 1 du __ 1 dA,  w XI, I d& $- 1 
A, d i l  A,A, d., "+--' Ri A, da, A,A2 da, 

Here  h. uz, w a r e  the components of the displacements in an orthogonal 
curved system of coordinates; R,, R,, A,, A ,  a r e  the radi i  of the principal 
curvatures  and Lam6 coefficients of the middle surface of the shell; 
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+,, ?iZ a r e  the angles of rotation of the normal to the middle surface 

The stability equations of the shell a r e  obtained by linearizing the 
equations of neutral equilibrium. 
equations differ somewhat from the usual equations, due to the fact that 
here  the expression for the torsion in the elasticity relationships is some- 
what different from that given in 1 2 1 .  
difference in the resul ts  obtained in solving specific problems of the theory 
of stability. 
of a very long cylindrical shell buckling a s  a pole. 
pression i s  obtained in this case for the critical load: 

In the case of a cylindrical shell these 

However, this does not lead to any 

The only exception is the case of longitudinal compression 
The following ex- 

1 
24rc2(l + v )  R2 R2 

where t, R, I a r e  the thickness, radius, and length of the shell. 

that the characterist ic equation of the shell in the case considered a t  
n = 1 has two zero roots only. 
clusions relative to the order of the e r r o r  introduced by the simplifying 
assumptions made. 

When deriving the equations of a nonshallow sandwich shell, the outer 
layers  of thickness t .  made from the same isotropic material, a r e  con- 
sidered a s  thin elastic shells. 

not take moments and forces parallel to the middle surface, so  that in the 
fi l ler  

The presence of a second term in the formula is a result  of the fact 

This makes i t  possible to draw some con- 

It is assumed that the middle layer - the filler of thickness 2 h  - does 

c,, = a2* = a,* = 0. 

The filler, which connects the outer layers  of the sandwich shell, 
takes therefore the shearing forces.  
undeformable, so that 

In the lateral  direction the fi l ler  i s  

w = wsp= wu 

The indices U, L here  correspond to the upper and lower load-carrying 
layers,  respectively. 

The same assumptions a r e  used in the derivation of a sandwich shell 
a s  in the derivation of the equations of the outer layers.  The magnitude 
h + f  
2 is considered a s  small compared with unity. 

A 
The load-carrying layers  in the sandwich shell behave as  thin elastic 

shells loaded by external forces and distributed loads, applied on the 
surfaces of contact with the filler and determined by the interaction of 
the layers  during their common strain. These s t resses  a r e  expressed 
through the displacements of the middle surfaces of the outer layers  by 
integrating the equations for the filler (the integration is possible under 
the assumptions used for the filler). 



The s y s t e m  of nonlinear equations of the  sandwich she l l  is 

d 
- ( A ,  [ ( I  + e24 TII. + WZS. + + I . N ~ . ] ]  + 
dZ1 

+ - - [ A l  [ ( l  + e d S .  + WZ,TX.  + ~ # l . N 2 . ] )  + d 

da* 
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Here  

The forces  pe r  unit length in the shell  a r e  determined by the formulas  

Here 

The following symbols a r e  used in equations ( 4 )  and relationships 
( 5 )  to ( 8 ) :  

1 
2 2 u1. = - (u1u-t  U I L ) ,  uz. =L (UZ" t U Z L ) .  
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B,  D designate the tensile and flexural rigidities of the outer layers: 

Et3 
t D =  Et B = - -  

1 - v2 12 (1 - 9) 

E,  v a r e  the modulus of elasticity and the Poisson ratio of the load- 
carrying layers; Ci is the shear modulus of the filler; 
normal pressure.  

of a sandwich shell a s  equations of neutral equilibrium; this system reduces 
to five equations relative to the five displacements ut., UZ., ulg, ung, w. 

shallow shell. 
functions. 
A,-A,= 1 relative to the Lam6 coefficients. 

p is the distributed 

From equations ( 4 )  one easily obtains the system of stability equations 

The system of equations is considerably simplified in the case of a 
It can then be reduced to three equations relative to three 

There is no need in this case to introduce the assumption 

The stability equations of a shallow sandwich shell reduce to 

AAF + 2Et - + '11. f:: R,)"' 

Here F is the s t ress  resultant function; Y is  the shear function 

A is the operator 

The problem of the stability of a sandwich circular cylindrical shell 
hinged a t  the ends and subjected to the simultaneous action of longitudinal 
compression and external pressure was considered in a linear formulation 
on the basis of the equations of both the theory of shallow shells and the 
theory of nonshallow shells. 

m,, and mt is ,  by the theory of shallow shells, 
The relationship connecting the values of the critical load parameters  

and by the theory of nonshallow shells (waves of large length a r e  formed 
along the shell) 
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Here  

7 is the force per  unit length on the two load-carrying layers;  and p is 
the external p re s su re .  

The values of the integers  n and m must  be selected in such a way a s  
to obtain minimum m, and mt a t  given r a t io  rnpfrrzl. 

In the case  of longitudinal compression (mp=O) i t  follows from ( 1 0 )  
that m, is minimum in the case  of symmetr ical  buckling (n = 0). 
moment in the outer l aye r s  can be neglected ( k  = 0) for  shel ls  in which 
@<1.0, and the calculation can be conducted by the appropriate formula 

The bending 

ml = 2 - rp. ( 1 2 )  

At $>1.0 i t  is necessary to take the parameter  k into account. The 
following approximate formula can be used in this  case: 

Formula ( 1 2 )  coincides with ea r l i e r  obtained r e su l t s  /3, 4, 5 / .  

The analysis  of (11 ) for the case of compression (mp = 0) shows that, 
Formula (1 3 )  is somewhat more  refined. 

unlike the case  of simple shells, in which the buckling with formation of 
lengthy waves (the Southwell solution) corresponds to a lower value of 
the cr i t ical  load than short-wave buckling, in sandwich shells i t  is the 
short-wave buckling which corresponds a s  a rule  to  a lower value of the 
cr i t ical  load. 
for  the pa rame te r  ml: 

The following approximate formula is obtained in this ca se  

ml = - 6 ( 1  - 2r). 
5 

It is seen from this formula that in the case  of long-wave buckling of 
a sandwich shell  the weakening of the shearing s t ra in  in the filler affects 
only l i t t le the cr i t ical  load (the value of r is usually small) .  

The study of shell  stability under p re s su re  (ml= 0) shows that buckling 
occurs  in this ca se  with the formation of one half-wave along the generator,  
just  a s  in the case of a simple shell. 

h e r e  in a majority of cases. 
generally be conducted in this ca se  by formula (11). 
cylindrical shell  ( tube)  the computing formula is 

It was shown that the bending moment in the outer l aye r s  can be neglected 
It is essential  to note that the calculation must  

In the case of alengthy 

3 
- @ ( 1  + 4r)  ' 

m -  

The factor 1 + 4 r  in the denominator distinguishes this formula from the 
well-known formula for simple shells.  
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Thorough calculations for  the case of combined action of compression 

The resul ts  were plotted on curves suitable for 
and p res su re  w e r e  conducted by means of an electronic computer by 
formulas ( I O )  and (11) .  
practical  utilization. 

l imits  of applicability of the formulas of the theory of shallow shells.  It 
may be concluded that the l imi t s  of applicability of the theory of shallow 
shells a r e  generally widened with the increase of the pa rame te r  r . 

It was established that the allowance for  the bending moment in the 
outer l a y e r s  is of importance when compression predominates. When 
the p r e s s u r e  predominates the assumption k = 0 is wholly acceptable. 

The analysis of the r e su l t s  makes i t  possible to form an opinion on the 
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ON THE INFLUENCE OF COMPRESSIBILITY ON 
THE BENDING OF ELASTO-PLASTIC PLATES 

Y u . R .  L e p i k  a n d L .  Ya.  L u k h t  

(Tartu) 

The plate mater ia l  is usually assumed to be uncompressible when 
developing the theory of elasto-plastic bending of thin plates. Although 
such an assumption considerably simplifies the problem solution, i t  
cannot always be accepted. 
is very restr ic ted,  the hypothesis of uncompressibility can lead to e r r o r s  
of the o rde r  of 30 to 40% in the determination of the load or s t r e s s e s  
(cf. /1/). The accurate  allowance for the influence of the compressibil i ty 
being difficult, a number of methods in which it is approximately allowed 
for have been developed lately / 1 - 5 / .  

pressibil i ty is developed in this paper.  
of a c i rcular  simply supported plate is solved a s  an example. 
obtained a r e  compared with the r e su l t s  found by approximate methods / 1 - 5 / .  

If the zone of plastic deformations in the plate 

An algorithm f o r  the rigorous allowance for  the influence of com- 
The problem of the equilibrium 

The r e su l t s  

1. BASIC RELATIONSHIPS AND METHOD OF 
SOLUTION 

We s t a r t  f rom the Hencky-Il'yushin relationships, which reduce in the 
case  of a thin plate to 

1 
2 Xx - - Yy=3G ( 1  - U) ( ~ r x  - E ) ,  

1 
2 Vy - - X x = 3 G ( I  -w)(eyy-e) ,  

Xy = G ( 1  - W )  cry. 

Here G is the shea r  modulus; 

It follows from the law of volume compression that 

w =  1 - a  ,/3Gel is the modulus of softening; 
and e = (e, + eyy + eJ3.  
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Eliminating e f rom (1.1 ) and (1 . Z ) ,  we obtain 

where 

a= 2 (1 - W )  (3  - w (1 - 2 ~ ) j  A- ' ,  

p = 2 ( 1  - W) [3v + w ( 1  - 2v)l A-', 

A = 3 ( 1 - ~ ) - 2 ~ ( 1  - - 2 v ) .  

The s t r a in  intensity el is calculated by the formula 

( 1 . 3 )  

( 1 . 4 )  

We shall r ep resen t  formula (1 .5)  in a somewhat different form.  
Calculating e,, f rom ( l . Z ) ,  we find 

e,, = T (e, + e,,), (1.6) 

( 1 . 7 )  

where 

7 - [3v +- ( 1 - 2 v )  "I] A - '  , 

In the case  of sma l l  deflections we have 

We shall  r e s t r i c t  ourselves  in what follows to  the case  of l inear  work- 
hardening of the mater ia l .  We find then ( A .  is the modulus of work-hardening, 
es is the s t r a in  intensity a t  the yield point) 

We pass  now to dimensionless magnitudes ( I t  is the plate thickness) 

On the strength of formulas (1 .5)  to (1 .10 )  we obtain the following 
algebraic equation of o rde r  4 for determining W :  

4 2 

(1 .11)  
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~ 2 = ( 1  - 2 ~ ) ~ [ 6 ( 1 - ~ ) + h ( l - 2 ~ ~ ) ]  ( 3 ~ + 4 t ) + 9 [ ( 1  - v + v ' ) s + ( ~ - v ) ' ~ ] ,  

a, = -3  ( 1  -v) ( 1  - 2 ~ )  ha (3s + 4t) - 18A [( 1 - V  + v* )  s + ( 1  - v)"]. 

ao= 9La [( 1 - v + 9) s + (1 - v)a 4, 
62 = 4 (1 - 2 ~ ) ' ,  

6*= - 12 ( 1  - v )  ( 1  - 2v), 

6,-,=Y ( 1  - v)' .  

Equation (1.1 1 ) can be used to determine the boundary z*=z, between 
the elastic and plastic zones. On this  boundary o = 0, and therefore 

3 1 - v +  v'i 

zs = -I/v,sSt- ( . 1 = r i , , z - ) .  
( 1 . 1 2 )  

It follows f rom the definition of zs that always 0 < zs < 1; a t  the extreme 
values zs = 0 and zs = 1 al l  the sections along the plate normal  a r e  de- 
formed either plastically o r  elastically. 

by the usual formulas: 
The bending moments M,, M, and the torsional moment H are  calculated 

+ h / 2  +h/2 

M, = zdz, M,= Y, zdz, H= X, tdz. (1.13) 
- hi2 - hi2 -h/2 

Substituting (1.3) and allowing for the fact  that in the elastic zone 
0 < Z' 6 zS the magnitudes a and !3 have the values a=2/(1 - v ) ,  p = 2v/(l- v),we 
find that 

where 

(1.14) 

(1.15) 
J 
2, 

J 
2 s  

The expressions for  the moments must  satisfy the Germain equation 

(1.16) 

The substitution of expressions (1.14) h e r e  yields a differential equation 
for determining the deflection w (x, y ) .  
successive approximations by the following scheme: 

1) we assume a l a t e ra l  load q ( x ,  y);  
2) we select  a cer ta in  initial approximation wo ( x ,  y) for  the deflection 

w(n ,  y )  ( a s  such can be taken the value of the deflection found from ( 1 . 6 )  
for the case  of an uncompressible material);  

This equation can be integrated in 
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3) starting from the expression w = w,,(x,  y )  we calculate on the basis 
of formulas ( l . l l ) ,  (1.4), and (1 .12)  the magnitudes W, a, p ,  z, in a first  
approximation; 

4) we calculate the integrals A ,  B, C in a f i r s t  approximation; 
5) from (1.1 6 )  and (1.14) we determine the f i rs t  approximation for the 

The process is repeated until the required accuracy is attained for 

The same problem can also be solved by the variational method. 
method is particularly efficient in the case when the plate deflection is 
given by the one-term formula m s c w ,  ( x ,  y )  ( c is the coefficient to be 
varied; wr, ( x ,  y )  is the given function). 
can be found directly, i. e . ,  without successive approximations (cf. Section 3 
of this paper). 

deflection w = w, ( x ,  y ) .  

( x ,  Y ) .  
This 

In this case the problem solution 

2 .  APPROXIMATE ALLOWANCE FOR THE INFLUENCE 
OF COMPRESSIBILITY 

We shall consider several variants in which the material  compressibility 
is allowed for approximately. 

V a r i a n t  1. 
value ~ = - v / ( l  - v ) .  
the elastic limit / 1  I .  

The coefficient '7  in ( 1 . 6 )  has in the elastic case the 
Let us assume that T has the same value even beyond 

Formula (1.11) simplifies in this case and reduces to 

By taking w = 0 in ( 2 . 1 )  we again obtain relationship ( 1 . 1 2 ) .  It follows 
that in this variant the boundary between the elastic and plastic zones is 
determined exactly. 

Va r i a  n t 2 .  We assume that the influence of compressibility on the 
strain intensity ei can be neglected 1 5 1 .  In this case we must write in 
( 1 . 6 )  'I = -1; w and :, a r e  determined from formulas (2 .1)  and (1.12),  
with v, replaced by 3. Since in the case of an incompressible material 
v1<3, it follows from ( 1 . 1 2 )  that the substitution v,-+3 widens the plastic 
zone. 

is taken in many papers (c f . ,  for instance, 131) a s  equal to 0.5, while 
in elastic deformations a value v f 0 . 5  is used ( i . e . ,  the influence of 
compressibility is allowed for in the region of purely elastic deformations 

V a r i a n t  3. The Poisson ratio in the zone of plastic deformations 

only) * 
V a r i a n t  4. A peculiar method was proposed by Grigor'ev in 141. 

According to this method, the sag is calculated for Y =+ 0.5 and Y = 0.5 for 
the load q=qs at which plastic deformations s tar t  to appear in the plate. 
We designate the difference between these magnitudes by the symbol 
A8, i . e . ,  

A8 = (br).+O.S- (8s)v-o.~ (2.2 1 
If q>qs ,  we add to the sag found for the uncompressible material  the 
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magnitude AB, i .e . ,  

3. BENDING OF A CIRCULAR PLATE SIMPLY 
SUPPORTED ALONG THE CONTOUR 

The following example will i l lustrate the relationships given in Section 1 and 
the degree of accuracy of the approximate solutions given in Section 2 .  

A c i r cu la r  plate of radius  R is loaded by a uniform l a t e ra l  load of 
intensity q.  

In solving this  problem we s t a r t  from Lagrange 's  variational equation 
The plate edge r = R  is simply supported. 

R s( M$x, + M28x2 - qbw) rdr = 0. (3 .1)  
I1 

Since in the axisymmetrical  problem x1=- d2wldr2, x2= - ( l / r )  dwldr, all 
the formulas of Section 1 remain in force,  we make the substitutions 

We shall  look for  a solution to the variational problem (3.1 ) in the form 

w = f [ l + u p a - ( l  +a)p?], (3.2) 

which satisfies the boundary condition w = 0 at p = 1. The coefficient a in 
this formula is determined from the condition M, = 0 a t  11 = 1. 
this condition and taking into account the f i r s t  formula of (1.14), we obtain 
the equation 

Satisfying 

If the zone of plastic deformations does not attain the plate edge p = 1, 
then .4(1)=B(1)=0, and i t  follows from (3.3) that a=-2(3+v)  ( 5 f ~ ) - * .  
If the plastic deformations embrace the contour section p = 1, equation 
(3.3) is to be solved by successive approximations. It is best  to take the 
value a=-  2 (3+v)(5+ v ) - l  a s  initial approximation for a.  
the f i r s t  approximation of zs  ( I ) ,  A ( I ) ,  B(1) on the bas i s  of formulas (1.12) 
and (1.15), we find f rom (3.3) the f i r s t  approximation for  u. 
is repeated until the required accuracy is attained. 

We introduce the following dimensionless magnitudes: 

Having determined 

This p rocess  

(3.4) 

p,=U--6 ( 1  + a )  p', p,=a--2 ( 1  + a )  p'. 

The variational equation (3.1 ) yields, after substituting (3.2): 
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The calculations were conducted for the case k=0.95, v = O . 3 .  The resul ts  
a r e  represented i n  the figure; the symbol "0" corresponds to the rigorous 
solution, and the numbers "1" to "4" to the approximate solutions obtained 
by variants 1 to 4, respectively. The following conclusions can be drawn 
from an examination of the figure: a) variants 1 and 2 give unacceptable 
results; b) Grigor'ev's method gives the best approximation to the 
rigorous solution; another factor in its favor is its simplicity. 

FIGURE 

Similar conclusions apply to the distribution of the bending moments 
in the plate. 
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M I S Y M M E T R I C A L  F L U T T E R  OF CYLINDRICAL 
SHELLS  IN A SUPERSONIC GAS S T R E A M  

K . K .  L i v a n o v  
(Moscow) 

A method is proposed for solving exactly the problem of the axi- 
symmetr ical  vibrations of a cylindrical shell, allowing for the inertia 
forces  of a l l  the displacements. The r e su l t s  obtained on the "Strela" 
computer a r e  given. 

by the equations ( / l / ,  p. 257) 
1. The axisymmetrical  vibrations of a cylindrical shell a r e  described 

dau v d,w h* d3w 1-9 - 7 - - - - - - , $ - X = O ,  
d.ra R dx 12Rdx Eh 

Here u, w a r e  the longitudinal and normal displacements of the middle 
surface; X ,  Z '  a r e  the longitudinal and normal forces  acting on a unit a r e a  
of the middle surface; h, R a re  the thickness and radius  of the cylindrical 
shell, E,  v are Young's modulus and the Poisson r a t io  of the shell  material;  
x is the coordinate along the cylinder generator.  

Let  the shell  vibrate in a supersonic gas  s t r eam whose undisturbed 
velocity C is directed parallel  to the axis  of the cylindrical shell. The 
forces  acting in the middle surface of the shell  will be made then of the 
inertia forces  and the aerodynamic forces .  
the l a t t e r  given by the l inear  approximation 
we obtain 

Here p is the density of the shell  material;  

If we use the expressions for  
of the "piston theory' '  1 2 1 ,  

coefficient; po, x, C,, are the p res su re ,  polytropic index, and sound velocity 
in the undisturbed gas.  

length, and consider displacements representable in the following form: 
W e  introduce the dimensionless coordinate a = x / a ,  were a is the shell  

u (a, f) = au (a)  e w t ,  w (a ,  t )  = uw (a)  e m f ,  (1.3) 

where o is the complex frequency. 
( 1.1 ) yields: 

The substitution of (1.2 ) and (1.3)  in 

w =  0, d 
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where the dimensionless frequency of vibrations Q ,  s t r e a m  velocity A ,  
damping coefficient K, shell curvature 8,  and thickness character is t ic  c 
a r e  given by the formulas 

It can be shown that a t  E +O any solution of system (1.4) can be represented 
in the form 

= 6 (cot" - y o ' ) ,  w = W' - Q' c$, (1.5) 

where 0 ( a )  is the displacement function. 

into an identity, and the second one into 
The substitution of (1.5) in system (1.4) t ransforms the f i r s t  equation 

1 - & 2 c ) Q V 1  + ( ~ ; , ~ ~ - ~ ~ c ) Q ~ V - A @ ' " + ( ~ ~ +  KQ+b4+. 6 2 1 -  i .  -1)) a @"+ 

( C 

+AG!'cQ'-Q'c Qz-+f(Q+84+ - @ E O .  (1.6) ( "z ) 
Expressing the forces  and moments through the displacements (/1/,  
p. 256), and allowing for (1 .5) ,  we obtain 

Using formulas ( 1 . 5 )  and (1 .7 ) ,  the l inear  end conditions for the 
displacements, forces, and moments can be written in the form 

Lk@=0 a t  a==O, 

R k @ = O  at  a = l ,  
R =l. 2. 3. 

Here L r  , Rk a r e  l inear  differential operators  corresponding to definite 
boundary conditions. 

the following equation for Z :  
V'e shall  look for a solution of ( 1 . 6 )  in the form @ = e L Z .  We obtain 

(1  - EZ c) 2 6  + (261 v - B2e) 2 4  - , 4 2 3  + ( p 2 +  KQ + 84 + g'd)) z*+ 
C 

+ A Q a c z - Q 2 c  Q a $ K Q + E 4 + -  =O. (1 .9 )  ( az C ) 
Assuming that the roots  z,,..., z8 of equation (1 .9)  are  simple, w e  can 
r ep resen t  the general  solutions of ( 1 . 6 )  in the form @=cle2:'+ . ~ , - + c 6 e - .  
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Ll(Z1) . * '  L,(z,) 
L&J . * *  L,(z,) 
L,k,J * .  . Lt'ze) A =  
R,(z,) e21 s Rl(z,) e'+ 
R,(z,) e*, . . R,(z,) eza 

R, z,) e21 . . R,(z,) e=* 

Here Q,= Q ( O ) ,  Ql = Q(0)  + T, where 7 is a small magnitude. Q (a,) is 
found by using the iterative form of the ''chord method. ' I  The initial 

=o, 
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approximation for the frequency a t  a=;, can be found by l inear  interpolation 
from the known points Q ( 0 )  and Q(6,). Next, specifying the initial approxima- 
tion of 7 and using the i terative formula of the "chord method, ' I  we find 
P (a2). The table of values of the function Q ( 8 )  can be determined in this 
way. 
function Q ( A ) .  
calculations a r e  best  conducted on high-speed computers.  

a t  the ends on hinges mobile in the axial direction, 
acter is t ic  determinant for  these end conditions. Expanding it by the f i r s t  
three rows ,  we find that the left-hand pa r t  of (1.10) consis ts  of 1 0  t e rms .  
The f i r s t  t e r m  is of the form 

The same  procedure is used for determining the values of the 
Due to the l a rge  amount of computations required,  the 

2. Consider the shell  flutter in a gas  s t r eam.  Let  the shell  be supported 
We form the char-  

and the other ones a r e  obtained by replacing the indices 123456, respectively, 
by 

356124 136245 145236 

125346 246135 235146 

345126 134256 156234 

The representation of the left-hand pa r t  of equation (1 . l o )  in the form 
of a sum of t e r m s  of the same  type i s  convenient when programing the 
problems for computerized solution. 

Its roots  
can therefore be determined in the general  ca se  by numerical  methods 
only. 
solved by the slope method / 4 / .  

convenience sake, the calculation of the frequency was replaced by the 

calculation of A=- ( Q z f E 4 - t  The curves of A ( A )  resemble 

in their  external shape the loops of the ( A ,  A) plane drawn in 131. 
by A, the maximum value of the velocity A on the f i r s t  loop. 
A ,  is some character is t ic  preflutter velocity; 
c = , / ~ .  
in the table. 
inertial  fo rces  caused by the tangential displacement 1 5 1 .  
of this velocity on the curvature is represented in the figure by a dotted 
line. It is c l ea r  that the allowance for the inertial  forces  influences the 
determination of the preflutter velocity to an extent which inc reases  with 
the increase of the curvature.  

equation r equ i r e s  a g rea t  deal of computer t ime.  
loop took half an hour on the Strela computer. In o rde r  to speed up the 
calculations, a program based on the Galerkin method was worked out, 
using a f ive- term approximation. The calculation t ime was reduced a s  
a r e su l t  to about 30 sec.  

on the reliabil i ty of the method can be formed by examining the table. 

At A f O  equation ( 1 . 9 )  is a complete sixth-order equation. 

In actual calculations on the "Strela" computer this equation is 

The calculations were conducted in the absence of damping (K=O). For 

C 
Designate 

The velocity 
i t s  value was calculated for  

v = l/, and different E. The r e su l t s  of the calculation a r e  given 
The velocity A, was calculated without allowing for  the 

The dependence 

It should be noted that the calculation of the frequencies f rom the exact 
The calculation of one 

We do not examine he re  the accuracy of the Galerkin method. An idea 

589 



0.00 
0.10 
0.20 
0.30 
0.35 
0.40 
0.45 

TABLE 

A, (rigorous) 

343 
344 
354 
400 
454 
545 
118 

4, according 
to Galerkin) 

340 
341 
351 
3 96 
44 9 
54 0 
713 
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BENDING OF F L E X I B L E  P L A T E S  BUILT-IN 
E C C E N T R I C A L L Y  IN A N  ELASTIC CONTOUR 

Y a . D .  L i v s h i t s  

(Kie 23 

The nonlinear problem of calculating a flexible plate is today not only 
of theoretical  interest ,  but of practical  interest  a s  well. P l a t e s  whose 
deflections a r e  of the same  o rde r  a s  their  thickness a r e  widely used in 
shipbuilding and in the a i r c ra f t  industry, and recently a l so  in the building 
industry. 

Such plates generally bend together with the r i b s  bordering and 
stiffening them, occupying different positions relative to the l a t t e r .  

W e  consider below a rectangular flexible plate rigidly clamped to 
elastic r ib s  bordering i t  in such a way that the neutral  surface of the 
plate i s  eccentr ic  relative to the r i b  axes  (Figure 1 ) .  

t 1 
"t 

L a 4  

FIGURE 1. 
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The problem is described by the system of fundamental equations of 
equilibrium and compatibility (the Karman equations) and by a system of 
contour equations (the conditions on the contour, written by the author).  

The fundamental equations a r e  / 1 /  

The contour equations for  the edge paral le l  to the x axis  a r e  

Here C is the torsional rigidity of the rib; 
the r i b  in the ver t ical  plane; 
horizontal plane; D is the flexural rigidity of the plate. 

Equations (3), (4 ) ,  ( 5 ) ,  and ( 6 )  need no explanation. 
obtained from the equation of the bent r i b  axis  a t  bending in the plate plane 

5, is the flexural rigidity of 
B, is the flexural rigidity of the r ib  in the 

The l a s t  was 

d2v d3F d3P 
dx2 axz a y a  r).%:23 v 

5, - - = M ,  taking into account that - E - = -- + (2 + p)  - - and using 

p ro f .  Varvak's f r ame  analogy 121, on the ba sis of which the vaiues of the s t r e s s  
function F on the contour a r e  equal to the values of the bending moments 
appearing in the f r ame  created by the contour under the load p e r  unit plate 
thickness acting on the contour. 

Either elastic o r  r igid support  can be realized a t  the corner  points; 
the bordering r i b s  a t  the co rne r s  can be either rigidly built-in in columns, 
or rigidly interconnected, forming a f r ame  contour. 

In the f i r s t  ca se  we have a t  the corner  point k 

and in the second case  either 
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o r  

Equation (8), which expresses  the condition of equilibrium of a rib,  
is more  convenient for  use in finite-difference solutions, since i t  introduces 
a sma l l e r  number of points outside the contour than equation (7). 

the equation expressing the equality to z e r o  of the a r e a  of the moment 
diagram for the contour, considered as a closed frame: 

An additional equation necessary when solving in finite differences is 

( 9 )  jFdS  = O. 

Equations ( 3 )  to ( 9  ) are the most  general  expressions of the conditions 
on the contour for both flexible plates and thin slabs.  
values of C. B,. B,, and 2 we can obtain both the t tc lass ic ' t  conditions of 
fastening on the contour (rigid,  hinged, and simple support) and various 
other conditions. 

By varying the 

We shall consider several  of these. 
1) C = 00; B,=O; B, # 0 rep resen t s  a built-in plate whose edges bend 

freely.  The contour equations are 

2) C = 0;  B, = 0;  B, + 0 r ep resen t s  hinged support  on r i b s  flexible outside 
their  plane. The contour equations a r e  

3) C =  0;  B, = 0 ;  B, = 0 r ep resen t s  a flexible plate fastened a t  four points. 
The contour equations a r e  

c) g =o: d) F = O ;  

The following additional equation expres ses  the immobility of the 
support  points 1 3 1 :  

In the case  of a relatively l a rge  plate rigidity (low values of t hepa rame te r  
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), the problem is reduced to  that of a thin plate eccentrically 

built-in in an elast ic  contour. The fundamental equations are  then 

The contour equations (3 )  to (9) remain in force.  
It is proposed to solve these problems by the net method, which can 

We shall  give the expressi-ons of all  the equations in finite differences. 
Fundamental equations: 

be programed for computerized solution. 

A square net is used; the designations of the nodal points a r e  shown 
in Figure 2 .  
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FIGURE 2. FIGURE 3 .  

When solving by the net method, the unknowns a r e  the deflections and 
the s t r e s s  functions a t  the points within the contour, a t  the contour points, 
and a t  the f i r s t  and second points outside the contour (k, a, i, see  Figure 3) ,  
six unknowns in all  a t  every point of the contour. 
is recommended to write four contour equations and two fundamental ones. 
A s  the comparative calculations conducted by the author have shown, such 
an approach ensu res  a considerably higher accuracy than the use  of various 
interpolative formulas for  eliminating the unknowns in the points outside 
the contour (instead of writing the fundamental equations for the contour 
points). 
allowing for  the expression of the complete reaction in the Kirchhoff sense 
and half the length of the element in the direction of the y axis, becomes 
of the form 

For  each such point it 

Equation (1 ) for  point k of the contour, in finite differences, 

(19 - 4p) l%k - (9-2P) (Go f %c ) - (7 -2P) (%b + % d )  + 

It is suggested to conduct the solution in the following sequence. 
The l inear  problem of bending of a thin plate eccentrically built-in in 

an elast ic  contour (equations ( 1 0 )  and (11)) is solved f i rs t .  
values of the s t r e s s  functions and the deflections a t  the nodal points. 
nets  of such a plate a r e  considered a s  f i r s t  approximations of the nonlinear 
problem . 

Using the system of contour equations ( 1 4 )  to ( 1 6 )  and the additional 
equations ( 8 )  and ( 9 ) ,  we expres s  m and F i n  the points outside the contour 
through and P in the points on the contour and inside it. These expressions 
a r e  substituted in the system of fundamental equations (1 2 ) ,  ( 13 ), and ( 18 ) . 
Considering the right-hand p a r t s  of these equations a s  some free t e rms ,  we 
solve separately system ( 1 0 ) - ( 1 6 )  and (11) in  influence numbers.  
obtain the ma t r ix  of the influence numbers  for  6 - aIk and 7 - F i a .  

Ff and Go a r e  
The 

We 
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Having the values of and 7 in a f i rs t  approximation (3 and Fo) we 
calculate the right-hand par ts  of equations (10 )  - (  1 6 )  and (1 1 ) and then the 
second approximations of 2 and 
numbers i l k  and elar respectively. The third approximations of 
then similarly calculated, and so on until the values of & and Pfor two 
consecutive approximations practically coincide. 
is convenient for computer programing. In the process  of the solution 
i t  is necessary to pay attention to the writing of the equations for the 
corner point, using (8 ) and ( 9  ). 

by means of the matrices of the influence 
and F a r e  

Such an iterative process  
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SOME PROBLEMS OF S H E L L  DYNAMICS 

0. V .  L u z h i n  

( l~ Ioscow~ 

1. FREE AND FORCED VIBRATIONS O F  SHELLS 
O F  REVOLUTION AND STRUCTURES REPRESENTING 
COMBINATIONS O F  SUCH SHELLS 

A l a rge  number of original papers  have been devoted to the examination 
of f r ee  vibrations of shells of revolution of various shapes, and i t  is im- 
possible to survey them al l  within the scope of the present  paper.  
shall  r e s t r i c t  ourselves he re  to a brief survey of recent  studies in this 
region. 
calculation of moment shells.  The case  of a cylindrical isotropic shell  
has  been most  widely studied. In papers  / 1 /  to 111 / a r e  given rigorous 
(within the f r ame  of the start ing hypotheses) and approximate solutions of 
the problem of f r ee  vibrations. 
using the kinematic hypotheses which character ize  the theory of thin shells.  
In / 3 /  and /4/ the influence of the shea r  and of the inertia of rotation i s  
allowed for. 
tudinal r i b s  and l a t e ra l  r ings a r e  considered in / 10 / to / 15  / .  

The determination of the spectrum of frequencies of the f r ee  vibrations 
of spherical  shel ls  was considered in 1 1 6 1  to 1271 ,  while the dynamics of 
conic shells were considered in / 2 0 /  and in / 2 8 /  to 1361. The paper 1 3 7 1  
was devoted to the dynamic calculation of a paraboloidal shell  of revolution. 

Shells of revolution of an a r b i t r a r y  shape were studied in 1381  to 1401. 
Without entering in the details of the methods of solution of theproblems 

We 

Al l  these studies a r e  based a s  a rule  on the classic  theory of 

In / 7 /  the problem i s  solved without 

Orthotropic cylindrical shel ls  and shells stiffened by longi- 

mentioned, we only note that the determination of the frequencies of the 
f r ee  vibrations and of the corresponding modes involves 
of the equation, b) the solution of the equation obtained, 
of the boundary conditions, and d) the determination of the frequency 
e qu a t i  on. 

geneous boundary conditions along the corresponding parallels,  the solution 
of the problem of the modes of free vibrations leads to one resolving 
differential equation of o rde r  eight. When only axisymmetrical  vibrations 
a r e  considered the o rde r  of the equation is reduced to six; this par t icular  
ca se  will not, however, be considered separately below. 

In the most  general  ca se  of a shell  of revolution, the determination of 
i t s  s ta te  of s t ra in  and s t r e s s  necessi ta tes  the knowledge of three dis- 
placements u, v, w along the meridian, parallel ,  and radius  respectively, 
8 ,  the angle of rotation of the tangent to the meridian, and four force 

a) the formation 
c) the examination 

Since w e  a r e  considering h e r e  closed shel ls  of revolution having homo- 
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factors: N,, the axial force per  unit length along the meridian, S, the 
shearing force per unit length, MI, the bending moment along the meridian, 
and Ql, the la teral  force along the meridian. The solution of the initial 
equations and the existence of known differential relationships between the 
kinematic and force factors lead to the following system of functions: 

uo=AJFll(e ,  m. k )  +Ad, ,  (6, m. k )  +. . .+ Aafla(e, m. k ) ;  

v0 = A,f,, (6, m, k )  -t AJ,, (0, nz, k )  +. .. + ASf2, (0. m ,  k ) ;  

w 0 = . W 3 ,  ( 0 .  m. k )  4- A2fJ2(e, m ,  k )  + . . . + A ,  fa,@, m, k ) ;  

Qie - A,f., ( 0 ,  m, k )  4- AJ,, (0, ~ 2 ,  k )  +. . .+ AJ,, (0, m, 4 ;  
. . . . . . . . . . . . . . . . . . . . . . . . . . .  

which will be used below in the matrix notation 

Ue =F(O,  nz, R ) A  

Here Uo and A a r e  matrix columns, and F a quadratic matrix 

; A =  ; F(0,  m, k ) =  

Here A,, A,, etc. a r e  arbi t rary constants, devoid in the general case of 
clear physical meaning; 
of the parallel considered in the spherical shell, or the distance from some 
reference point in the cylindrical or conical shell; m is the number of waves 
in the direction of the parallel; k is an unknown magnitude, equal up to 
some constant factor to the corresponding frequency of free vibrations. 

It i s  expedient to pass from expressions (1 ) to similar formulas re-  
presented in the form of the method of initial parameters,  when the 
arbi t rary constants a r e  the kinematic and force factors. 
( 2 )  relative to the shell edge, defined by the angle a,: 

Ci is the polar angle, characterizing the position 

Write expression 

U,,= F (a,, m, k )  A .  

F-I (1,. m. k )  U.. =A.  

(3) 

( 4 )  

Multiply both sides of ( 3 )  by the matrix F-'(a,, m, k ) .  We obtain a s  a result  

Using the expression obtained it is possible to find the displacements and 
forces per  unit length a t  any section of the shell, i f  the frequency of free 
vibrations and the initial parameters a r e  known: 

Ue = F (e, m, k )  F-'(a,, m, k )  Uo;. ( 5 )  

Expression ( 5 )  relative to the right-hand edge of the shell, characterized 

( 6 )  

by the angle 3, is 

U=, = Y ( k )  Ue., 
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where the ma t r ix  III ( k )  r ep resen t s  the product 

Y ( k )  = F ( a ,  nz, k )  F - l ( a 0 ,  m, k ) .  ( 7 )  

F r o m  expression ( 6 )  i t  is easy  to obtain the frequency equation a t  
different support conditions. Thus, if the left-hand edge of the shell  is 
free while the right-hand one is clamped, i t  is necessary to take the f i r s t  
four rows  of the ma t r ix  Y ( k ) ,  dropping the last four rows .  The frequency 
equation will be, in a determinant form: 

Since the expansion of the determinant leads to  a fa i r ly  complex ex- 
pression, whose solution in a closed fo rm is impossible in the general  
case,  the method of t r ia l  and e r ror  s e e m s  indicated for  solving this 
equation. 

of revolution is especially efficient in the case  of a shell  made of several  
separate  par ts ,  such a s  a combination of a truncated cone, a cylinder, 
and a sphere.  
by the end sections.  

the connection between the displacements and the forces  a t  the ends of 
two contiguous p a r t s  of the shell. Let u s  consider the junction of pa r t  
i -1  with p a r t  i. 
the end i by the angle a ! .  
by the condition 

The  m a t r i x  notation of the equations determining the vibration of a shell  

We f i r s t  a s sume  that this complex shel l  is fastened only 

We now introduce the concept of transition matrix,  which establishes 

The end i-1 of the shell  is defined by the angle ai - ' ,  and 
The fo rces  and displacements will be connected 

where 

'cos (ak-ai-*) o sln(aA-aaj-l) 0 0 0 0  0 
0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0  0 
0 0 0 0 sin (a>a:-') 0 0 cos (ab+a;-l) 
0 0 0 0 0 10 0 
0 0 0 0 0 0 1  0 
0 0 0 0 - cos(aita:-l) 0 0 sin (ai+a:-l) 

- sin (ui-ai-1)  0 cos (ai--  $1) 0 0 0 0  0 
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, I -1  

The forces and displacements a t  the ends of an arbi t rary shell of 
revolution can now be connected by the expression 

n is the number of components of the complex structure. 

Y, (, n 
determining the determinant corresponding to the frequency equation is 
solved now in exactly the same way a s  in the case of a simple shell. 

In the case when external constraints a r e  imposed on the shell not only 
a t  the ends, but in the intermediate sections a s  well, the application of 
the method of init ialparameters is not always justified. In separate cases 
i t  is possible to use the method of forces, the method of displacements, 
o r  a mixed method. 
specific examples. 

After the frequencies of the free vibrations have been determined and 
the corresponding modes have been found, the problem of the calculation 
of forced vibrations can be solved by elementary means, consisting of 
expanding the dynamic load by the modes of the natural vibrations. 

The expression 
1 - 1  J + 1  

Y I )  is a quadratic matrix of order eight. The problem of 
r - n -  1 

The scope of this paper does not allow us to give 

2. DETERMINING THE SPECTRUM OF FREQUENCIES 
AND THE MODES O F  VIBRATIONS O F  A SPHERICAL 
SHELL ON AN ELECTRONIC COMPUTER 

The problem was solved on an electronic computer on the strength of 
the formulas given in 1261,  and the values of the frequencies of natural 
vibrations were determined for  various boundary conditions, various 
ratios of the shell radius to i ts  thickness, and various shell angles. 
Below a r e  given the f i rs t  three frequencies for  rigidly clamped and hinged 
domes a t  a Poisson ratio p = 0.25 and a = 90": 
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Clamped edge 
kl k ,  k, 

R 
b 

20 1.245 1.501 1.729 
50 1.094 1.242 1.437 

100 1.036 1.105 1.202 
200 0.998 1.027 1.067 

- 
Hinged edge 

kl k,  k ,  

1.196 1.499 1.629 

1.025 1.088 1.178 
0.991 1.020 1.057 

1.071 1.207 1.400 

3. EXPERIMENTAL TEST 

A s  already mentioned ear l ier  1261, many of the approximate methods 
used give resul ts  differing from those obtained in the exact solution of the 
equations of dynamics of the general l inear theory of shells. 
the resul ts  obtained in 1411 for a shell with f ree  edges coincide with the 
resul ts  obtained in 1261. 

the edge. 
They were recorded on a cathode-ray oscillograph by means of a piezo- 
electric gage. 
1.07 X sec; the period of one vibration was 0.132X10-3 sec. It was 
obtained theoretically that the maximum period is equal to 0.139X 
and the beat period to 1.03X10-3; 
experimental resul ts  a r e  sufficiently close. 

Note that 

A semisphere of radius 12.5 cm and thickness 0.25 cm was clamped by 
The vibrations were excited by a symmetrically acting load. 

The vibrations bore the pattern of beats of period 

sec, 
a s  can be seen, the theoretical and 
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INFLUENCE OF T H E  RIGIDITY OF T R A N S V E R S E  
DIAPHRAGMS ON T H E  T E M P E R A T U R E  
STRESSES IN THIN- W A L L E D  SYSTEMS 
(SHELLS)  

L.A.  M a l a s h e n k o  

(Khar ' kov)  

An engineering method of calculating the temperature  s t r e s s e s  in thin- 
walled b a r s  and shel ls  of closed and open profile is proposed. 
method the influence of various s t ructural  features  of the system (rigidity 
of the t r ansve r se  diaphragms, skin thickness, conditions of support, etc.  ) 
and of the pa rame te r s  of a two-dimensional temperature  field can be 
a s ses sed  relatively simply and reliably. The longitudinal r i b s  a r e  allowed 
for approximately by reducing the system to a s t ructural ly  orthotropic one. 
The shell  s t ructure  can be either homogeneous or made from different 
mater ia ls .  

external forces  a r e  allowed for independently 121 .  

considered a s  given in the form 

With this 

The analysis is conducted for  a system free of external forces .  

The temperature  field for  the ent i re  system o r  for  a pa r t  of i t  is 

The 

T ( x ,  s)= T ( 4  T W ,  ( 1 )  

where 2 ( x )  and T ( s )  a r e  functions defining the law of variation of the 
temperature  along the axis  of the thin-walled system, IC, and along the 
middle l ine of the c r o s s  section, s ,  respectively (F igu re  1,a). 

The temperature  drop through the skin thickness is neglected. 
We as sume  that the longitudinal elongations of the system f ibers  a r e  

absolutely rest rained a s  a r e su l t  of the introduction of rigid undeformable 
constraints,  i. e . ,  that the total deformation is equal to zero: 

P" = E, + Ey = 0, ( 2 )  

where E , ,  E ~ ,  and are, respectively, the total, temperature,  and elast ic  
deformations of the longitudinal f ibers  of the thin-walled system. 

infinitely long shell. 

pr imary.  , 
the longitudinal normal  s t r e s s e s  (F igu re  1,a) 

Such a r e s t r a in t  of the total deformation exis ts  in the case  of a n  

The system s t r e s s e s  corresponding to such a s ta te  will be called 

Using the s implest  physical law of Hooke and condition ( 2  ), we find 

Ox, = Ey Et = - E t  Et = -Ut ?" ( X .  S )  Et = - ( S )  T ( X ) ,  ( 3 )  
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where z( is the coefficient of linear expansion of the material, 

91 (4 = =/ Ef T ( s ) .  

FIGURE 1. 

In order  to simplify the calculations we shall assume in what follows 
that E ,  and at a r e  constant and equal to some averaged value of the 
modulus of elasticity and the coefficient of l inear expansion, respectively, 
by the temperature. This simplification is of no basic importance, i t  
being possible to allow by the method proposed for the variation of the 
material  characterist ics (ai, E t ,  Gt ) with the temperature. 

From the differential equation of equilibrium of an element of the 
middle surface of the shell we obtain (Figure 1,a) 

where 

for systems of closed profile, and 

- 
s, 

for systems of open profile. 
Here p is the a r m  of the shearing s t resses  relative to some points, 

and SI is the semi-perimeter of the middle line of the c ross  section. 
The transverse forces in the longitudinal sections (GSi, Q S l ,  NJ a r e  de- 

termined from a calculation of an elementary s t r ip  of the system cut out 
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by two cross  sections x = const and x + d x  = const and loaded along the 

contour by the drop of shearing forces d(fi-r,,)= - (s) 7"' ( A )  (Figure 1,b) 
dx 

G,I = - y1 ( s )  T" ( x ) .  ( 5 )  

In the constraints introduced there appear simultaneously forces whose 
resultants a r e  

where M ( x ) I  , hl, ( x ) ~  , M , ( x ) I  ,and M , , ( x ) l  a r e  the resultants of the longi- 
tudinal forces, bending moments, and torsional moments; s is the 
perimeter of the middle line of the c ros s  section; y, z a r e  coordinates 
of the middle line of the profile in the principal central axes. 

In the secondary state we remove the additional rigid constraints, 
applying to the system external loads equal in magnitude to the forces in 
the constraints but oppositely directed. 
a r e  

The resultants of these forces 

.Y(x)II -- N ( x ) I  . Mz (X)II = - /Mz (X) I  My (S)II = - Mv (X)I , 

Mcr fxh = - M,, ( 4 1  . ( 7 )  

The s t r e s ses  in the system appearing in isothermal conditions under 
the action of the external loads ( 7 )  will  be called secondary. 
determination of these s t resses  we shall make use of the well-known 
Papkovich theorem relative to the possibility of splitting the s t r e s s  tensor 
into a fundamental one, which satisfies the equilibrium conditions, and 
an additional tensor. 

sign, the equilibrium equations will be tranformed into identities. Then 

In the 

If we take a s  fundamental s t ressed state the pr imary state with reverse  

The additional self-equilibrated s t r e s s  tensor will be determined by the 
variational method. 
normal s t ress ,  which will be represented in the form 

A s  independent unknown we select  the additional 

0.r ad = "la (s) F (xh ( 9 )  

where q,(s) is a function of the a r c  coordinate s, and F ( x )  is a function of 
the coordinate x along the system axis. 

the conditions of self-equilibration of the additional s t resses:  
We leave F(x)as  an unknown function, and specify qt (s ) ,  subjecting it to 

for systems of closed profile 
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I 

for  systems of open profile 

Here 

The additional shearing s t r e s s e s  and forces  in the longitudinal sections 
a r e  determined s imilar  to the p r imary  s t r e s s e s  and forces  (4), ( 5 ) :  

The unknown function F ( x )  will be found by the s t r a in  energy method, 
using the Castigliano principle. 
energy the potential energy of the fundamental deformations only 

We include in the expression for the 

It follows f rom Euler '  s differential equation that 

where 
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F o r  sys t ems  of closed profile a,, = ajEta,. 
The solution of differential equation (14) by the method of initial 

pa rame te r s  is 

where F(O) ,  F'(O), F " ( O ) ,  and F'"(0) a r e  initial parameters ;  Y,(x), Ur(x) ,  V a ( x ) ,  
and Y, ( x )  a r e  Krylov functions; 
allowing for  the influence of the intermediate t r ansve r se  diaphragm elast ic  
in i t s  plane and out of i t s  plane. 

The pa rame te r s  F, and Fl are determined using the natural  boundary 
conditions of the mixed variational problem / 1 /  

F1 and F; a r e  concentrated pa rame te r s ,  

where 

Gxr, GYl, and HSr a r e  bending moments and torsional moment (F igu re  1,c); 
Jzi. JY1, and Jdl a r e  moments of inertia of the diaphragm c r o s s  section a t  
bending and a t  pure torsion, respectively. 

of the s t r a ins  of the skin and diaphragm in the longitudinal and l a t e ra l  
directions . 
a s  a tridimensional s t ructure ,  loaded by the drop of the self-equilibrated 
shearing forces  8i,(s) F ;  and normal  forces  8q2(s) Ft (Figure 1,c): 

Equations (1 6 )  and (1 7 )  follow a l s o  from the conditions of compatibility 

The forces  Gzr, Gyt, and H,, a r e  found f rom the calculation of the diaphragm 

GA = 1x1 F;. Gyi = T ~ I  (s) Fi , Hsr =  si (s) Fi . ( 1 8 )  

( 1 9 )  

Expanding conditions ( 1 6 )  and (1 7 ) with the aid of (18 ), we obtain 

/=t =ai .I@'' ( X I  ), F; = BI JxtF" ( x i  ), 
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where 

The boundary conditions for  determining the initial pa rame te r s  are 
s imilar ly  expanded: 

a) a t  xt = 0 

F (C) = U d y o F " '  (0). F' (0) 6nJloF' (0). (20)  

(21 1 
b) a t  x, ==-I /1/ 

F ( I )  = - a, iy,~"'  ([I. r ( I )  = - b1 J J "  ( I ) .  

In the two extreme cases  of absolutely rigid and absent end diaphragms, 
the values Jxr+ cc, JYi+ 00 and J,i = 0, .I,, , respectively, must  be sub- 
stituted in (20 )  and ( 2 1  ) .  
be s imilar ly  considered. 

Other var iants  of the boundary conditions can 

For  a system with undeformable c ros s -  sectional contour 

where 

The solution of differential equation ( 2 2 )  by the method of initial 
pa rame te r s  is 

sh ux F ( x )  = F ( 0 )  ch UX + F' (0) - + 
U 

The pa rame te r  FC is found from equation ( 1 6 )  

The boundary conditions for determining the initial pa rame te r s  are 
s imilar ly  expanded / 11: 

Other var iants  of the boundary conditions follow from relationships (25 ) 
by passing to the l imit  J j3 ,  = 0 (no diaphragm) o r  IYr-+w (absolutely rigid 
diaphragm). 
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The total s t resses  in the thin-walled system a r e  equal to the sum of 
the s t resses  of the primary and secondary states, i. e . ,  

5 1  = C I I  f Trfund+ C Y  ad CJ ad T. $( (S) F (XI, ( 2 6 )  

since, according to (8),  fund= - . 
Similarly 

i. e . ,  finally the temperature s t resses  a r e  equal to the additional s t resses .  
Figure 2 represents the variation of the maximum values of the tem- 

perature normal s t resses  a s  a function of the rigidity of the end diaphragm 
elastic in its plane, and of the length of the system a t  T ( x )  = const, while 
Figure 3 represents the same functional relationships for T [ x )  = h x .  
curves can easily be plotted for different variants of the boundary conditions 
and the function T ( x )  as  well. 

Such 

FlGURE 2. 

The analysis of the relationships given shows that a considerable in- 
crease of the value of axmpI with the increase of the rigidity of the end 
diaphragm is observed only for kL<2.5 to 3.5. 
k l , ~ . ~ , , , ~ ~  = 1 and is practically independent of the diaphragm rigidity and 
the system length. 
the lateral  bending moments G,,,,. 

E x a m p 1 e . 
s t resses  of a thin-walled system of open profile (Figure 4). 

Solution. According to (11 ) 

At larger  values of 

The end diaphragm then noticeably influences only 

Let i t  be required to determine the maximum temperature 
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Having determined the function T~ (s) f rom the calculation of a n  elementary 
s t r ip  of the system, w e  find 

- 
a,, = 0.97 al Et as*, k = -/+. 0.44 

h 

FIGURE 3. 

Let 6 = 8 m m ,  2h = 95mm, I = 816mm, T ( x ,  s) = To = loo", at = ll.lX10-6, 
E , .  = 2.1X1 O6 kg/cm2. 

1 2 - 3 1  h I  
FIGURE 4.  

Using Figure 2, we consider the following cases:  
a) 

armax = - 0.368 at Et la 

a simply supported system with rigid diaphragm a t  the middle 

= - 430 kg/ cm2 ; 

b) diaphragms rigid in their  plane placed a t  the ends and in the middle 

= - 1.455 at Et lr ( s ) , , , ~ ~  = - 1700 kg/ cm2 ; 

c) the cross-sectional contour is undeformable 

J,,,,= -0.97atElq,(s),,,= - 1130-kg/cm2. 
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BRIEF CONCLUSIONS 

. l .  The engineering method proposed for calculating the temperature  
It permits  one to s t r e s s e s  in thin-walled systems is relatively simple. 

allow easily for various s t ructural  peculiari t ies of a system (elasticity 
of the t r ansve r se  diaphragms, presence of elements with various co- 
efficients of l inear  expansion, e tc . )  subjected to forces  / 2 /  and to a 
temperature  field. 

considered with the experimental data given in the papers  of Kan, Rudakov, 
and others  shows that the computing relationships obtained give reliable 
r e su l t s  . 

3 .  The particular examples of calculation of the temperature  s t r e s s e s  
coincide satisfactorily with the r e su l t s  obtained by the methods of Vlasov, 
Kan, and others.  However, unlike the la t ter ,  the method proposed is 
suitable f o r  thin-walled systems of both open and closed profiles of 
a rb i t r a ry  cross-sectional shape, with or without t r ansve r se  diaphragms, 
under an a rb i t r a ry  law of variation of the temperature  along the system 
axis  .r and along the middle line of the profile s. 

2.  The comparison of the r e su l t s  of the calculation by the method 
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APPLICATION OF THE METHOD OF ASYMPTOTIC 
INTEGRATION TO PROBLEMS OF SHELL 
VIBRATIONS 

R . L .  M a l k i n a  
(Sverdl o vsk) 

Several problems of f r ee  vibrations of shells of positive curvature a r e  
treated by the method of asymptotic integration 11, 2, 3 1 .  

It is assumed that the s ta te  of s t r e s s  and s t ra in  of the shell  va r i e s  
considerably during the vibrations. 
vibrations of an a r b i t r a r y  shell  can be solved by means of the equation 

In this ca se  the problem of the 

A A v  -f?hAbw=O. 
(1 1 

where 

Here  w is the normal  deflection; q is the s t r e s s  function; a , p  a r e  the 
curvil inear cooordinates of the middle surface, coinciding with the 
curvature lines; 
material;  t is the time. 

A .  R a r e  Lam6 parameters ;  is the density of the 

The functions 7 and w will be represented in the fo rm 

q ( z ,  p, t )  = (1, e )  cos u i t .  IP) (I, 9,  f) -: w (a, B )  cos wt. 

where (11 is the frequency of the natural  vibrations. 

(Figure 1). 
B= R sin a .  

equation 

Consider a spherical  shell  in a geographical system of coordinates 
We can write then in equations (1): R,=R,=R: A=A; 

By eliminating the function 'p f rom system ( 1  ), we obtain the 

Consider a segment of the spherical  shell  l imited by the a rb i t r a ry  
In this  case a l l  forces  and paral le ls  a=a,, a=a2 or a spherical  dome. 
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displacements will be periodic functions of $ of period 2a, and the problem 
solution can be represented in the form 

After the substitution of ( 3 )  in ( 2 ) ,  the problem reduces to integrating 
the equation 

h*?hJJW,,, (a) - (p' - I )  &wm (a) = 0 (m = 0. 1. 2 : ' . ) ,  ( 4 )  

-,,,?RZ 
ITE 

where 
p'= -. 

We shall res t r ic t  ourselves to finding the frequency spectrum satisfying 
the condition 

p? - 1 >. I). ( 6 )  

The meaning of this restriction wil l  be explained below. 

I 
FIGURE 1. FIGURE 2 .  

Introduce the designations 
JW,=W*, b'=h*-S(p'- 1) 

and consider f i rs t  instead of ( 4 )  the following equation: 

( 8  1 AL\& - h4& = 0. 

Assuming that the parameter 

Equation ( 8 )  splits into two Legendre equations, and i t s  general solution 

is sufficiently small, we obtain on the 
strength of ( 6 )  that b4> I. 

can be represented in the form 

.w: = C I ~  P z  A C Z ~  Q71 + ~ 3 m P z  f ~ l m  QZ. (9) 

where P., Q. a r e  generalized Legendre functions of the f i rs t  and second 
kind, of order  determined from the conditions 

crrn (i = 1. 2,3,4) 
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a r e  integration constants. 

the general solution of the initial equation ( 4 )  will be 
Having obtained solution ( 9 )  of equation ( 8 ) ,  i t  is easily shown that 

w m = A I m + A z m Q o + A 3 m P z +  A m Q ; ,  + A5mP,n?+AemQ;*. ( 1 0 )  

where .41 (i = 1, 2;. . , 6 )  a r e  integration constants. 

to use an asymptotic representation for the Legendre functions. 
the corresponding asymptotic formulas 141, for instance for the case 

At large values of a the modulus a6 will be very large, and it is possible 
Using 

we obtain 

w (a)  = (sina)-"'(c, i ctz + c, stn 6a -t c, cos 6a -t c5 sh 6a + c,ch bz). ( 1 2  ) 

We shall show now that this result  can be obtained much more simply 
by using the general method of asymptotic integration 11, 2, 3 1 .  The 
advantages of this method lie not only in i t s  simplicity, but also in i t s  
applicability to a wide circle of problems. 

We shall represent the solution of ( 4 )  in the form* 

w = ekf(a) [wo (a )  + wl (a )  k- I  + k-2w 2 ( 4 1 >  ( 1 3 )  

where f (a )  is a so far  unknown function of the variability, and the expression 
in brackets is an unknown intensity function, expanded in an asymptotic 
ser ies  by decreasing powers of the large parameter k. 

Asusual, k is a constant number, linked with the small  parameter h* 
by the relationship 

where 7 is a variability index selected by us.  
Let us  write m=?k ,  where 1 is a so far  unknown number. Substituting 

( 1 3 )  i n (4 ) ,  andrestricting ourselves to two te rms  of the series,  we obtain 

We take z = 0.5. 

E and C a r e  known functions of a and of the derivatives of f by a .  

a certain value of 1, we require that the coefficients of all powers of k in 
(14) become equal to zero. Let '1 = 0, i. e . ,  m = 0. Then, by equating 
to zero the coefficients of the high powers of k ,  we obtain 

Assuming 

W e  shall omit in what follows the subscript m .  
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Equation ( 1 5 )  gives fiix solutions for  the functionf: 

k f , = - k k f , = b ( a - a , , ) ,  k f J = -  k f , = i b ( a - a o ) .  

If we r e s t r i c t  ourselves to the ze ro  approximation in  determining the 
intensity function, the general  solution for w will be 

~ = ( s i n a ) - ' ~ * [ c ,  + c , a + ~ ~ s i n b ( a - a , , )  +c,cosb ( a - a o ) +  

+ c,shb (a - Eo)  + c,ch b ( a -  ao) ] .  (17 1 
This  solution is reduced by elementary transformations to the earlier 

Let  the variability index be r<0.5; take for  instance t = 0.25, i. e . ,  

By substituting under this assumption (13 )  in ( 4 )  and equating to ze ro  

obtained solution ( 1 2 ) .  

h*2 = k-8 

the coefficient of the higher power of k ,  we obtain instead of (1 5 ) the 
equation 

whence i t  follows that 

We thus obtain p L  = 1 for  a spherical  shell  a t  7 <0.5. 
It was shown in /3/ that in shells of positive curvature the frequency 

of vibrations does not increase with the increase of t a s  long a s  t(0.5, 

. and r ema ins  commensurable with ($>". while a t r>0.5 the frequency 

inc reases  with the increase of +. 
a t  r h 0 . 5  we shall  obtain p 2 > l ,  i. e . ,  condition ( 6 )  will be satisfied. 

finally obtain 

If thus we obtain a t  ~ < 0 . 5  that p' = 1, 

Having determined LO, we find the meridional displacement u.  We 

w (0) = (COS O)-"'(A, sin b9 + A, COS be + A, sh  b8 f A, ch 68 + As),  

u ( e ) = ( C O S O ) - " ' ( l  + V) [ -AA,cosb~+.? ,s lnbO+A,chbB+ ( 1 9 )  

f A,sh be + ( 1  - y)-' A 5 [ 2  -ppa( l  - .)]e + A ,  I 
Here a =  ?i In the formulation of the final solution (1 9 )  we have 2 -- = *  

discarded the redundant solutions due to the increase of the o rde r  of the 
differential equation realized in o r d e r  to find the axisymmetrical  vibrations 
of the spherical  shell. 

obtain the frequency equation (F igu re  2). 
By satisfying with the aid of ( 1 9 )  the end conditions 5=0,, b=0,, we 

Note that this s ame  re su l t  can be obtained directly f rom system (1 ) with 

Consider the axisymmetrical  vibrations of a spherical  shell .  
the aid of the same  substitution a s  before: R,=R,=A=R, .. 

We shall  
r ep resen t  the solution in the fo rm 
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After the substitution of ( 2 0 )  in (1 ), we find noncontradictory values 
of the intensity indices p + 2 = A .  
coefficient of the higher power of k ,  we obtain 

Writing : = 0.25 and equating to zero the 

y41)" -- EhRj"2wo = 0. 

whence follows f 4  ( p *  - I j = 0, i.e., p' = 1. 
Taking T = 0.5, we obtain instead of (21) the following system: 

from which follows ( f " - p ' +  I)f '"=O, where p2>1. 

shell be closed relative to the axis  of revolution and undergo axisymmetrical 
vibrations. 

Consider an arbi t rary shell of revolution of positive curvature. Let the 

By substituting in equations (1 ) A = R,. R -  R, s i n  a ,  we obtain 

We shall represent the solution corresponding to (1 ) and (23)  in the 
form ( 2 0 ) .  Then, writing 7 = 0.5, we obtain the following system instead 
of ( 2 2 ) :  

from which i t  follows that 

The integration of the f i rs t  equation of ( 2 4 )  yields 

In order to calculate this integral i t  is necessary to specify the shell 
shape, i. e., the functions R, (a), Rz (a). 
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VIBRATIONS OF A SPHERICAL SHELL UNDER THE 
ACTION OF A CONCENTRATED FORCE 

A.A.  M a n a s y a n  
( M O S C O W )  

The case of a concentrated force P is usually treated a s  the limiting 
case of a distributed load of intensity q, equal to zero  everywhere except 
on some portion S of the surface, so that l i m  Sq= P. 

Unlike the studies with discontinuous transition to an infinite intensity, 
we consider here  the concentrated force a s  limiting case of a load con- 
tinuously distributed over the surface, which tends to zero  everywhere 
except at the zero point, where i t  tends to infinity. 

The initial equations of motion of a shell element a r e  obtained from 
the equilibrium equations given in 111, with inertial  t e rms  added. After 
elementary transformations these a r e  reduced to the following form: 

3 -0 

where 

z P - - ,  
z -  R 

where 'I is the specific weight of the material. 
have the same meaning a s  in / 11. 

two equations containing only w and 0, and the third one only x .  

The remaining symbols 

Note that the system splits just  a s  in the problems of statics, the f i rs t  
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We shall  determine the solution of (1 ) for z e r o  initial conditions. 
The fo rces  a r e  given in the following form (see figure): 

The inertia forces  acting on the system a r e  equilibrated by the external 
loads, so that 

FIGURE 

In the limiting case k-oo we obtain the solution corresponding to the 

The problem is solved by the Fourier  method, i. e. ,  expanding by the 

The eigenfunctions a r e  in the general  case 

case  of a concentrated force. 

eigenfunctions. 
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I 

( 3 )  
(cont'd) 

where 

Pn (x)= -- - d" (x2- a r e  Legendre polynomials. Taking into 2" n !  dxn 
account that V ' Y n e - n  @ + I )  Y,,, we easily obtain, after separating the 
variables from the homogeneous equation corresponding to (1 ), the 
following characteristic equation: 

where 
a n  = - tI (tI + I J- I - 3 ~ ,  

b n = -  1 - 3 ~ ~  t~ (n+ 1)+1 - V]  j2- n tnf1)l. 

c n = -  I C 2 I t  ( r t i - l )+ l+  V I .  
&=c' In ( n + l ) - l + ~ ]  [2- t~ (12 -t 1) J .  

Note that a t  C' = 0 we obtain from (4) the frequency of a spherical shell 
obtained f i r s t  by Lamb / 2 / .  

The solution of the nonhomogeneous system ( 1 ) a t  the given loads ( 2  ) 
will be represented in the form 

en= Ikl (AI, n )  M'."' (t) + h, / ~ z .  n )  M',' (t/'] P, (COS K ) ,  

( 5  1 Wn - = Ik, ( A I ,  JM!? (4 4- k, (Az, ,J M? (f)] P,, (cos a). R 
Here 

k, (j.1, = - 6, -- dn - . 
k, (h, n ) = a n  + ~n -t a'pA?,n . 

It is easily obtained that at  load ( 2 )  

p ( f )  k cosk a, 

Pe E 

I O, 

Expanding P,, Pe in se r ies  of the form of (5 ) ,  designating the expansion 
coefficients by ff,?(t), and noting that /3/ 
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& ' ( k - 2 ) * - * ( k  - n + 2 )  
( k  + ~t + I ) ( &  + n-1). * .(k+3)(k+1) 

k ( k - l ) . * . ( k - n  + 1 )  
( k + n + l ) ( k + n - - l ) . .  . ( k + 4 ) ( k + 2 )  

we find 

for  even n, 

(6) 
for odd n, 

I 

In o r d e r  to sepa ra t e  the quasistatic solution f rom ( a ) ,  we integrate  
twice by p a r t s  and obtain 
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The te rms  in ( 9  ) which do not contain trigonometric functions of the 
time represent the quasistatic solution of the problem. 
improve the convergence of these ser ies  it is possible to apply the existing 
methods of static solution. 

If P ( 0 )  = 0, the te rms  containing cos Ai3,, t and having the same order of 
convergence a s  the static solution become equal to zero. The remaining 
te rms  converge more rapidly than the static solution, having a convergence 
order A1,"-na. 
a r e  sufficient. 

In order to 

In practical calculations the f i rs t  three te rms  of the ser ies  

Taking into account that 

Ilm k COSk (L = lW for a = 0. 
I O  for U+O. k -  - 

we obtain from solution ( 9 )  the solution of the problem under the action of 
the concentrated force P ( t ) :  
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AXISYMMETRICAL BENDING OF A THICK CIRCULAR 
SANDWICH PLATE 

A . P .  M e l k o n y a n  
(Yerevan) 

The problem of the bending of a thick circular sandwich plate, made 
of layers  having different moduli of elasticity, under an arbi t rary axi- 
symmetrical  load applied to the upper base is treated. The modulus of 
elasticity is considered a s  constant within the l imits of each layer.  It 
is assumed that the materials of the three layers  have the samePoisson 
ratio. 

Let a thick circular plate of radius n and of layer thicknesses a,, a,, 
and 3, be loaded by a la teral  axisymmetrical load of intensity p ( r )  applied 
to the upper base of the plate, and le t  each of the three layers be likewise 
thick. Let the moduli of elasticity of the three layers be E,, E,, and E,, 
and le t  their Poisson ratios be equal to the same value Y .  The subscript 
1 shall re fe r  to all  magnitudes corresponding to the upper layer, the 
subscript 2 to the magnitudes corresponding to the middle layer, and the 
subscript 3 to those corresponding to the lower layer. 

We select the cylindrical system of coordinates a s  shown in the figure. 

t t  
FIGURE, 

The solution of problems of axisymmetrical deformation of bodies of 
revolution reduces a s  known 111 to determining a s t r e s s  function cptr, z )  
which satisfies the equation 
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The s t r e s s e s  and displacements a r e  expressed by the following relation- 
ships through 7 ( r ,  P) / I  /: 

We select the stress function p(r ,  z )  corresponding to  each l aye r  in the form 

+ 2 Jo ( (ok  r )  [A: Sh wk Z C Bi ch ~ l r  I + CiZ ch U I , ~  Z + DLZ S h  (4)b 2). ( 3 )  
b - l  

where J o ( W k  f )  is a ze ro -o rde r  Bessel  function of the f i r s t  kind; wk = -!k. 
a '  

pk a r e  roots  of the equation J n ( p k )  = 0; i = 1, 2, 3 for the upper, middle 
and lower layers ,  respectively; m is a constant, whose value l i e s  in the 

range 5 < m .s: ___ " + " ; the value of m in each par t icular  ca se  is determined 

by the Dosition of the circle  on the l a t e ra l  surface along which the plate 
is fastened. 
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The substitution of ( 3 )  in ( 2 )  yields: 
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- 2 (1 -- 2V) Sh W k  L+D: [ W k  Z S h  W k  Z -2(1 - 2 Y )  Ch Wk 2)). (9 1 
The fourteen coefficients A i ,  Bi, C:, DA, F ,  and H a r e  determined from 

the boundary conditions and the conditions of connection a t  the planes of 
contact of the layers.  

In view of the absence of shearing s t resses  on the upper and lower 
boundary planes of the plate, the boundary conditions on these planes 
will be 

z = - 8  

z = E, + 6, 
a(1) = - p  ( r ) ,  TU) = 0.  

I.? 1 

(10 )  
T(3) = 0 

r z  az3) = 0, 

We require that the load p ( r )  be representable in a Fourier-Bessel 
series:  

a 
P 

JP ( r )  Jg  W k  f )  d f .  
2 p ( f )  = 2 K k  Jo ( W b  r) .  where K k =  

k - I  azJ: ( P k )  
0 

I ,  is a first-order Bessel function of the f i rs t  kind. 
Assuming that the s t r e s s  and displacement vectors vary continuously 

across  the plane of contact of the layers,  we obtain the following conditions 
on the planes of contact: 

It follows from the compatibility conditions (11 ) and ( 1 2 )  that the co- 
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where 

By using the conditions on the planes of contact we have thus reduced 
the number of unknown constants f rom fourteen to six: A f J ,  BL2), CfJ, D f " .  F ,  
and ) I .  

The boundary conditions ( 1 0 )  and relationships (13 )  and ( 1 4 )  lead to 
a system of four algebraic equations relative to the coefficients of the 
middle layer  A t ) .  BL2). Cf), 0:). The solution of this system yields 
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Having the values of the coefficients A;?, B f ) ,  Ch'), Di'), we determine by 
( 1 3 )  and(  14) the values of the coefficients for thef i rs tandthird layers, 
respectively . 
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Consider the case when the plate is built-in along the contour. * We 
require that the la teral  conditions be satisfied not along the entire cy- 
lindrical surface restricting the plate, but only along some arb i t ra ry  
circumference, i. e. ,  

( 2 1 )  a t  r =a, z = m 4  we have: I(('> = 0, 1') = 0. __ h(') =o. 
dr 

Here i = 1, 2, 3 depending on the value of m. 

condition of ( 2 1  ) is satisfied identically) and have the form 
The constants F and H a r e  determined from conditions ( 2 1 )  (the second 

2 1 + v  1 - 
F=----Z wk 4 (P,) !Abi) w, ch mp,+ R f ) w ,  sh mp, + a 1 - v El b-*  

+ CL') (cfi mP, + m?, sh mP, ) + DF (sh mp, + m8, ch m?, 11, ( 2 2 )  

+ Cg"[mBRchmp,-22(1-2v)shmp,] +Dbf) [mp,shmpb-2(1-2v)chm~,j). ( 2 3 )  

Solutions for the cases  of two-layer and one-layer circular plates can 
be obtained as  particular cases  of the solution obtained. 

1. T i m o s h e n k o ,  S.P.  Theory of Elasticity.- ONTI. 1937. [Russian 

2. M e 1 k o n  y a  n , A. P. Osesimmetrichnyi izgib dvukhsloinoi tolstoi 
edition. ] 

krugloi plity (Axisymmetrical Bending of a Two-Layer Thick 
Circular Plate),  - In: Sbornik nauchnykh trudov Erevanskogo 
politekhnicheskogo instituta, No. 20. 1959. 

Sandwich Thick Plate). - Izvestiya AN ArmSSR, ser iya 
fiziko-matematicheskikh nauk, No. 5. 1962. 

3. M e l k o n y a n ,  A . P .  Izgib trekhsloinoi tolstoi plity (Bending of a 

The  case of simply supported plates isnot treated here in view of the l imited scope of the paper. 
** In view of the  limited scope of the paper, the results of the corresponding calculations are not given here. 

For the case of a supported plate, they are similar to the  results obtained for simply supported rectangular 
thick sandwich plates /3/. 
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S T A B I L I T Y  OF A CYLINDRICAL S H E L L  IMMERSED 
I N  A RESTRICTED FLUID MEDIUM UNDER 
DYNAMIC LOADING 

+ is_L 

- 4  

1 
E . N .  M n e v  

(Leningrad) 

P O  as  potential. The space occupied by the 
4 J 4 J fluid h a s  the fo rm of the hollow between 
0 two coaxial c i r cu la r  cylinders.  One wall 

of the hollow is formed by the thin-walled 
shell, while the other one is absolutely 

-'W- ~ rigid.  The upper end of the shell  is 
situated a t  a distance I ,  f rom the free 
surface (figure),  and the lower one co- 
incides with the bottom of the hollow. 
p r e s s u r e  p o  variable  with t ime acts on 

A 
i 

A?. 
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area,  and po = -!% the dimensionless pressure.  

and the coordinate origin a r e  shown in the figure. 

The positive directions 
E P  

We represent the initial deflection of the shell win in the form 

win:= ginsin k x  cos no ( 1 )  

and the deflection w in the form 

Here q j =  y j ( t )  a r e  deflection parameters,  used in what follows a s  
generalized coordinates, and 

fi = sin kx. f 2 =  ( s i n k x -  8 (3) 
f3 = sin k x  cos ne 

a r e  mutually orthogonal functions of the coordinates. 
conditions of hinged support a r e  not fully satisfied. 

both the precrit ical  and the post-buckling shell deformation. fi and fi a r e  
near to the modes of the first and third tones of the fundamental vibrations 
of the shell in the liquid; 
by ( 3 )  coincides with the well-known solution 1 2 1 .  

by the shell deformation. 

pu  (the pressure caused by the shell vibration) a t  r =rl  with the velocity 
potential 9. 

The boundary 

The approximation ( 2 )  used for the shell deflection satisfactorily reflects 

the static lower critical pressure calculated 

We proceed to the determination of the hydrodynamic forces caused 

Using the Cauchy-Lagrange integral, we connect the radiation pressure 

In the linear approximation 

The function m must satisfy the Laplace equation and the boundary conditions 

Neglecting the wave motion on the free  surface of the liquid (the energy 
of the wave motion is small  compared with the total energy of the system) 
we write 
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We rep resen t  7 a s  sum of harmonic functions: 

'P = 91 f 9 2  f 'PS. 

Let  (pl satisfy conditions ( 5 )  and ( 6 ) ,  and l e t  i t  satisfy conditions ( 7 )  
"on the average": 

r sf$] rdr=O 
x=1 

r, 

This  l a s t  condition corresponds to the equality to z e r o  of the r a t e  of 
discharge of liquid through section x = 1. 

We subject (p2 to the conditions 

( 9 )  

It follows that (p3 must  be a solution of the boundary-value problem 

where V* is the Laplacian. 
Let us  write 

- d  
'pl = - 2 - amn (t)  sin mkxcos ne F .  (Fm) + 

m-1 .-odt 

Here  a r e  expansion coefficients of the function ~ ( x ,  8, t ) i n  a Fourier  
series by sinmRxcosn0. We represent  (p2 and (p3 a s  s e r i e s  

" 

7 2 =  2 2 blA1".  

(p3 = 2 2 clnBl": 

I - I  n - 0  

m a ,  

1 - 1  n - 0  

61" ( t ) ,  cln ( t )  a r e  coefficients which remain to be determined, and 

Sh u ~ i n  ( X  - I,) 
w i n c h  win ( 1  - 1,) 

Aln = €1" cos ne, 

Here 

b n ( r )  and (07" a r e  normalized eigenfunctions and eigenvalues of the 
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boundary-value problem 

I,, K,, a r e  Bessel  functions of a purely imaginary argument.  
stands for differentiation by r .  
of functions in the region l imited by circumferences of radi i  rl and r, . 
Equation ( 1 8 )  is solved in Bessel  functions of a r e a l  argument.  
harmonic functions AI. satisfy the conditions for (p2 a t  r = r,, r = rZr  andx = l1 
It follows that the coefficients bin must  be selected in such a way a s  to  
make series (13 )  sat isfy the conditions for va a t  x = l .  Calculating bin, 
we obtain 

The pr ime 
tin form a complete and orthogonal system 

The 

The coefficients cln a r e  found from the boundary conditions for 
(the remaining conditions for  
in the form (1 6 ) ) .  

a t  x = II 
a r e  satisfied by selecting the functions Bin 

We find 

If the f r ee  surface of the liquid coincides with the upper end of the shell  

It follows from ( 1 2 )  and (13), when the deflection 
(II = 0). then [rplIx- = 0 and therefore 'p, = O .  Only this case will be con- 
sidered in what fol lows.  
w is given by ( 2 ) :  

where 
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Here 

at m = 3, 5, 7 . .  . .. .___ 24 
(m - 2) m (m f 2) (3x - 8) 

_. - 
6, =I 

I 0 a t  even m 

a r e  expansion coefficients of the function f, in a Fourier ser ies  by sinmkx. 
The work of the radiation pressure and the inertia forces on the dis- 

placement w is equal to 
2x I 

A, = j' J (p. - msp~) r,dxdB. ( 2 5  1 
o n  

Using the relationships given we obtain 

where 

It is easily shown that 

Iim alij = M and tim azii 1 0. 
b L 0  AT-0 

Since T~, i s  independent of the gap magnitude Ar, we can write the 
following asymptotic equality: 

3 3  

1-1 1-1 

A"- -z x q 1 q i u l i j  (A;-0). ( 2 8 )  

The e r r o r  in the solution due to replacing the exact boundary conditions 
a t  x = I by the approximate conditions ( 9 )  and by neglecting the inertial 
properties of the shell must therefore decrease with the decrease of the 
radial dimension of the annular hollow and with the increase of the shell 
length. 

W e  shall use in what follows the assumption that the radial clearance 
is small (IT<< 1). 
free" shell model and on boundary conditions (9  ) ( in  this case 921  = 0). 
calculations of [+lJ,-,, a r e  simplified by the use of the asymptotic formulas 

It is then possible to base the calculations on the "inertia- 
The 
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In the case of small radial clearance (in the sense explained above) the 
equations of motion of the shell in dimensionless parameters,  obtained by 

Here i, = g i 3  : = hf is dimensionless time, 
h 

The coefficients ( I k s  in ( 3 4 )  depend only on the value of the dimensionless 

An analysis of the structure of system ( 3 2 )  shows that i t s  solution is 
parameters q and n. 
independent of the radial dimension of the annular hollow A;. 

shell parameters only the time scale mi. whichis proportional to - , will 

vary with the variation of the clearance. 

vibrations of the system a r e  proportional to bfG, while the impulses of 
impact load leading to buckling a re  inversely proportional to it. 
conclusion has been corroborated experimentally in experiments with 

steel shells r,=O.785, h = -  with hr varying from 0.044 to 0.350. The 

value of the impulse leading to buckling was determined in the experiments 
by gradually increasing i ts  value up to the moment of appearance of con- 
siderable elastic deformations in the shell. 

At  fixed 
1 

C r  

If follows in particular from here that the frequencies of small natural 

This 

- 

(- - 150 ' >  
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Equations ( 3 2 )  were solved for the case  of action on the sys t em of an  

The r e s u l t s  of the calculations satisfactorily ag ree  with experimental  
impact  load of p r e s s u r e  p a .  

r e su l t s .  
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VIBRATION MODES IN  T H E  P R O B L E M  OF THE 
SUPERSONIC F L U T T E R  OF P A N E L S  

A . I .  M o v c h a n  a n d A . A .  M o v c h a n  

(Moscow) 

The characterist ics of the natural modes of vibrations of panels in the 
flow of a supersonic gas stream can now be determined, thanks to the use 
of high-speed digital electronic computers. 
common to panels of different shape in the plan, wil l  be represented here  
for simplicity relative to the simplest equation 

Some of these characteristics, 

where w ( x ,  t )  is the deflection of the panel occupying a region in the form 
of a strip; 
which the external damping exceeds the aerodynamic damping, calculated 
by the well-known formula of the piston theory 11 1; all  the other symbols 
coincide with those used in / 2 /  (the panel moves in the direction of the 
positive x axis). The solutions of (1 ) satisfying the boundary conditions 
a t  the ends x=O, x=a  a re  compared below with monochromatic waves / 3 /  
of length a 

0 < x - < a ,  E is  a dimensionless number indicating the factor by 

which satisfy the homogeneous equation corresponding to (1 ), but not the 
boundary conditions a t  ends x=O, x=a. 
waves ( 2 )  is obviously given by the formula 

The velocity of propagation of 

a 

We introduce the dimensionless magnitudes: 

( 3 )  

We shall represent them by the same symbols x,  w,  t a s  the corresponding 
dimensional magnitudes. Consider disturbed panel motions of the form 

w ( x ,  9 = x ( x )  P'f . ( 5 )  
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The right-hand part  of ( 5 )  can, generally speaking, be a complex function 
of the real  variables x, t ,  sin& the frequency u i s  complex: 

U = p + Iq. ( 6 )  

Separating the rea l  and imaginary par t s  in ( 5 ) ,  we obtain the real  
disturbed motions 

w (x, t)  = R e  [X (x)e'uf], Im [ X  ( x )  e w f ] .  (7) 

At 4 9 0  we shall call these motions the natural vibrations of the panel in 
the gas s t ream. The function X ( x )  in ( 5 )  is an eigenfunction (nontrivial 
solution) of the boundary-value problem 

L1 ( X )  -0, i = 1, 2, 8.  4. 

where LI (X) represent l inear homogeneous boundary conditions at  the 
ends x = 0, x = 1 ,  and the dimensionless parameters  A, A a r e  linked with 
the problem parameters by the formulas 

By forming the combination 

of four linearly independent solutions XI (x, A ,  A) of equation (8  ) and satisfying 
the boundary conditions 

I 
2 cj X/(X, .4, A), 
j-1 

we obtain the following equation for determining the eigenvalues I . :  

The left-hand part  of this equation is a whole analytical function of the 
parameters  A ,  X. 
solution C, of system (1 1 ) and one eigenfunction (1 0 ) .  
u) corresponding to this function a r e  found from the equation ioz f Bw + A =0:  

To each root A of ( 1 2 )  there corresponds at  least  one 
The frequencies 

If the eigenvalue X is a simple root of ( 1 2 ) ,  there corresponds to i t  
If the eigenvalue only one (up to a constant factor) eigenfunction X ( x ) .  

is a double root of equation (1 2 ) and the rank of matrix (1 2 )  is equal to 
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two, then two l inear ly  independent eigenfunctions will correspond to it; 
if the r ank  of the ma t r ix  is three, only one'eigenfunction will correspond 
to it. In this case the completeness of the solution necessi ta tes  a con- 
sideration of the solution 

w ( x ,  f) = IXW ( x )  + f X ( x ) ]  ewr .  (14) 

where X , , ,  ( x )  is a function attached to  the eigenfunction X ( x )  14, 5 1 .  

represented in the form 
Every  eigenfunction .Y (s) of the boundary-value problem ( 8 )  can be 

x ( x )  = x, ( x )  + i x, (S). (15 )  

where X, ( x ) ,  X, ( x )  a r e  r e a l  functions. 
divide the segment OS x < 1 into a finite number of intervals,  in each of 
which the function (1 5 ) can be represented in trigonometric form: 

The z e r o s  of the eigenfunction (15 )  

x ( X )  = 1 x (x) le''+(X' . ( 1 6 )  

The argument  -$ ( x )  in each of these intervals is a continuously differentiable 
function of x ;  
be discontinuous . 
call  the eigenfunction ( 1 5 )  in this ca se  (conventionally) r ea l .  
s een  that for  a function r e a l  in this sense the condition -)I ( x )  = const is 
satisfied on each of the intervals of continuity of 9 (x ) .  

we shall  cal l  the corresponding eigenfunction a complex eigenfunction. 
is 'easi ly  seen that in this ca se  the condition + (x)#const is satisfied in 
each of the continuity intervals of +I (x). 

p a r t s  we obtain that the natural  vibrations ( 7 )  are given by the equalities 

a t  the end points of the intervals JI ( x )  is not defined and may 

Let  the functions X I  (x), X2 ( x )  of (15)  be l inearly dependent. We shall 
It is easi ly  

If, on the other hand, the functions X, ( x ) .  X? ( x )  a r e  l inear ly  independent, 
It 

By substituting ( 6 )  and (1 6 )  in ( 5 )  and separating the real and imaginary 

w ( x .  t ) = I X  (x)(cos [d,  ( x ) + q t I  e p ' .  

w (i, t )  =\X ( x )  Isin [+ ( x ) +  qfj epf 

In the case of a r e a l  eigenfunction X ( x )  the condition 9 ( x )  = const 
is satisfied in the intervals of continuity of + ( x ) ,  so  that the natural  
vibrations (1  7 )  can be called in that case standing waves. 

is fulfilled in the intervals of continuity. On the strength of the analogy 
with functions (2) ,  the natural  vibrations (17)  can be called in this ca se  
traveling waves. The dimensionless velocity of propagation of the traveling 
waves ( 1 7 )  is determined by the formula 

In the case of a complex eigenfunction X (x)  the condition + ( x ) +  const 

-4 / ( d +  ( x ) / d x ) .  

Taking symbols (4) into account, we obtain the dimensional velocity of 
propagation of the traveling waves ( 1 7 ) :  

which is exactly equal to the velocity of propagation of the nodal l ines  along 
the panel ( the derivative d+ ( x ) / d x  in the right-hand p a r t  of (1 7 )  is taken by 

642 



the dimensionless parameter x) .  
along a panel fastened by the edges is generally speaking different in the 
different points of the panel. 

basis of (1 ), is possible only for those complex eigenvalues k of the 
boundary-value problem (8  ) which actually exist a t  the corresponding 
values of the velocity A 121.  
value problem (8  ) there corresponds a complex eigenfunction ( 1 5  ) and 
natural vibrations ( 1 7 )  in the form of waves traveling along the panel. 
follows that natural vibrations in the form of traveling waves a r e  a typical 
phenomenon for the panel flutter; this conclusion has been corroborated 
by the experiments 16, 71.  The theoretical quantitative study of the pattern 
of the traveling waves ( 1 7 )  a t  flutter, linked a s  a rule with much calculation, 
has become possible a s  a result  of the introduction of high-speed computers. 

With the exception of the case when the rank of matrix ( 1 2 )  is less  than 
three, the eigenfunction (10 ) can be found by the formula 

The velocity (18 ) of the waves traveling 

Panel flutter (natural vibrations ( 17 ) in the case p > O ) ,  observed on the 

To the complex eigenvalue 1. of the boundary- 

It 

.Y ( x )  = C, e-'= sin pn + C, e-"" cos px + 
+ C, e"" sh 7.x + C, enx ch ~ x ,  (19) 

where 3, p satisfy the corresponding transcendental equations 1 2 1 ,  and the 
constants C, a r e  determined for hinged edges x = 0, x = 1 by the equalities 

-Ij C , = e a [ a ~ c h ~ + ( z z - ~ z - k n ~ ) s h ~ ] - a ~  P cosp, 

( 2 0 )  
C, = a (e-" -I sin P-sh y e" p). 

C x -  - e-a [ @ ' ~ - a a 2 + k ~ Z )  s l n p - a p c o s ~ ]  + a ?  e' ch7, 

c, = -- c,. 
and for built-in edges n = 0, x = 1 by the equalities 

C, = (e7" ch 'I- cos p) 7 -2 a e2I sh  7 ,  

-- p ezz shT, 
C, = 7 sin - p e** sh 7 ,  ( 2 1 )  

C, = p cos 4- 2a sin 
c 4 -  --c,. 

Here 'I = VFr-2z2 + 2 k d  (in the case of equation (1 ) we must write k = 0, 
cf. the symbols in 1 2 1 ) .  

The process of finding the eigenfunctions X ( x )  consists f i rs t  in solving 
fairly complex transcendental equations relative to the parameters a. p 
(which a r e  complex numbers in the case of complex A ) ,  and then in using 
formulas of the type of ( 1 9 ) ,  ( Z O ) ,  and ( 2 1 ) .  
accuracy, which drops sharply when numbers of large modulus and similar 
value a re  subtracted from each other, the te rms  in these equations should 
first be regrouped. 

We give below the resul ts  of the calculation of the vibrations of a plate 
built-in a t  the edges x = 0, x = 1, performed on a "Strela" computer. 

The rea l  eigenfunctions, corresponding a t  A =  0 to the first two single 
eigenvalues A, = 500.6, k2 = 3804, a r e  represented in Figure 1. The 
corresponding natural vibrations have the form of standing waves. A t  
A = 636.6 there corresponds to the coinciding eigenvalues A+.,= 2741 
only one eigenfunction X ( x ) ,  represented in Figure 1; 

In order to preserve the 

the corresponding 
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natural vibrations have the form of standing waves. 
value 
solution (14);  

numbers. Figure 2 represents the real  ( to  the left) and imaginary (to the 
right) par ts  of the complex eigenfunction corresponding to the f i rs t  eigen- 
value = 2866 -i772.7 at  A = 700, to the first eigenvalue A, = 56,849 - 
- i78,367 at  .4 = 10,000, and to the f i rs t  eigenvalue A, = 137,511 -i206,656 
a t  A = 20,000. Figures 3 and 4 represent the functions [ X ( x )  1 and $ ( x ) .  
Knowing the eigenvalues and the functions I X ( x )  1. Q ( x )  corresponding to 
them it i s  possible to calculate the form of w ( x ,  f)which the traveling 
waves (17) adopt a t  different time moments. 
graphing these forms on a film we obtain a multiplication film from which 
a clear opinion can be formed of the pattern of the traveling waves (1  7 ) . 

To the double eigen- 
=h,=2741 there corresponds also the attached function X,,,(X) and 

the form of this function was not determined by us. 
At A>636.6 the first  two eigenvalues A,, A2 become complex conjugate 

By successively photo- 

R e X ( x )  Im X ( x )  

A=zonoo 

FIGURE 1. FIGURE 2. 

The waves traveling against the stream a r e  damped. The panel flutter 
i s  formed of waves traveling downstream. 
A the maximum amplitude of the waves (17) is shifted sharply toward the 
back end of the panel; 
171, i t  having been established that panel collapse a s  a result  of the flutter 
always s ta r t s  from the back edge. Another interesting conclusion is the 
difference between the amplitude distribution of the traveling waves (17) 
investigated, which satisfy the support conditions a t  the ends, and that of 
monochromatic waves of the type of ( 2 ) .  The calculations show that for 
the panels of practical interest  the minimum velocity of the waves (17) 

With the increase of the velocity 

this conclusion is corroborated by the experiments 
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is small  compared with the velocity co of sound in the gas. 

f n-20m 

FIGURE 3.  FIGURE 4. 
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QUALITATIVE ANALYSIS OF THE MEMBRANE 
SOLUTION 

N .  F .  M o  r o z  o v 
(Leningrad) 

The so-called membrane equation of a circular thin plate, 

32,~' ( ~ p ) "  - 1 = 0, ( I ) *  

is studied; here  O,<x < 1,and p is proportional to the radial force per unit 
length and of opposite sign. 

Three possible boundary conditions exist a t  x = 1: 

- p ( l ) = T > O  (a); p ( 1 ) = 0  ( W ;  2 p ' ( I )  f ( l - a ) p ( l ) = O  (c). 

corresponding respectively to extension on the contour, absence of chain 
forces on the contour, and absence of radial contour displacements. 

in the form of the exponential se r ies  
Following Hencky 121,  we look for a formal solution of the equation 

. m  

Substitute ( 2 )  in (1). All the coefficients an a r e  then determined through 
a, by the recurrent  formulas 

2 a, = -' 5 - .  . etc. 1 a 
ai ' 30, 1 -  (3) 

It is required to establish the possibility of a selection of u, satisfying the 
boundary condition a t  x = 1, and to prove the convergence of the ser ies  
ob t aine d . 

1.  STUDY OF PROBLEMS ( 1 ) - ( a )  and ( 1 ) - ( c )  

It was obtained in 1 3 1  that the solution of problems (1) - (a ) ,  (1)-(b) ,  
and (1 ) -( c )  is nonpositive. The uniqueness of the solution of these 
problems was proved in 141; this paper also proved that there exist 
solutions of problems (1 ) - ( a )  and (1 ) -( c )  in the class of twice continuously 
differentiable functions. 

. 

The equation i n  this form is taken from Bromberg /I/. 
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We proceed for problems (1 ) - ( a )  and (1 ) -( c )  to the integral equations 

We shall consider equation (4a) only (the results obtained fog (4c) a r e  
similar). 
we obtain 

Following / 4 / ,  we make the substitution of variable p = p + 7 ;  

- 
It was proved in /4 /  that there exists a continuous nonpositive p , ( x )  

Consider the space of 1 exponential ser ies  of the form v=~C,,x" ,con-  

which satisfies equation ( 5 ) .  
m 

n-0 
verging on segment [ O . l ] .  We introduce a norm by the rule  - 

Ilv II I = I c, I. 
" - 0  

The space obtained is a Banach space. 
Consider se r ies  satisfying the conditions: 

m 

1) Cor-o, 2)  cock < 0 for a l l  k from one to infinity, 

These ser ies  form a cone Kin space 1 .  
Let SR be a sphere in space 1 .  

3 ) I Co I > 2 c.. 

KR is convex, being the 

k-1  

KR = S R  n K . 
intersection of two convex sets.  
O convert the set  KR" into itself. 
in space I .  
solution from set  K R ~ :  

We can select R = Ro so that the operator 
The operator O is completely continuous 

We obtain then by Shauder' s principle that equation ( 5  ) has a 

m - 
Po ( x )  = 2 CnX". ( 6 )  

"=O 

The solution of problem (1 ) - (a )  (and of problem (1 ) - ( c )  a s  well) can 
therefore be always represented a s  an exponential se r ies  converging on 
segment [0, 11 and satisfying the boundary condition at  n = 1. Substitute 
( 6 )  in (1 ) and select  ao=4Co. 
coincide then. 

The coefficients of s e r i e s  ( 2 )  and ( 6 )  
This ends the proof of the solution. 

2. EXISTENCE OF A SOLUTION OF PROBLEM ( l ) - ( b )  

Let xp  = K ,  then equation (1 ) is transformed to 
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with boundary conditions u(0) = u ( 1 )  = 0. 
the integral equation 

Problem (1  ) -(b) reduces to 

- 
Take u, = - n (1 - n)  ’ and consider the process of successive 

4 
approximations 

It can be proved, in the same way as in /5 / ,  that u l ( x ) 9 i i 1 ( x ) 9 u S ( x ) . . . 9 O  
and Un converges uniformly to u o ( x )  on segment [0, 11, with uO(x)<O for 
x a o ,  1). 

3 .  STUDY OF ‘PHE PROBLEM ( 1 )  - (b)  

Consider an arbi t rary x1 ( O < x , < l ) ;  since uo(x, )<O,  then u o ( x )  
a s  a solution of problem ( 1 )  - ( a )  can be represented on segment [0, xl] 
in the form of an absolutely convergent power ser ies  of type ( 6 ). 

We shall now examine the solution u o ( x )  in the vicinity of the point x = 1 
It can be obtained from equality ( 8 )  that for all  llnll 

where Yn(X) is continuous on [0,1], then V , ( x )  converges uniformly to U o ( x )  
and 

- 
u 0 ( x ) =  - = x ( l - x ) ~  4 V , ( X ) .  ( 1 0 )  

Continuing our study of integral equality ( 8 ) ,  we obtain 

We can finally write for p ( x )  formulas of asymptotic character a t  x 
tending to unity. 

The resul ts  obtained justify the form proposed by Bromberg / 1  / for 
looking for the solution of problem ( 1  ) - (b) .  
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4. MECHANICAL MEANING OF THE RESULTS 
OBTAINED 

Several  qualitative conclusions relat ive to the deflection functions and 
the s t r e s s  function of the membrane can be drawn from the symmetr ical  
solution ( 6 ) .  

In the case  of a constant positive load the function of symmetr ical  
deflection is positive and convex. 

The r ad ia l  and circumferent ia l  s t r e s s e s  in the case  of symmetr ical  
deflection and boundary conditions (c)  are positive for a l l  points of the 
membrane and the membrane is in a s t a t e  of all-round extension. 
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NATURAL VIBRATIONS OF SANDWICH PLATES  
RECTANGULAR IN THE PLAN 

V . N .  M o s k a l e n k o  
( M O S  cow ) 

This r epor t  deals with the problem of natural  vibrations of e las t ic  
sandwich plates rectangular in the plan, 
equations of the theory of elasticity, and solutions based on var ious 
theories of sandwich plates, were established for  one class  of end con- 
ditions. 
obtained on the strength of approximate theories,  and conclusions relative 
to  the region of application of the approximate theories  considered were 
drawn on the bas i s  of this comparison. 
published in 111. We present  h e r e  r e su l t s  corresponding to the second 
pa r t  of the report ,  dealing with the application of Bolotin's asymptotic 
method / 2 /  to the problem of the vibrations of sandwich plates.  

An exact solution of the dynamic 

The exact solution obtained was compared with the solution 

The r e su l t s  obtained were 

1. INITIAL EQUATIONS 

F r o m  among the l a r g e  number of known approximate equations we shall  

Reissner '  s equations a r e  
consider only those of Reissner  1 3 1  and Grigolyuk 14, 5 1 .  

2 (ph + pl H) 8% AypAw= - .._. -, 
P ( 2 h + ~ )  r ( z h + ~ )  at* 

Ay  - ('  -- VI)- B ( 1 - 3 )  2 ,  

za ire Afj=>-. 0 -  -. 
P 1 ~ ( 2 h  + H ) Z  ai2 

p1 (2h+ H ) H  (' - w)f plH (Zh +H)* dr2 

p , ~  (212 + n) 

Grigolyuk' s equations a r e  
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( 1 . 2 )  
0 + (3 3 p h 3  + 2p,h2 H )  dt2 . (cont'd) 

Here g is a factor equal to ze ro  or unity. The case  g = 0 corresponds to a 
fi l ler  of negligible longitudinal rigidity (soft  filler), and the case  g = 1 to a 
f i l ler  possessing a longitudinal rigidity (rigid fi l ler) .  

2 .  APPLICATION O F  THE ASYMPTOTIC METHOD 

The problem of the natural  vibrations of a rectangular sandwich plate 
under different boundary conditions will be solved by Bolotin's approximate 
method / 2 / ,  which consists of representing approximately the mode of 
natural  vibrations as sum of the generating solution and of a s e t  of correct-  
ing solutions possessing the properties of an edge effect. If these solutions 
do not satisfy a r b i t r a r y  boundary conditions, the dynamic edge effect is 
called degenerate. 

The gen- 
erating solution( dropping the factor exp (id) will be represented in the form 

Let  a sandwich plate (Figure 1) vibrate with a frequency o. 

w = w, sin k, (x  - X O )  sin k, (y  - y o ) ,  

==y,, sin k, (x  - XO) sin k,(y - yo). ( 2 . 1  1 
0 = 0, COS k , ( ~  - X O )  COS k , ( y  - )fO), 

with the frequency UI linked with the wave numbers k,. k, by one of the formulas 

In the case  of Re i s sne r ' s  equations (1.1) we must  write 

s (2 - s)* 
E(I--,)  i ( 1 - q  +US] ' 

a, = 

2 1 
1 s ( 2 - s )  3 2 

- ( 1 - ~ ) 3 +  - US (2-s )~  
(2.3)  ai=-^ + ~ ( 1 7 )  + -2[(ixS) + 

2 1 
3 2 

2 - s  
1 

2- 2 

- ( 1 - s ) ~  + - US (2-S)Z 
s (2- s) , & - - - -  1 -. 25 , b----4, a2 =9 

In the case  of Grigolyuk's equations ( 1 . 2 )  we must  write 
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We proceed to the determination of the correcting solutions. 
represent the solution expressing the edge effect along the edge n = 0 in 
the form (omitting the factor exp (id): 

We shall 

w= W ( n )  s ink , (y  - y o ) ,  y = O(x) sin k,(y - y o ) ,  e= e ( x )  cosk2(y-y,). ( 2 . 5 )  

Substituting (2 .5)  in Reissner’s equation ( l . l ) ,  we find that the functions 
W, Q, 8 must satisfy the system of differential equations 

2 p d 
pi H (2 h + H I 2  

9” - & e =  2~ 8- e. 
PIN ( 2 h  + ff) 

The corresponding characteristic equation has six roots, two of which a re  
deliberately imaginary ( ~ 1 . ~  = 
conditions a t  the edge x = 0 it is necessary to have two roots with negative 
real  part. 
requirement of existence of two roots with positive real  part. 

ikl). In order to satisfy arbitrary boundary 

Similar considerations relative to the end x = a  lead to the 

FIGURE 1. 

The calculations show that the dynamic edge effect is always degenerate 
for the second and third frequency ser ies  ( I O = W ~ ,  

to the f i r s t  se r ies  of frequencies a r e  given by the formulas 
The roots corresponding 

2 2 2  2 2  
r: ,2=- kl ,  r3.4=pI, r6 .6=q11  

where 

2 k2 o:=k:+ 2 k i -  - (al - f ) a, k2, q:= ki $- - - 5 k2  a,. 
a, blT b* 
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The conditions that the dynamic edge effect is not degenerate a r e  

p ? > O ,  d > O .  
Only the second of these inequalities is essential .  
for the ends y = O ,  y = 6  lead to the requirement 9 i > O ,  and the region of 
absence of a dynamic edge effect is determined by the inequalities 

Similar considerations 

9: ‘20, d > O .  (2.8) 

The boundary of the region of degeneracy is represented in Figure 2 by 
a dotted line. 

K 

! 
O 

FIGURE 2 .  

Consider now Grigolyuk’s equations ( 1 . 2 ) .  In this ca se  the functions 
W ,  0, 8 must  satisfy the following system of differential equations: 

= Eh (rp - V) - ( p/,3 + 2p ,h2H)  w2 0 - plh H 2  w2 W, 
l + v  3 

( 2 . 9 )  

The corresponding character is t ic  equation has  eight roots,  two of which a r e  
deliberately imaginary ( T I ,  2= t i k , ) .  
conditions at x = O  and x = a we must  have three roots  with negative r e a l  

In o rde r  to sat isfy a rb i t r a ry  boundary 
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p a r t  and th ree  roots  with positive r e a l  part; 
effect is degenerate. 

the dynamic edge effect is always degenerate. 
to the f i r s t  series of frequencies a r e  given by the formulas 

otherwise the dynamic edge 

The calculations show that for the second and third s e r i e s  of frequencies 
The roots  corresponding 

and K,, x, a r e  roots  of the equation 

2 
T 

- - -  u, n,,) = 0. 

The conditions of absence of degeneracy of the dynamic edge effect will be 

Rep,-#O, Req,+O, Res,+O. 

Only the l a s t  inequality i s  essential .  Similar considerations for  the ends 
y = 0, v = b lead to the inequality Re s,gO, with the expression for s, 
obtained f rom the expression for s1 by interchanging h,, k , .  
equalit ies can be written in the following form: 

These in- 

s:>o, s%>O. ( 2 . 1 1 )  

The boundary of the degeneracy region is represented in Figure 2 by the 
unbroken line. The pa rame te r  k ,  is nea r  in magnitude to i ; /2 (h  4- M ) .  This  
value corresponds to the length of the half-wave of the generating solution 
of the o r d e r  of the plate thickness. 

3 .  NATURAL VIBRATIONS OF RECTANGULAR 
PLATES AT DIFFERENT END CONDITIONS 

Consider the natural  vibrations of a rectangular sandwich plate of 
dimensions a and b (F igu re  1) .  
and consider the following three types of boundary conditions 

We shall  f i r s t  apply the Reissner  equations 

1. t, = ts= uv = O  - built-in edge; 
2. M, = t = w  =O - supported edge; 
3. M, i=_ H,= Q =U - f r e e  edge. 

Here  in the case x = const: 

where 
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The functions W,  0, 0 have near the end x = 0 the form 

W ( X )  = uuo sin k ,  (x-x,)  1- AO e x p  ( - p , x ) ,  
4, ( x )  = wo f sin k ,  ( X  - x,) + A ,  y., e x p  ( -  pix), 

@ ( x )  = 5, exp  (- qlx). 
where 

Let  conditions (i) exis t  a t  .K = 0, and conditions (j) a t  x = a .  It is then 
possible to obtain from conditions (i) expressions for  A, R, through wo, and 
for k , x ,  through the wave numbers, and from conditions (j) an equation 
for determining k ,  ( a - x o ) .  Eliminating k,xo, we obtain the equation 

where 

In the same  way we obtain a second equation 

k b  m2 = - 2 -  = (arctg tl  +- arctg t, )+ m,, 
x ii 

( 3 . 2 )  

if  we have conditions ( I )  a t  y = 0, and conditions (m)at y = b .  The points 
of intersection of the two families of curves  defined by equations (3.1 ) and 
( 3 . 2 )  give the wave numbers  k, and k, ,  f rom which i t  is possible to 
determine the frequency w ,  the displacements, and the s t r e s s e s .  

value mus t  be determined in each particular ca se  on the strength of some 
auxiliary considerations. 

s=O.1, v=0,vI =0.3, u=lO, E =O.OOl] and to various edge conditions. 
l ine in the f igures  r ep resen t s  corresponding cu rves  calculated by equations 
based on the Kirchhoff-Love hypothesis for  the s tack a s  a whole. 
comparison of these curves leads to the conclusion that the allowance for  
the l a t e ra l  shea r  in the filler leads to  an abrupt variation in  the wave 
numbers  k ,  and k,. This  is one of the differences between the influence 
of the l a t e ra l  shea r  in single and sandwich plates.  

plate on the b a s i s  of Grigolyuk's equations. 

The integers  m,,m, in ( 3 . 1 ) ,  ( 3 . 2 )  s t a r t  f rom z e r o  o r  one. The start ing 

F igu res  3 and 4 depict the families of curves  corresponding to  a=b=80 (l i+H), 
The dotted 

The 

We shall  now consider the problem of the vibrations of a rectangular 
The following two types 
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of boundary conditions will be considered: 

OW 

dn 

In the case x = const we have 

1) tn = ts = -= w = O  for a built-in end; 

2) MI, = t s=M2n = w =O fo r  a supported end. 

The functions W, 0, 8 have in the vicinity of the end x = 0 the form 

W ( x )  =wa sin k, (x-xa) + A a  e x p  ( - p l  x )  +Bo e x p  ( -q,X),  

@ ( x )  = wa,,fsin k l ( x - x a ~ + A a x , e x p ( - p p , ~ ) + B a C , e x p ( - q l x ) ,  
8 ( x )  = C, e x p  (-s,x). 

Here 

x1= 

~~ 

FIGURE 3. Bui l t - in  plate. 
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FIGURE 4. Free plate  

FlGURE 5. Built- in plate. 

Let conditions (i). (j), ( I ) ,  (m) take place a t  ends x =0, n = a, y =0, y = h a  
respectively. The equations for determining the wave numbers wi l l  then be 

* k,n 1 
ml = - = - (arctg ut + arctg u j )  + q, ( 3 . 3 )  
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. k b  m2 = 2 = (arctg v1+ arctg v,) + mz. 
s ? L  

( 3 . 4 )  

Here 

The points of intersection of the families of l ines defined by equations ( 3 . 3 )  
and (3 .4) ,  give the wave numbers k, and k , ,  whose knowledge makes 
possible the determination of the frequency 0 ,  the displacements, and 
s t resses .  

The families of curves corresponding to the natural vibrations of a 
built-in square plate with soft filler 
=0.3. s = 0.1 a r e  represented in Figure 5. The corresponding lines, 
calculated by Reissner 's  equations, have been plotted by a dotted line in 
the same figure. 
give similar values for k,, k,. 
numbers found by the Reissner equations can be used a s  a f i r s t  approxima- 
tion in calculating the frequencies and modes of natural vibrations by the 
formulas based on Grigolyuk' s equations. 

a = b = bO(h+ H) .  u =lo, =0.001, v =O, y1 = 

It is seen that Grigolyuk's and Reissner 's  equations 
It follows that the values of the wave 
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ELASTIC-PLASTIC STRESSED STATE OF PLATES 
IN A THREE-DIMENSIONAL TEMPERATURE FIELD 

I . A .  M o t o v i l o v e t s  and Yu .N.  S h e v c h e n k o  
(Kiev) 

Consider the elastic-plastic state of s t r e s s  of a rapidly revolving 
disk of arb i t ra ry  profile placed in a nonstationary temperature field 
(Figure 1). 

i t  
FIGURE 1. 

This problem has been treated by numerous authors, and there is 
extensive l i terature on the subject. 
existing ones in that it t reats  the simultaneous action of tensile and 
bending loads a t  plastic deformation of the disk, and determines the tem- 
perature field by solving the corresponding problem of heat conduction. 
In addition, the variation of the temperature through the disk thickness 
is allowed for in addition to the allowance for its variation alongtheradius. 

The present study differs from the 

1. DETERMINING THE TEMPERATURE FIELD 
OF THE DISK 

When the difference between the temperatures of the media washing the 
la teral  surfaces of the disk is large, considerable temperature gradients 
can appear through the disk thickness. 
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The determination of the nonstationary axisymmetr ical  distribution of 
the disk temperature  reduces to solving the equation 

It+--+ 1 d t  d f t  I at 
dr2 r dr a 2  a dr 

with conditions 

t==OO a t  T = O ,  

where t is the disk temperature;  (Il, O’, 0” a r e  temperatures  of the washing 
medium; 
ductivity and heat-transfer coefficients; 
n is the external normal  to the disk surface; 

0, is the initial temperature  of the disk; I . ,  a,. a a r e  the con- 
a is the thermal  diffusivity; . 

T is the time. 
Conditions ( 1 . 2 )  can be written in the form 

Since 

dr d h  a t  z = h a n d - = -  a t  z = - h ,  d r  dh 
dz  dr d t  d t  
_=- -  

d n  
dz d z  

by writing 1 % 1, 3 ~ -  1 we obtain from (1.4) 

at  d h  d t  - -= -Z( t -O‘ )+- -  a t  z = h ,  
dz h dr d r  

(1 .5)  

Let the temperature  va ry  through the disk thickness according to the 
exponential law 

I 

To determine the equations satisfied by the functions entering in ( 1 . 6 ) ,  
multiply equation (1.1) by z p  ( p = O ,  I , . . . ,  1 )  and integrate by z f rom - h t o  h .  
We obtain a s  a r e su l t  the equation 
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where 

In the case  of l inear  variation of the temperature through the disk 
thickness f=f,+zt, we obtain from (1 .7)  for p = 0, 1, respectively, 

where 

The solutions of equations (1.8 ) in the case when the temperatures  
and 0, a r e  independent of the coordinate 2 must satisfy the conditions 

to = Bo, t,=O a t  T =  0. 

Equations (1.8) will be solved by the method of finite differences. In 
the case  of a nonuniform net we find, in accordance with Figure 2, the 
following computing formulas: 

t o ,  n (AT)  =Po. n 4, n + Bo, n - ~  to. " - 1  + Bo. n + ~  to, n + I  + aA:m2,0,, 

where 

(1.11) 

2 1 3 ( h n + I -  An-1 ) 
Am-1, "+I Ar,,-1, r n  k A r n - 1 ,  "+I 

Equations (1.8 ) for  the points on the outer contour a r e  written in finite 

B1.n-1 = I----- 
differences with the aid of the boundary conditions (1 .9) .  We obtain as 
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a result  that 
formulas: 

where 

the temperature on the disk r i m  is determined by the 

(1.12) 

FIGURE 2 .  

d f  
dr The condition - = 0 or t,=t, in finite differences, is satisfied on the 

axis of a disk without hole. 
there is no heat exchange on the inner contour, so that the same condition 
will be satisfied on i t s  axis a s  well. 
from the condition that the coefficient PI, 
to zero: 

If the disk has an opening, we assume that 

The time increment Asis selected 
corresponding to i t  be equal 

(1.14) 

The smallest  value of AT determined by this relationships should be 
used in the calculations. 

2. DETERMINING THE ELASTIC-PLASTIC STATE 
O F  STRESS O F  THE DISK 

The equations of equilibrium of an element of the revolving disk can be 
written in forces and moments in the following form: 

(2.1) 
d - (rN,)  - N e  + W h  = 0, 

dr 
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where 

(2.3) 

It is assumed h e r e  that the modulus of elasticity of the mater ia l  E 
var i e s  both through the thickness and along the radius  of the disk, and 
therefore the resolving equations of the moments (2.5) a r e  calculated for  
simplicity relative to the so-called initial surface,  whose distance r , = f ( r )  
from the symmetry plane z = 0 is determined from the equation 

P = 2 2 ~ ~ ;  2 is the density of the material;  

rotation of the disk; 

w is the angular velocity of 

is the angle formed by the normal to the 
g g  

T = 
dr 

initial surface and the L axis; 
forces  pe r  unit a r e a  of the symmetry plane acting on the l a t e ra l  surfaces  
of the disk along i t s  axis.  

In the theory of small  elastic-plastic deformations, a t  simple loading 
the components of the s t r e s s  and s t ra in  tensors  are connected by Hencky's 
equations, which can be written in the case  considered in the form 

q2 is the difference between the surface 

(2.10 

(2.11 

(2.12 

Here  E,, €8, a r e  the s t r a in  tensor components; (12 is the coefficient of 
l inear  expansion of the material;  t is the temperature;  Y is the Poisson 
ratio; G is the shear  modulus; 
l inearity of the relationship between the s t r e s s  and s t r a in  components; 

is a function characterizing the non- 
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9 is the plasticity parameter; 
s t resses;  E is the intensity of the shearing strains.  

S is the intensity of the tangential 

In the case of incompressible material  v = 0.5, k = 0, and 

E;P=E+E -2, v:?.- -- I 9 El + EO + Ed = 3aTt, (2.13) 
l - 2 9  2 

i. e., 
yields 

V* is a constant magnitude. The substitution of (2.13) in (2.12) 

-- .~ - .~ . . ... - - 
E =1/~: + E: + E ~ E O  - 3 G T t  ( E r  + EO - ar t )  . ( 2 . 1 4 )  

We shall assume in what follows that the disk material is incompressible, 
v = 0.5. 
of the temperature of the material  i s  accompanied by an increase in the 
value of the Poisson ratio; 
only slightly influences the state of s t ress .  

element 

This assumption i s  justified to a certain extent, since the increase 

in addition, the variation of this coefficient 

Using the Kirchhoff-Love hypothesis on the invariability of the normal 

E r  = E ~ O  + (2 - 20)  xr,  € E =  €80 + ( Z  - 2,) YO,  ( 2 . 1 5 )  

we can write the compatibility equations for the strain components 
of the initial surface ( 2 . 6 )  and the curvature parameters x r ,  x(  of this same 
surface in the form 

The parameters  x r .  rg a r e  expressed by 
angle of rotation 8 of the normal to the 

dB 
dr  

x r  = -, 

(2.16)  

the following formulas through the 
initial surface during i t s  deformation: 

e 
ye= -. 

r 
(2.17) 

Using formulas (2.4) to ( 2 . 1 7 ) ,  Hencky's equations ( 2 . 7 )  can be written 
a s  follows: 

where 

(2.18) 

(2.19) 
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zh -/I ( 2 . 2 0 )  
(cont'd) 

By substituting the s t r a in  components (2.18) in the compatibility equation 
( 2 . 1 6 ) ,  eliminating ~ V E  with the aid of equilibrium equation (2.1) ,  and taking 
(2.17) into account, we obtain the f i r s t  resolving equation in the following 
form: 

(2.21 ) -- d r3E d N  --r t ( 1 - v * ) r 2  dE -N, - t - rprO=f , ( r ,  El), 
dr  d r  I d r  

where 

( 2 . 2 2 )  

To obtain the second resolving equations we eliminate from the equi- 
l ibrium equations ( 2 . 2 ) ,  (2 .3)  the shearing force Q and replace the bending 
moments M,  and M e  by their  expressions a s  a function of 9 ,  a s  given by 
formulas ( 2 . 1 9 )  with the aid of (2 .1)  and (2.17).  We obtain 

O - - r N r = f , ( r ,  El). (2.23) 

where 

d ( I IJ~ZT) - ( l + v * ) r - -  + r d L y L + C -  
d r  dr  

(2 .24 )  

Here  C i s  an integration constant. 
The system of equations (2.21) ,  (2.23) is nonlinear. It will be solved 

by the method of successive approximations, with El calculated in each 
step by (2.9) from the preceding approximation. In each approximation 
i t  is thus necessary to  solve the l inear  system of differential equations 
(2.21),  (2.23) with new right-hand p a r t s  ( 2 . 2 2 ) ,  (2.24); 
tion of Il 'yushin's method of elastic solutions. 

fo rm 

this is a modifica- 

The general  solution of system ( 2 . 2 1 ) ,  (2.23) will be written in the 

N,= C,N? + C2N:') + C,h1L3) j- C4Nj4'+ N:", 
e = clel + C,R, + c,e, + c404 + eo. 

(2.25) 
(2.26) 
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The differentiation of these expressions yields 

where N:", Or, 'pi1), $1 a r e  linearly independent particular solutions of the 
homogeneous system of differential equations and their derivatives, 
Njo), Bo, ?io), yko) a r e  particular solutions of the nonhomogeneous system of 
differential equations and their derivatives, and C,. - .C, a r e  integration 
constants . 

The particular solutions of the homogeneous system of differential 
equations corresponding to (2.21), (2.23) will be determined by the Adams 
method (although different methods of numerical integration a r e  likewise 
possible), with the following boundary conditions on the inner contour of 
the disk: 

The particular solutions of the nonhomogeneous system of differential 
equations (2.21 ), (2.23) will be determined for boundary conditions 

a t  r = r ,  ~ ( 0 )  = 1, pp) = e,, = v,p = o (2 .29 )  

and right-hand par ts  f l ( r ,  ,El), f i ( r ,  El),  where El is calculated by the 
preceding approximation. 

conditions on the outer and inner contours of the disk. 
sidered (Figure 1) these conditions a re  

a t  r = r a  

at. r = r b  Nr = f i b ,  

The integration constants C,,.. .,Cd a r e  determined from the boundary 
In the case con- 

Nr = N,, 8 =0, 

(2.30) 

It should be noted in conclusion that the elastic-plastic state of s t r e s s  
of the disk found by the above-described method exists in the case of 
simple (or quasisimple) loading, i. e.,  in the case of proportionality of 
the variation of the centrifugal and surface forces and the heat load, or 
in the case of the physically nonlinear problem, when loading and un- 
loading proceed according to the same curve of the extension diagram. 

field and the elastic-plastic state of s t ress  of the disk has been programed 
for use with a digital computer. 

The method described for calculating a nonstationary temperature 
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BENDING AND STABILITY OF RECTANGULAR 
PLATES WEAKENED BY RECTANGULAR CUTS 

Yu. N .  M u  z y c h e n  k o 
(Rostov-on-Don) 

The method of nets is being wiedely used in solving problems of 
bending and buckling of plates. By this method, the differential equation 

of bending and the boundary conditions have 
to be satisfied a t  the nodal points of the net 
only. 

If the plate region contains rectangular 
cuts (Figure 1). the introduction of a large 
number of nodal points is necessary in order  
to satisfy the boundary conditions on the 

of equations. The solution obtained as  a 

depending on the mesh size. 

I contour. This leads to a very bulky system 
- I  

f result  i s  approximate, the degree of accuracy 

The inconveniences involved in the use of 

FIGURE 1 
the net method for solving problems of bending 
and buckling of rectangular plates weakened 
by cuts can be overcome by using the net 
method in a refined formulation. In this 

formulation the accuracy with which the boundary conditions a r e  satisfied 
becomes independent of the mesh size. 

Instead of the standard equations of the net method, in which the values 
of the unknown functionsatthe nodal points appear a s  unknowns, we use 
equations in which the unknowns a r e  the values of the function w and of 

i t s  f i rs t  derivatives The boundary conditions (including the 

conditions on the contour of the cut) and the differential equation of bending 
can then be satisfied a t  every point of the plate (and not only a t  the nodal 
points of the net), provided the load acting on the plate var ies  according 
to a linedr law within the l imits of each square of the net, or that it is a 
momentary load varying linearly on the contour. 

region is divided by a square net of mesh size A. 

aw am 
ax dy 
-- and - . 

It will be assumed in the derivation of the formulas that the plate 

CONDITIONS OF EQUILIBRIUM 

Consider the net cell abed (Figure 2 ) .  Let the square abed of the plate 
occupy a new position atb'c'd' under the action of the deformation. 
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The deflection function of the plate in region a b  cdcan be represented 
in the following form: 

~ = ~ , + a 2 ~ + a 3 ~ + a , x ~  +w2+ 
+ asy2 + a,$y + WY' + ap.ya + alOy3 + a,,x3y + a,,xy3. (1 1 

This function satisfies the differential equation of bending of the plate 
under zero load (q=O) within the l imits of the re@on 

vzv2 w =o. ( 2 )  

Introduce the following symbols: 

wi will be the displacement of the i -th nodal point of the plate, 

pf= dre, the angle of rotation of the nodal point about the x axis, and 

e= &! the angle of rotation of the nodal point'about the y axis. 

deflections and angles of rotation of the nodal points of the square. 
have the following values: 

dY 

d x  
The coefficients ui of equation (1 ) can be represented through the 

They 
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It is easi ly  seen that equation (1  ) corresponds to  a l inear  distribution 
of the intensity of the l a t e ra l  forces  on the square contour. 

X c 

9 8 
FIGURE 3. FIGUIIE 4 

Consider four adjoining squa res  (F igu re  3 ) .  Let  a l inear ly  distributed 
load of maximum value q1 a t  nodal point 1 act  along the l ines  separating 
these squa res  (F igu re  4). 
fact that regions I, 11, 111, and IV adjoin each other: 

The following equations a r e  obtained from the 

36w1 - 12 (w,+ w3+ W~ + w,) +3 (am6 + E: +Wg + ma)+ 

+4 (pz-y; +cp; -?;) A +0.5 (ylfrpg" -#  -p; +y;-p;- ?;+y;)A=fJC ; ( 4 )  
2 0  

( I  - P) (2 m3--2wj f W~ - wi - wg + 21, -4 ?:A {-2p,YA+"p:A) + 
-C ( 1 2 ~ U - 1 1 2 ~ ~  t-l5p:At4.;:A4-4~:A) =O; ( 5 )  

( 6 )  

( 1 - ~ ) ( % 2 - 2 W ~  1 w , - W ~ - W ~  + ~ , - 1 p ; A + 2 ; ~ ; A $ - 2 p ; A ) t  

+(I%., -12W2 + I 5  ?:A t4v;A 1 4 ~ i A )  = O  

Equation ( 4 )  corresponds to the differential equation (1 ) of bending 
of the plate for point 1. 

Three  equations (4),  (5 ) ,  and ( 6 )  are formed for each nodal point of 
the net, in the s a m e  way a s  three equilibrium equations a r e  formed for  
each nodal point of plane f r ame  systems.  
mesh s i ze  h a s  no effect on the accuracy with which the boundary conditions 
are satisfied. 

A s  a resul t ,  the inc rease  of the 
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BOUNDARY CONDITIONS 

Consider the plate region abcd (Figure 2). We shall  formulate the 
boundary conditions corresponding to the most  widely used methods of 
support of the plate. 

THE EDGE ub DOES NOT HAVE VERTICAL 
DISPLACEMENTS 

I w (x, y) Ir-0=O. 

The displacement function for this edge will be 

I w I -0 = 4+ aay + + 4 0 ~ ' .  

In order  to satisfy condition ( 7 )  ( for  the entire edge a b )  it  is necessary 

a,=O; ur=O; a, -0; a,, =o. that 

The l a s t  equalities are satisfied if we write 
q; = 0. 

THE EDGE ub IS RIGIDLY CLAMPED 

dw 
lk =O, 

dW 
=a, + U,Y + a, Y' + " I Z Y  a. I d r l , - S  

To satisfy conditions ( 7 )  and ( 9  ), the following conditions must  be 
added to (8) :  

(10) I .p:=o; t#=o, 
v ; c W c - w d ;  y : = w c - w d .  

THE EDGE ab IS HINGED 

asw 1 =O (for w=o). 

The following conditions are added to conditions (8):  

3 i 0 d - 2 ~ ~ 6  - HA = 0, 

3 ~ c - 2 v { A + A  =O. 

THE EDGE cd IS FREE 

The conditions for the f ree  edge 
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a2n a im 
- + p  - = o ,  
dxa dy2 

I ds.w dSW 
~ + (2 - P)~-?=O ( for n = b )  ax) 

1 

EXAMPLE 1. BENDING OF SQUARE SIMPLY 
SUPPORTED PLATE, WEAKENED BY A 
SQUARE CUT, UNDER THE ACTION OF 
MOMENTS DISTRIBUTED UNIFORMLY 
ALONG THE PLATE CONTOUR (FIGURE 5) 

The ratio of the hole width to the plate width is equal to 113. 

We split the plate region by means of a square net (Figure 6 ) .  

FIGURE 5. FIGURE 6 

Form equations (4 ) ,  (5), and ( 6 )  for the nodal points of the net. To 
satisfy the boundary conditions on the plate contour we use equations ( 8 )  
and ( 1 2 ) ,  equating the moments on the supporting contour to the external 
distributed moments of intensity M. 
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To sat isfy the boundary conditions in  the region of the cut we use  equa- 

The sys t em of equations with fourteen unknowns is writ ten in Table 1. 
tions ( 1 4 ) ,  (15),  ( 1 6 ) ,  and ( 1 7 ) .  

I t s  solution yields the following values for  the unknowns: 

MA2 . 
?$ A=0.30825 9 

MA2 M A2 ~,=0.27037 -; 7; A=0.66369 -. 
D D '  D 

M A 2  MA2 . wS=O.13433 -; 'pqY A =0.50839 - ; ?{A = - 0.16390 - , 

; g A = - 0.22189 - ; yJ' A = = 0.24124 -; 

'pgA=-O.I13iQ -; (p,yA=-0.01627 - * 
D '  

D D D 
MA2 MA2 

MA2 MA2 

MA2 

w, = - 0.04334 D D D 

D D 
MAZ 

w8 = -0.01580 -; 

; ~P,YA=-O.19678-* Wg = -0.20309 - 
D D 

The sections of the bent plate su r face  by c r o s s  sect ions 1-1, 11-11, and 
111-111 are  shown in Figure 7.  

FIGURE 7. 

EXAMPLE 2. BENDING OF A SQUARE PLATE WITH 

LOAD 4 DISTRIBUTED UNIFORMLY ALONG THE 
HOLE CONTOUR (FIGURE 8) 

CUT, RIGIDLY BUILT-IN BY THE ENDS, UNDER A 

The plate is divided by a net  in  the s a m e  way as  in the preceding 
example. 
cut we take into account the action of the uniformly distributed load. 
sys t em of equations contains eleven unknowns. 
following resul ts :  

When satisfying the boundary conditions on the contour of the 

I t s  solution l eads  to  the 
The 

4A5 9 A J  W3 =0.0998 -; ~$1=0.02777 - ; 
D D 

D D 

D D 

w5=0.0956 9 A J  -; %A =- 0.05627 

w 6 = 0 . 2 1 0 1 9 ~ ;  A3 ?:A -0.07956 - qAJ ; 

; 

qA3 ; w, = - 0.03049 -@? ; ?;A =0.3oO65 - 
D D 
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The sections of the bent plate surface by c r o s s  sections 1-1, 11-11, 
111-111 a r e  shown in Figure 9. 

FIGURE 8 .  FIGURE 9. 

Another problem which was solved was that of the bending of the same  
plate under a uniformly distributed load acting along the net l ines  (F igu re  10). 
The pattern of the plate bending is represented in Figure 11. 

7 A 3  - 
8 I l i  -111 

FlGURE 10. FIGURE 11. 

Equations (4), ( 5 ) ,  and ( 6 )  can a l so  be used in solving buckling problems. 
In this case  the load q in the right-hand pa r t  of (4) i s  replaced by longi- 
tudinal compressive forces.  

Consider the stability of a hinged square plate weakened by a square 
cut and loaded by uniformly distributed compressive loads acting on the 
plate contour (F igu re  12) .  

presented in Table 2. 
The determinant D formed of the coefficients of the unknowns is re- 

The following symbol has  been used in writing this determinant: 
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TABLE 1 

-- 
36 -12 6 1 

36 -24 -8 1 
3 0.5 -4 4 0.5 

-10.6 2.8 
-0.7 1.4 4 13.2 

4 13.2 1.4 
-10.6 -0.7 4 

-6 9.6 6 -9.6 1 -2 
1.8 , 2 

-8 -2 -4 4 0 
-0.5 4 0.5 -0.5 1 0 

8 -1 0 
4 13.2 4 0 

4 1 :  4 1.4 

13.2 1.4 ' 0  
2-8 I n  

-2.2 2 4 ;  0 
6.8 -0.8 

32.4 32.4 6 -32.4 

i 6 -4 -2 ' 

6 

0 
6 0 j M A z / D  

~ MA'/D 
L MAz/D 

D =. 

10.6 0.7 -10.6 0 -0.7 4 0 0 1.4 0 13.2 
6 -10.6 0 -0.7 0 11.2 11.4 0 0 0 4 
0 0 6 -1.4 -10.6 0 2.8 11.2 0 4 0 
0 5.3 0 -10.6 -0.7 1.4 11.2 1.4 4 0 0 
0 6 0 -7.8 1 .E 0 2 0 2.8 0 0 
0 -6 6 9.6 -9.6 0 -2 2 -2.2 4 0 
0 22.2 -10.2 -22.2 10.2 0 6 0 -0.8 0 6.8 



Calculate the minimum value of k: 

kmin=  0.230, 
then 

8.28D 
a* 

N,,= __ 

Sections of the bent surface of the plate a r e  represented in Figure 13. 

N 

N 

FIGURE 12 .  FIGURE 13. 

Equations (4 ) ,  (5), and ( 6 )  can also be used in solving problems of 
plane s t r e s s  of rectangular plates weakened by rectangular cuts. 
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ON THE DETERMINATION OF THE CRITICAL LOAD 
OF CONICAL AND CYLINDRICAL SHELLS 

P .  V .  M y u r s e p p  
(Tartu) 

Formulas a r e  given for determining the critical load of a conical shell 
under the action of a uniformly distributed external pressure.  
obtained by these formulas a r e  compared with the results obtained by 
Seide’s formulas and by other formulas. 
critical load of short  cylindrical and conical shells with built-in ends. 
conclusion a formula is given for  determining the critical load of a 
truncated conical shell under an external pressure linearly distributed 
along the cone generator. 

load of a conical shell under the action of a uniformly distributed external 
pressure (the formula appears in / 1 /  with a printing e r ror ,  which has 
been corrected here): 

The results 

Expressions a r e  derived for the 
In 

The following formula was derived in Seide’s paper /1/ for the critical 

where p1. p2 a r e  the radii  of the small and large bottoms, respectively, of 
the truncated cone; h is the shell thickness, 41 is the cone angle; E is 

Young’s modulus; v is the Poisson ratio; f 1 - fl- i s  a function defining 

the ratio of the critical load of the conical shell to the critical load of the 
equivalent cylindrical shell. 
definition, the cylindrical shell of radius R equal to the principal radius 

of curvature of the middle section of the cone: R =  -pl*p?. 

( P P )  

The equivalent cylindrical shell is, by 

2 cos ‘p 

A formula for determining the critical load of a truncated cone by the 
method of disturbances was derived in 1 2 1 .  
presented in the following form: 

This formula can be r e -  

where x0 is a constant which depends on the type of support of the shell 
ends (at  simply supported ends yo = x ,  a t  clamped ends x,, = 4.73); L is 
the shell length along the generator; po = l/Gi;and 7 is a constant. The 
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calculation shows that in the case  of simply supported ends r = 0.25, and 

a t  clamped ends r = 0.22; a = ~ - s i n g ,  where I = --. 
In o rde r  to compare formulas (1)  and ( 2 ) ,  we pass  in ( 2 )  from the 

geometrical  mean po to the ari thmetical  mean pa, related to i t  by the 
formula p , = p o 1 / l + a 2 .  

to - - for  both types of support. 

I .  L 
2 Po 

__ 
W e  assume that the constant 7 is roughly equal 

1 
4 Formula ( 2 )  reduces then to 

The main pa r t  of ( 3 )  coincides with the main pa r t  of (1 ) .  To the function 

f( 1 - :.) there  corresponds the expression ( 1 + - L:) - -ar . Seide’s 

r e su l t s  and the author’s have been plotted in Figure 1 (curves 2 and 3, 
respectively),  together with the r e su l t s  of Niordson / 3 /  (curve 4), 
Bijlaard / 4 /  (curve 5), and Mushtari-Sachenkov / 5 /  (curve 1) .  

plotted by formula ( 3 )  has been drawn up to 1 - 4 = 0.8, since to this value 

of the argument there  corresponds a value of a close to unit ( a  = 0.896) 
( the disturbance pa rame te r  must be sma l l e r  than 1 according to our 
assumption). 

Seide’s r e su l t s  ag ree  closely with the experimental resul ts .  
formula ( 2 )  or formula ( 3 )  can be recommended for practical  use,  

provided that -’ > 0.2. 

f( 1 - :)must be taken from Figure 1.  

by the formula 

The curve 

P2 

Either 

P 
P2 

If formula (1 ) is used, the value of the function 

The number of waves s along the shell  circumference / 2 /  is determined 

The corresponding formulas for a cylindrical shell  of medium length 

It should be remembered that the difference between the cr i t ical  loads 
a r e  obtained by substituting 9 = 0 in formulas ( 2 )  to ( 4 ) .  

of a short  (cylindrical  or conical) shell  and of a shell  of medium length 
is not considerable in the case  of simply supported ends, the cr i t ical  
load of the short  shell being always somewhat l a r g e r .  It follows that in 
pract ical  engineering calculations the determination of the cr i t ical  load 
of a short  shell  by the formula for  a shell  of medium length is wholly 
a dmi s s i  ble . 

The situation is totally different in the case  of a sho r t  (cylindrical  or 
conical) shell of built-in ends.  
cr i t ical  load of a short  shell  is considerably lower than the value obtained 
by the formulas  for  a shell  of medium length. 

the cr i t ical  load of a short  cylindrical shell  with built-in ends /SI :  

Calculations show that in this case the 

The following simple approximate formula was obtained for  determining 

611 



. This formula satisfactorily agrees  with the resul ts  

of the exact solution. 

a short truncated cone with built-in ends 1 2 1 :  
The following formula was obtained for determining the critical load of 

The function + is determined from the relationship 

with Y found from the equation 

where 

The relationship between + and E defined by ( 7 )  and ( 8 )  has been 
plotted in Figure 2. 

P - 
I 

FIGURE 1. FIGURE 2 .  

A simple formula for determining the critical load of a truncated cone 
of medium length under a lateral  external pressure distributed linearly 
along the cone generator (Figure 3) was derived in 171 by the method of 
disturbances. This formula is 

where 
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In the case  of simply supported ends 

c - 2d - 0 . 2 5 ~  + 0.62d + o.030; 
xo=n,  . 1 = - 0 . 0 3 4 ( ~ ~ - )  f C - d  

in the case  of built-in ends 

The corresponding formula for  a cylinder is obtained from h e r e  by sub- 
stituting p = 0. 

.- 
FIGURE 3 .  

Such a problem was recently solved in the USA / 8 /  for a cylindrical 

The problem for the purely plastic s ta te  was solved in 191, where a 
shell. 

formula was derived for determining the minimum thickness of the shell  
under a given load. 

engineering pract ice ,  
of accuracy. 

A l l  the formulas given he re  are simple and convenient for  u se  in 
At the same  time, they ensure the necessa ry  degree 
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ASYMPTOTIC THEORY OF STATICS AND DYNAMICS 
OF ELASTIC CIRCULAR CYLINDRICAL SHELLS AND 
ANALYSIS OF THE ACCURACY OF THE DIFFERENT 
VARIANTS OF THE KIRCHHOFF-LOVE THEORY 

U. K .  N i g u  1 

(Tal 1 in) 

Until recently i t  was widely accepted that different formulations of the 
elasticity relationships lead to variants of the Kirchhoff-Love theory 
differing by secondary t e r m s  only and having the same  e r r o r  es t imate  / I /  
B <.a, where u designates the relative thickness of the shell. 
however, Darevskii / 2 /  treated problems involving circular  cylindrical 
shel ls  in which different variants of th? Kirchhoff-Love theory give different 
expressions for  the principal (independent of a) t e rms .  This  resul t  aroused 
interest  in a more  thorough analysis of the e r r o r  of the different variants 
of the Kirchhoff-Love theory. 

To study this problem, an asymptotic ( a t  u-+O) theory of c i rcular  
cylindrical shells was developed in 131. 
obtained in / 4 /  on the basis  of the three-dimensional theory of elasticity 
by using the method of power series / 1 /  in conjunction with the method of 
asymptotic integration 1st.  
numerous essential  advantages of Novozhilov' s theory / 6 /  over the other 
var iants  of the Kirchhoff-Love theory, and in particular the possibility 
of using it in solving the Darevskii problems 121, 

The expanded asymptotic formulas,  representing the unknown magni- 
tudes in the inner region of the shell  through one single function Q, a r e  
presented in this paper. Using these formulas i t  is possible to estimate 
the accuracy of any variant of the Kirchhoff-Love theory. 
possible to derive from them simpler  formulas corresponding to various 
elementary s ta tes  of s t r e s s ,  including s t a t e s  which were studied on the 
bas i s  of the three-dimensional theory in 17, 8, 91. 

theory developed in / I O /  for  a r b i t r a r y  shells.  

In 1961,  

Use was made of the r e su l t s  

This asymptotic theory revealed / 3 /  the 

It is also 

The asymptotic theory considered exhibits a cer ta in  kinship to the 

1. MAIN SYMBOLS AND INITIAL PRINCIPLES 

We introduce the following designations: E is the modulus of elasticity; 

6 is the shell  thickness; x,  9. R are the 
p is the Poisson ratio; Ro is the radius  
of the middle surface of the shell; 
coordinates in the direction of the length, the t r ansve r se  circle,  and the 

p is the density of the material;  
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radius of the shell, respectively; t is the time; uj ( / = l ,  9, 3) a r e  dis- 
placements; 'fk and (i, k = 1, 2, 3) a r e  unit s t ra ins  and s t resses;  

The following simplifying assumptions a r e  made for the sake of brevity: 
a) the shell surfaces C* - b a r e  not loaded; b) pure extension and torsion 
of the shell a r e  excluded from consideration; 
sidered depend on X, y ,  t through the function 

c) the states of s t r e s s  con- 

where the coefficients A ,  nz, Q can be complex in the general case.  
It is assumed further that the following conditions a r e  fulfilled: 

bo = u* + u2g2 <1. 

azgz-,O a t  a30, 
where 

(3) 
( 4 )  

(5) 

Using these assumptions, asymptotic expressions for the unknown 
magnitudes a r e  easily formed on the basis of 13, 41: We consider here  
the dimensionless s t r e s s  resultants TL, moments MPs,  lateral  forces Qk, 
displacements u;, and unit strains €is, defined by the following relationships: 

. I  
u. - - ui r / ,  zbs = eks rkr , 

I -  Ro 
c/= 1, 2, 3; k, s =  1, 2; n=0.1; a,=C, u , = l ) ,  

rll = r,, = rl,  =rl = r, = 1, r12 = r,, = r, = - i. 
We introduce the following additional symbols for the sake of brevi ty  

2. FORMULAS OF THE ASYMPTOTIC THEORY 

The following formulas, derived with an asymptotic e r ro r  of order a,, 

1) Stress  resultants 
a r e  obtained on the basis of 13, 41: 

T;, = ( pQ4+ pkQ2A - ( 1  - p2) kA?d - a2pk (m6 - m')) @, 

Ti) = kAm { ( I +  p) Qz+ (1 - p') k' + a' (m' - m')] @, 
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Til = khm ( ( l +  p) Q1+ (1 -pz) k1+a2 p (m4-  m')) 0, ( 1 2 )  
(cont'd) Ti1 = (Q4+ [ ( 3 t 2 p )  h a - " 2 ]  k P +  ( I  --p*) kh4+ 

+ a2k (m4 - m7)(4k2 - m " ) )  a. 

2) Moments 
MYI - (( - pvP1 - A' + p ml) P + pQ4 + pkPTI.' + 

+ 1 p (1 + p) P1mz - (1 -2p -2p') kh*m2 - pkm4) a'@, 

( 1 3 )  ML=2kAm ( P + Q 2 +  ( 2 + p )  kA1- k m Y )  a?@, 
M i ,  = 2  khm {P+ k (er+ A ) )  ur @, 

Mi2 = (( - pvQ'- pkz + ma) P - Q4 - (3+2p) kPzhXz + 
1 + 

3) Transverse forces 

(3- p) Qzma - ( 1  - p*) kA4+(2 + p) kh*nz' - km4)  a1 0. 

QY= h ( - (vQa + A) P + plQrml+ p (1 +2p) kh2m1- km4) uW, 

Q f = m  ( ( & P + A ) P + 3 Q 4 +  (9+4p) kQrhl-  - 1 (5-3 p) Q W +  
2 

+ (6+4p) k1h4 - 3kh1m2 + km4) aa 0. 

4) Displacements 

IC;= vj + I, +i Ci-1. 2, 3). ( 1 5 )  

where 
v1 = - A [pes +pkh? + km*] 0, vl= m [Q1 + ( 2 +  p) khl- kml] 0, 

(16) 

(17) 
I @* 

1 
vJ= P4 + - (3-  p) Q'A f kAA 

[ 2  
9, -= - hvI, q1 = at + ma,, - - p y  (kv, + mv, + vJ). 

5) Strain components of the middle surface ( C* = 0) of the shell 
11 - v,, t.0 - 

e.O - Q 4  + - 1 (3- p) Q ~ h ~ - ~ ~ z ~ ~ z + k ~ ~ + p k h z m z + a z - ~ ( m ~ -  3 m4)] @. (18 ) = - [  2 4 

6 )  Characteristic equation 

do + as (4 + d1) =O, 

where 

d - - Q P ' - ~ ( 3 - p ) Q 4 A + Q 4 - k Q r [ A A  - ( 3 + 2 p ) h z + m 1 j + ( l - p z )  kh4, 
2 
d, = k (AA -2m6 $- m4), dl = 4kkamz (2m2 - 1). 

e -  

(20)  

If the te rms  in these formulas a re  not mutually canceled, they define 
the unknown magnitudes with an asymptotic e r ro r  B o .  If the terms of a 
given expression a r e  mutually canceled, then the magnitude defined by 
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this expression i s  much sma l l e r  than the other magnitudes, and is practical-  
l y  of no interest .  
formulas; 

e r r o r .  

Such a magnitude must  be calculated by m o r e  accurate  
the expressions derived in 13,  4 /  can be useful to that end. 

These formulas can be simplified a t  the cost  of an inc rease  in the 
With an asymptotic e r r o r  of o rde r  

a, = a + u*g* (21 1 

v3 = v3. (22) 

we obtain 

3. ANALYSIS O F  THE ACCURACY OF THE 

FORMULAS O F  THE ELEMENTARY 
STATES O F  STRESS 

KIRCHHOFF-LOVE THEORY AND THE 

A comparison of the formulas of the asymptotic theory with the 
corresponding formulas obtained on the bas i s  of the different var iants  
of the Kirchhoff-Love theory leads to the conclusion that Novozhilov' s 
theory / 6 /  is the most reliable variant of the Kirchhoff-Love theory. 
In Novozhilov' s formulas a l l  the t e r m s  of the character is t ic  equation ( 1  9 ) 
and the expressions.  for 

appear  with co r rec t  coefficients. 

f rom the asymptotic theory, among other things by the coefficients of ex- 
pression d, in ( 1 9 ) .  The re  exist, a s  a result ,  problems for which Novo- 
zhilov's theory yields a solution with an asymptotic e r r o r  8,s a'/., while 
other variants of the Kirchhoff-Love theory have an e r r o r  of the o rde r  
of a" .  

The formulas of the preceding section can a l so  be used for  deriving 
and analyzing the formulas  of the elementary s ta tes  of s t r e s s .  

If we a s sume  that 

The other var iants  of the Kirchhoff-Love theory differ m o r e  considerably 

One such example is the problem treated by Darevskii in / 2 / .  

~ = m p O ,  I A I - U - " ~  ( 2 3 )  

and admit a n  asymptotic e r r o r  of o rde r  4,=a, we obtain the formulas 
of the simple edge effect. 

If we assume that 

and admit an asymptotic e r r o r  9,, we obtain the formuias of a s ta te  of 
s t r e s s  of lar'ge variability index / 5 /  (Vlasov's technical theory).  

Other elementary s ta tes  of s t r e s s  can be s imilar ly  analyzed. 
The par t icular  ca ses  ( 2 3 ) ,  ( 2 4 )  were studied in  detail on the bas i s  of 

the three-dimensional theory in 17, 8 ,  91. 
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SEPARATE APPLICATION OF THE MEMBRANE 

T O  THE CALCULATION OF SHALLOW SHELLS 
THEORY AND THE BENDING-MOMENT THEORY 

V . M .  N i k i r e e v  
(Moscow) 

The fundamental equations of the linear theory of shallow shells with 
constant principal curvatures subjected to a vertical load of intensity 
Z a re  / I /  

The exact solution of this system of differential equations is very 

This system of equations can be solved approximately with satisfactory 

This i s  usually possible when the membrane 

difficult. 

accuracy i f  the state of s t r e s s  in the shell can be split into membrane 
and bending states of s t ress .  
state of s t r e s s  is fundamental, and the bending moments result  in an 
edge effect only. 

In the case of shallow shells of positive Gaussian curvature rectangular 
in the plan this splitting was realized a s  follows under specific conditions 121,  

The term Dv*v*w in the third equation of system ( l ) ,  which represents 
the par t  of the vertical load taken by the bending s t resses ,  was neglected, 
the resulting system of three equations was solved allowing for the 
tangential boundary conditions, and the term DQ'V~W was then allowed for 
by superposing on the membrane s t ressed state the state of bending stress 
in the form of an edge effect. 

Such an approach is usually unacceptable in shells of negative Gaussian 
curvature and in cylindrical shells (in the direction of the curvilinear 
directrix) in which the bending moments cannot be allowed for through 
some edge effect, In such shells the calculation should be based not on 
the total acting load Z ,  but on the load Z-Dv's'Zer; this reduces to de- 
termining the load taken by the membrane s t resses .  
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Represent the system of equations (1 ) in the following form (the Poisson 
ratio is taken a s  zero for simplicity): 

Eh (k:+ k:) m -- Eh 

DV'V~W = Z - Z6. 

Consider the load 

z = f. Of) Q (x). 

where L ( y )  is a linear function by means of which a particular solution 
of ( 2 )  or ( 3 )  is simply found. 

Expand the load in a trigonometric se r ies  by x *  (the origin of coordinates 
is placed a t  the middle of the hinged edge of the shell, lying in the yo2 plane) 

Z = L (y) 2 6,  sin anX. 
n 

m 

Represent the load .Z. in a certain interval (- y,, + yr) in the form of the 
ser ies  

Solve system ( 2 )  for given tangential boundary conditions for the load 
component Zntn, = 6,,,, (1 + cny) sin a,x , and equation ( 3 )  for the load component 
Zn - Z+,= [bnL ( y )  - bncm, ( 1  t c,,y)) sin a,x, allowing for the nontangential ccnditions 
with an accuracy up to the unknown parameters bn(m, and cs. 

We obtain the following expressions for the deflections: 

F i r s t  m e t h o d  
The unknown coefficients bn(., and c. can be determined from the 

minimum condition of the quadratic deviation of the function vn(J ' ,  6n(,,, C n )  

from the function f . ( y ,  b n t m ) ,  c.) in the interval (-yl, + y l ) :  

I = j: (cpn -fn)*dy = mln, (6) 
-Y¶ 

which leads to the solution of two linear equations: 

It is assumed that the function Q(x) satisfies the Dirichlet conditions. 
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Q) 

In the case  when the acting load is Z = Z ( x )  = z bn sin an x ,  i t  can be 

assumed that in a cer ta in  interval (--y1. +y,) Z,(x) = ~ 6 , , ~ . ~ s i n a n x ,  then 

wflllnlm) = b,,,, y n ( y )  sln a,x, 
system ( 7  ) becomes 

n 
m 

n 

wn(*) = (6 ,  - 6+,)fn (y) sin anX and the f i r s t  equation of 

f rom which we find 

S e c o n d  m e t h o d  

It is possible to determine b.,,) from the condition that 

I2 Y l  

bn+l 'pn d y  = ( 6 ,  - b n ~ 4 ) J  f&, 
- Y l  - Y l  

whence 

The coefficient 6=cm) can be determined even more  simply by equating the 
deflections w,,(~) and along the l ine y = 0; then 

T h i r d  m e t h o d  

In the case  of other boundary conditions, when the determination of w 
from equation ( 3 )  is difficult, the splitting of the acting load Z =  
= L (y) Xb,,+, ( x )  * can be realized in the following way. 

m 

n m 

By writing 2, - zbnCm) (1  f c.y) qfl ( x )  and solving system ( 2  ) for given 

tangential boundary "conditions for the action of the ver t ical  load component 
Zno = 6,,,,) ( 1  f cay)  qn ( x ) ,  we obtain with an accuracy up  to the unknown 

The functions +, ( x )  and Fn ( x )  form a closed orthogonal system in the interval (0, I ) .  
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constants b,,,, and c. the deflection TU,(., = 
stituting the function wn(,) in the equation Dvzvaw = Z.  - &) and solving it 
by some variational method (such a s  the Bubnov-Galerkin method) we 
obtain the values of the coefficients b+, and cn. 

b,(-, and c, when the shell  is acted upon by a horizontal load of intensity 

X or  Y only 111. In this  case,  the t e rm-  - and - - appears  in the 

right-hand pa r t s  of the first two equations of system ( 2 ) ,  and the sub- 
stitution Z = 0 is to be made in equation ( 3 ) .  

zone O < x <  1 - yl 

(y ,  b,(,), c,) F, ( x ) .  :k By sub- 

By one of these methods i t  is also possible to  determine the coefficients 

X Y 
Eli Eh 

The bending s t r e s s e s  and corresponding normal  displacements in the 
y y2 a r e  determined from the equation 

a71 

dY 
DV'V'W + E h k b  Z 4- klNl + Ehk, - = Z,, (x , ,  y ) ,  

av 
as where N ,  and - a r e  the earlier found membrane s t r e s s e s  and corresponding 

displacements.  

can be reduced to the solution of two equations: 
By means  of the above-described method the solution of equation (1 1 ) 

where 

ZI", + Z2*, = Z"p 

The deflection, the bending moments, and the torsional moment can 
a l so  be determined from the equation 

( 1 4 )  
dU Dv?v2w + Ehk:m = Z + k,N, + Ehk, - = Z,, ( x ,  y ) .  
OX 

W!hen the extent of the interval (-!,,, j,J is negligible, the bending 

Two shallow shells rectangular in the plan were calculated by the method 
factors  in this interval can be determined from equation ( 3 ) .  

described for the action of a load Z = q=const: a shell  having the f o r m  of 
a hyperbolic paraboloid with ends oriented along the direction of the 
principal parabolas,  and a cylindrical shell .  The shell  pa rame te r s  and the 
end conditions a r e  given in Figures  1 and 3. Diagrams of the deflections, 
l a t e ra l  moments, and shearing s t r e s s  resul tants  determined by the 
approximate method and by Vlasov' s general  theory of shallow shel ls  using 
double tr igonometric s e r i e s  have been plotted in F igu res  1, 2, 3, and 4. 

method. When determining b+) by formula ( 9  ) the length of the interval 
( - y , .  + y2) in the hyperbolic paraboloid shell  and in the cylindrical shell  
was taken a s  equal respectively to 1.74 1 and 1.5 1. 

hyperbolic paraboloid shell  was determined f rom ( 1 2 )  for  Zl., = Z,, . 

The load was split by the s impler  (and therefore less accurate) second 

The deflection and the l a t e ra l  bending moments along l ine y = 0 in the 

See foonote on previous page. 
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-W 

-5 Bending moment 

- By Vlasov's general theory 
- - - - By the approximate method of formula (9) 

Shell in the form of a hyperbolic paraboloid 

(*= 115.6) 

FIGURE 1. 

In the case of the cylindrical shell, when splitting the load by formula 
( 9 ) ,  w and .VI, (Figure 3) were determined according to the equations of 
the membrane theory for a load 2.; when using formula (10 )  M, (Figure 3) 
was determined from ( 1 2 )  for k, = 0 and ZhP =drip. 

1, 2, 3, 4 show that the approximate solution obtained on the basis of 
the method proposed has  sufficient accuracy. 

applied to the solution of other systems of linear differential equa- 
tions, and of separate linear differential equations a s  well. 

The diagrams of the deflections and s t ress  resultants given in Figures 

The method of solving system (1) described here  can also be 
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Shearing stress resultant 
5- -5 9 IRlI 

(along l ine y =  r ) 
4 5  

Li 
I Y  

Shearing stress resultant 

(along line I- 9) 
s=-t  $/",I 

-By Vlasov's general theory 
By the approximate method 
of formula (9) 

--- 
Shell in the form of a hyperbolic paraboloid 

( e  = 115.6) 

FIGURE 2 .  

(along line q.0) 

. - By Vlasov's general theory --- By the approximate method of formula (9) - . - .  By the approximate method of formula (10) 

Cylindrical shell (f/k 10.4) 

FIGURE 3 .  
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Shea ring st ress result ants 
S = - I s R  s 

(along l ine y-e) 

ai 0.2 o.a 0.k 

-4 

Shearing stress resultants 
S--5SR 3 (along line x=e/z) 

- BY Vlasov's general theory 
- --By the approximate method of formula (9) 

Cylindrical shell ( f/h= (0.4) 

a 

FIGURE 4 
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I 

NONSTATIONARY FLUTTER OF CYLINDRICAL 
PANELS 

Yu.N.  N o v i c h k o v  

(Moscow) 

Much l i t e r a tu re  has a l ready been devoted to the nonlinear problems of 
panel flutter. 
stationary solutions of the equations describing the behavior of panels 
in a gas  s t r eam.  The nonstationary solutions a re ,  however, a lso of 
interest ,  since through them the behavior of the panel during the simulta- 
neous variation of the velocity and the temperature  can be studied. 
recent  paper by Bolotin / I /  was devoted to the determination of the non- 
stationary solutions corresponding to nonstationary flutter. 
to describe the nonstationary phenomena a t  flutter by Krylov-Bogolyubov- 
Mitropol'skii' s method of single-frequency vibrations; the technique for 
obtaining the f i r s t  approximation by this method was a l so  outlined there,  
and the nonstationary flutter of a plane unheated panel was considered a s  
a n  example. 

This paper is devoted to the approximate solution of the problem of 
nonstationary vibrations of shallow cylindrical panels in a supersonic 
gas  s t r eam.  
of single-frequency vibrations. 
the nonstationary flutter wi l l  be i l lustrated in a particular example. 

Karman-type system of equations. 
according to the piston theory in a l inear  approximation, and the ae ro -  
dynamic damping i s  treated together with the s t ructural  damping. 

supported on all edges by the expression 

Most of the papers  dealing with the subject establish 

A 

It was proposed 

The nonstationary solutions will be determined by the method 
The influence of various pa rame te r s  on 

The panel behavior in a gas  s t r eam can be described a s  known by a 
The aerodynamic load i s  allowed for 

Approximating the normal deflection of a cylindrical panel simply 

rrx 2xx . nv + F~ ( t )  h sin - sin - 
a b  b 

( x ,  y ,  t )  = yl ( t )  h sin - sin 

and using the Galerkin- Pankovich procedure, the problem is easily reduced 
to solving the system 

The symbols used h e r e  a r e  the same  a s  in 141. The p r imes  deggna te  
differentiation with r e spec t  to the dimensionless t ime 'F = Qt. 
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The stationary solutions of this system (the singular points and the 
limiting cycles) were considered by us  in 13, 41. 
solutions will be determined, a s  already mentioned, by the method of 
single-frequency vibrations. Applications of the method of single-frequency 
vibrations to nonautonomous systems and to autonomous conservative 
systems a r e  widely known 15, 6 1 .  The system considered is a peculiar 
nonconservative autonomous system. 
paired interaction which characterizes flutter problems. 

solution corresponding to this line 

The nonstationary 

Of great importance here  is the 

We shall determine the solution near the flutter line 141. Using the 

we obtain the system of equations 

where 

The aster isks  designate the values of the parameters of the temperature 
8 and the velocity p corresponding to the flutter line. 
a r e  a function of the slow time 

to system ( 3 )  a r e  fulfilled 111. 

These parameters 
( 7  is a small parameter). 

A l l  the conditions for applying the method of single-frequency vibrations 

W e  shall look for a solution of ( 3 )  in the form 

where 

and the rea l  functions A and 3 a r e  determined from the equations 

( u), is the frequency of vibrations on the flutter line). 
The problem of finding an approximate solution of system ( 3 )  reduces 

to finding the functions u&, u$), A,, B s ( s  = 1, 2 . .  e )  and integrating system ( 6 ) .  
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These functions must  be determined in such a way that expression (4), 
with ( 5 )  substituted in it, will be a solution of ( 3 )  in every case  when tl 
and 9 satisfy system ( 6 ) .  

Substituting (4) in ( 3 )  (allowing for ( 5  ) and ( 6 ) ) ,  and comparing the 
coefficients of equal powers of 9, we obtain complex sys t ems  of equations 
fo r  the determination of I& and "2). The generating system spl i ts  into two 
conjugate sys t ems  with z e r o  determinants, which ensu re  the existence 
of a nontrivial solution 

where the phase shift T is determined f rom the relationships 

x, - P. + FPI w x n =  A, 

P. - Fl, 
a r e  magnitudes conjugate with Nyi ,  u t i ) .  

P. - Fl? 

(u& and 

expansions: 
The solutions of the other systems will be represented in series 

m m 

2 U ! S )  e"'+ , /I;;)= 2 u: ; ; ,~  e-"'*. 
* = - I  "=- I  

The coefficients of these s e r i e s  a r e  determined f rom the equations 

k - I .  2. n = 0 ,  I ,  2, 3 . . . *  

The right-hand p a r t s  of these sys t ems  r ep resen t  the corresponding 
t e r m s  of the expansion in the right-hand p a r t s  of the equations for de- 
termining u$) in a Four i e r  s e r i e s .  
constant component of the solution. A s  seen f rom (4), ( 5 ) ,  a n d ( 8 ) ,  t h e r e i s  
no need to determine uj;; and uj.;i separately; 
sum. 
unique solution for all  n except n = 0. 
(1 0 )  coincides for  any s with the determinant of the generating system and 
is equal to zero.  A solution will, however, exis t  in this  case also,  due to  
the fulfillment of the periodicity conditions 

System ( 9 )  s e r v e s  for determining the 

i t  suffices to determine their  
System (10)  has  determinants different f rom z e r o  and therefore  a 

At n = 0 the determinant of system 

Y ~ : \ ~ / X S  e'' + ~ g l  = 0. (11) 

These conditions s e r v e  for  determining the functions A s  and B , .  I t  is 
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easily shown that a t  IL  = 0 the right-hand pa r t s  of system ( 1 0 )  have the fo rm 

ilr( g 1 - - ( [ 2 i w .  1 - (-ilk- g ] A s + [ 2 u , .  -ig(- I )k ]AAB, ]u~k+@$~.  

Using these relationships and conditions (11 ), we obtain 

where G r  and H ,  are, respectively, the real and imag ina rypa r t s  of a function 
having a t  k = 1 the fo rm 

( a t  k = 2 we obtain a function conjugate to ( 1 3 ) ,  so  that the same  values for  
G, and H, will be obtained in this ca se  a s  well). 

The determination of any approximation will consist  thus in determining 
the functions (d; ;  + I$;,) .  u$i+,  
( 1 0 )  and integrating system ( 6 )  af ter  the substitution of ( 1 2 ) .  

c a se  system ( 6 )  reduces to 

( k  = 1, 2; n = 0, 1, 2.. .) f rom systems ( 9 )  and 

We shall  now consider the f i r s t  approximation in more  detail.  In this 

where 

) aJ The stationary solutions 

obtained by the small-parameter  method in a f i r s t  approximation. 
The f i r s t  equation of ( 1 4 )  was integrated numerically for  different laws 

of variation of the temperature  and velocity for  a square panel characterized 

by the pa rame te r s  = 1, p = -0.125 (curvature  pa rame te r  /4/) ,  px = 3, = 1 

(absolutely rigid ba r  set) ,  v = 0.3. The resul ts ,  represented in Figures  1 
through 3, show the influence of the r a t e  of variation of the temperature  
and velocity p a r a m e t e r s  (Figure l), the considerable influence of the 
damping, noted already in / 1 / (F igu re  2), and the influence of initial 
deviations on the amplitude of unsteady flutter of cylindrical panels 

-= 0, - = w=const coincide with the solutions (:: d7 

n 
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(F igu re  3). 
stationary vibrations a r e  sufficiently near  to  stationary behavior, and the 
initial deviations, a s  expected, influence the amplitude of nonstationary 
vibrations in the initial portion only. 

Note that a t  low values of the damping coefficient the non- 

0.: 
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A 
0.t 

0.1 
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0.1 
0.01 
0.00 

FIGURE 1. 

FIGURE 3 .  
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0.25- 

~- 
0 Ilo E 

FIGURE 4 .  

Considering the nonstationary solutions corresponding to unsteady 
flutter, i t  is easy  to prove the asymptotic stability of the stationary condi- 
tions 171. 
exchange of the stability of the t r ivial  and nontrivial values for the 
amplitude. 

i t  is possible to study the problem of the establishment of stationary con- 
ditions in the flutter region. 
conditions in Figure 4 for  different values of the initial deviation and the 
damping pa rame te r  g. 
rapidly established, the r a t e  a t  which they a r e  established increasing with 
the inc rease  of the initial deviation ( A  (b) <A,)  and the dec rease  of the 
damping coefficient. 

It was established that on the flutter l ine there  takes place an 

Using the r e su l t  of the integration of (1 4 )  for A,, = const and A (T,,) #o, 

Curves of A have been plotted for  these 

It is easily seen that the stationary conditions are 
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ENGINEERING METHOD OF CALCULATING 
LAMINATED ANISOTROPIC PLATES 

E . S .  O s t e r n i k  and Y a . A .  B a r g  
(Khar ' kov)  

Problems of bending, buckling, and vibrations of anisotropic laminated 

The plate, made of 2 k + l  layers, i s  shown in the figure. In the general 
plates a r e  considered allowing for the transverse shear. 

case all layers  a r e  orthotropic, the planes of elastic symmetry of the 
layers  beingparallel to the plate edges. 
isotropic, the isotropy planes a re  parallel to x O y .  
tions a r e  made. 

If the layers are transversally 
The following assump- 

t 

FIGURE. 

The vertical displacements w a r e  small, and E= =atz = 0. The shearing 
s t resses  vary according to some given law along the z axis, so  that in 
the i-th layer 

-$i=-fC~, Y, t ) IGrJa'(z)  + A I ] ;  $ , j = ~ p ( x , y ,  t )  [G$'a'(z) + B , ] ,  

i = O , I . - . k .  (1 1 
The function a ( z )  is odd, z ' (z ) i s  even, and 

u ( x ,  y ,  0) = 0 (x, y,  0) E 0. 
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The constants Ai and Bi a r e  determined from the conditions of com- 
patibility of the strains of the layers  (without layer sliding) and from the 
method of loading of the plate: 

Here E('),  di), G") a r e  elastic constants, and p, is the mass per unit 
a rea  of the i-th layer.  
to longitudinal static s t r e s s  resultants P,, Pr, Pxy in the middle plane, 
uniformly distributed along the edges and normal to them. 

h z = - TW = d k )  = 0. a t  z = - - 2 d k )  xz = +) gz = 0. 2 XY )'z ' 
of inertia of the axial motion and the damping in the plate material  a r e  
neglected. 
veloped by Ambartsumyan 111. 

The plate is subjected to a la teral  load q (x. y, f) and 

Then a t  
h i  - 

The volume static forces X, Y ,  Z 

The corresponding theory for single-layer plates was de- 

The equations of motion of an element of dimensions d.r .dy.h will be 

Here 

p is the plate mass  per unit a rea .  
valence 

According to the conditions of equi- 

0.5h 0 5h 

[Mx,  M,, Mxy]  = f og, t d z ;  [Q.r, Qy] = ~~~1 dz.  ( 4 )  

We transform equations ( 3 )  in such a way that the functions f, q, w of 
x, y ,  t appear in them. Substitute to that end ( 1  ) in the Cauchy equations 
and integrate the latter,  determining the arbi t rary integration functions 
from ( 2 ) .  We obtain 

-0.Sh - 0 S h  

( 5 )  
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The constants C, D, etc.  a r e  determined by the plate pa rame te r s  and 

Assuming 0, = 0, we write for the i - t h  l aye r  
the form of a ( z ) .  

The substitution of ( 7 )  in ( 4 )  yields 

k 

The constants p a r e  calculated by formulas  of the type pl=~L! '~S? , .  Here 
I -0  

The substitution of ( 8 )  in ( 3 )  yields the following system of t h ree  
equations: 

If the l a y e r s  are t ransversal ly  isotropic, system ( 9 )  reduces to 
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The following equation is easily obtained from here 

Here D* is the reduced flexural rigidity; j, is a constant. Using 
equation (1 1 ) i t  is possible to calculate the deflections w ,  the natural 
lateral  vibrations, and the cri t ical  states of the plate. The complete 
solution of the problem, which must include the determination of the 
s t resses ,  necessitates, however, the knowledge of the functions f and 'p. 

We assume additionally that the rotation o, = 0. Following Khachaturyan 
1 2 1 ,  we introduce the auxiliary function Q, ( x ,  y ,  t). defined by the formulas 

The substitution of these formulas in ( 1 0 )  yields 

The standard Sophie Germain equation v 4 0  = & i s  obtained for the 

la teral  bending. 
isotropic plate was studied in 1 2 1 .  
with system ( 1 . 7 )  in 1 2 1 .  

dW in (1 1 ) P+ = Pv = Pry = - = 0,  d t  

plates subjected to the load q = qm sin -sin-. 

The applicability of this equation to the case of a single 
System (10)  coincides in this case 

B e n d i n g  p r o b l e m s .  E x a m p l e s  o f  c a l c u l a t i o n .  Write 

We shall consider sandwich square hinged 

X X  x v  
a a 

1. The layers  a r e  transversally isotropic: V , , = V ~ = Y ;  d - h .  E1 = n .  ' - 4 ' E ,  ' 
hZ - Eo = 3 = S. Write a ' (z )  = -- 2'. The exact solution of the equation yields 

G, G; 4 

X X  x s i n - s i n x .  a a  
Writing v = 0, we obtain a complete coincidence with Khachatryan's 

solution / 3 1. 
2. The layers  a r e  isotropic and of the same thickness, Y ~ = Y ~ = V ;  5 = n  

h' Then, writing a' ( 2 )  = - - z', we obtain 
4 

EO 

h' writing a ' ( z )  = - 16 - 2' we obtain 

702 

--- -- -------_--.-__..I .. . .. ... 



w .  Here q = - is a correction to the classical  theory. Take v = 0.25, 
WO 

and compare the r e su l t s  with those obtained by Melkonyan / 4 /  on the 
bas i s  of the three-dimensional theory of thick plates.  The r e su l t s  a r e  

2.011 
1.254 
1.096 
!.035 

given in the table. 

?.Oil 
1.2% 

I .I21 
1.059 

TABLE 

1.274 
I .  o m  
1.030 
1.033 

It 

1.” 
I  .o69 

I  .038 
1.037 

10 
2 
0.5  
0.1 

10 
2 
0.5 
0.1 

1.080 

- .  

“max 

2.117 
1 .3112 
1 .I32 
I .Ob3 

lo/,, I 1.074 
1.286 
1,073 
I .040 

I ,042 

1 . I a!, 
0.50:, 1 

1 ”/. 

o . l ~ / o  I -  ’0 

It is seen that, even for a plate of medium thickness, the discrepancy 
does not exceed 5.5 70 by formula ( 1 2 )  and 4.9 % by formula (1 3 ) .  Formula 
(13 )  generally gives better r e su l t s  than ( 1 2 ) .  

for plates of all  possible combinations of rigidly supported and hinged 
edges ( 9  c a s e s  in  a l l ) .  
means of tr igonometric functions. 

hinged. 

The problems of the natural  frequencies and cr i t ical  forces  were solved 

The solution was conducted according to  / 5 /  by 

E x a m p 1 e . The l aye r s  a r e  t ransversal ly  isotropic, the plate is 
The natural  c i rcular  frequency is expressed by the formula 

a Here I - = ~ .  In the case  of a single-layer plate formula ( 1 4 )  coincides 

with the solution of Ambartsumyan and Khachatryan 1 6 1 .  
( 1 4 )  that the classical  theory gives an overestimated value for  the 
frequencies.  

three-layered beam. The middle layer  was made of plexiglass, and the 
outer l a y e r s  of s teel ,  fastened by a cold-hardening glue. 
were: a = 52 cm; h = 4.8 cm; d, = 1.2 cm; Eo = 2.5X104 kg/cm2; vo = 0.36; 
E,  = 2X10G kg/cm2; 
form p res su re  through a p re s su re  chamber.  The deflections were 
measured a t  9 points of the beam by means of mic romete r s  with an 
electronic contact indicator. The theoretical correction to the classical  
theory a t  the middle of the beam was 1 = 2.08. 
the calculated deflection was 0.73” for a parabolic law for  a’ (z ) ,  while 
the measured deflection was 0.71 m m  ( a  discrepancy of 3%). 
r e su l t s  were obtained a t  the other points a s  well. 

It is seen from 

A n  e x p e r i m e n t a l  t e s t  of  t h e  t h e o r y  was conducted on a 

The beam data 

The beam was hinged and loaded by a uni- V, = 0.28. 

At a p r e s s u r e  po = 6 kg/cm2 

Similar 
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The creation and running of the installation made i t  possible to refine 
the testing technique and the design of a universal  stand for plate testing, 
in par t icular  in what concerns the end conditions. 

The theory proposed h e r e  s e r v e s  for  calculating important pa r t s  and 
subassemblies  of high-power turbogenerators and makes i t  possible to  
calculate laminated plates allowing for the l a t e ra l  shear  without conducting 
a prel iminary calculation according to the classical  theory.  
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CALCULATING A CEILING IN THE FORM OF A 
SHELL RECTANGULAR IN THE P L A N  

V . A .  P a l  ‘ m o v  a n d A . A .  P e r v o z v a n s k i i  
(Leningrad) 

This paper t r ea t s  the problem of calculating the s t r e s s e s  in the 
s t ruc tu re  represented in the figure. 
elliptical paraboloid, cut out f rom i t  by four ver t ical  planes symmetr ical  
re la t ive to the paraboloid apex. 
side element 2,  which r e s t s  on the vertical  columns 3.  It is a l so  necessary 
to take into account the presence of the horizontal t ie pieces  4, whose 
tension can be  a rb i t r a r i l y  specified within cer ta in  l imits .  

Shell 1 r ep resen t s  a pa r t  of a n  

The shell  ends a r e  connected with the 

I I I I I I I I IV  
FIGURE. 

The columns prevent the vertical  displacement of the side element and, 
therefore,  of the shell  ends as well. The re  follows from h e r e  one of the 
boundary conditions for the shell: the absence of vertical  displacements 
of the end. The other end conditions must  be obtained a s  conditions of 
contact between the shell  and the side element. In o r d e r  to simplify the 
problem, we a s sume  that the side element is in  a s ta te  of compressive- 
tensile s t ra in  only, and opposes no resis tance to bending and torsion. 
This  is an assumption which is usually made in the pract ice  of ceiling 
calculation (cf. /1/) .  It then follows that the bending moment and the 
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horizontal force perpendicular to the shell boundary vanish a t  the shell 
edge. 
together with the side element, s o  that the deformations of the shell and 
the side element along the edge a r e  equal, and the shearing forces with 
which the side element acts  on the shell a r e  equal and opposite to the 
forces with which the shell acts  on the side element. 

Let the a 
axis be the line of intersection of the middle surface of the shell with the 
plane perpendicular to the p axis and drawn through the origin, and let  
the p axis be the line of intersection of the middle surface with the 
corresponding plane perpendicular to the a axis (see figure). The ad- 
vantage of this system of coordinate axes is that the shell ends coincide 
with the coordinate l ines a = t a,: a = Bo. Its shortcoming is that i t  is a 
system of nonorthogonal curvilinear coordinates. 

on the line p = + P o  in the form 

In the direction of the boundary the shell is in a state of strain 

Draw a system of coordinate axes a , @  on the shell surface. 

Using Gol'denveizer' s symbols 1 2  1, we write the boundary conditions 

W uf ;+vf2-  = 0, 

4- H ,  COS x=O, 

Th a boundary conditions a r e  written in the order in which they were 
discussed above. 

Here T,, S,  a r e  tangential s t r e s s  resultants; N Z  is the shearing force; 
G,,  Hz a r e  the bending and torsional moments, respectively; u, v, w a r e  
coriiponents of the displacement vector; is the shell strain along the 
aaxis; 5! is the a rea  of the side element; Q is the s t r e s s  resultant acting 
in it; @ is the distributed force of action of the tie pieces on the side 
element. 

In addition, A ,  B, L are ,  in Gol'denveizer's terminology, coefficients 

of the f i r s t  quadratic form, and z,? a r e  coefficients of the second 

quadratic form of the middle surface of the shell. 
Ri h?; 

The functions f i  (a), f2 (p) enter in the shell equation 

z=f1  ( a ) + f ,  (PI. 
The values of the other magnitudes a r e  then 

The equations of the theory of shells, written in the system of curvi- 
l inear nonorthogonal coordinates defined above, a r e  given in 121 .  They 
a r e  very bulky and their  integration is complicated by the complexity of 
the boundary conditions (1 ) .  
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The problem will be solved by the method of asymptotic integration 
12 ,  3 1 ,  which uses  efficiently the shell thinness. 
basic principles of this method a s  applied to the problem considered, we 
write the equations of the theory of shells in a special form. 
to that end matrix columns: T.represents tangential s t r e s s  resultants, 
,V, shearing s t r e s s  resultants, M ,  bending and torsional moments, 
Q ,  external forces, and TJ, displacements: 

In order  to describe the 

We introduce 

The equations of equilibrium can then be written a s  follows: 

HT+RN= Q; 
N = C M .  

(4) 
( 5 )  

Here H, R, C a r e  matrices of differential operators. The form of these 
The elasticity relation- matr ices  will not be given here for lack of space. 

ships will be written a s  follows: 

1 T= - IU; 
QZ 

I M = - FU. 
Q* 

Here I and F a r e  likewise matrices of differential operators, and Q is 
a "large parameter,  " i. e . ,  a magnitude inversely proportional to the 
square root of the ratio of the shell thickness to  i ts  characterist ic 
dimension in the plan. 

is made of the sum of three elementary states of s t ress :  a membrane 
state of s t ress ,  a bending state of s t ress ,  and an end effect. Al l  the 
magnitudes introduced a r e  magnitudes of a certain order  relative to q. 
If the derivative of any magnitude by the coordinate is of different order 
than the corresponding magnitude itself, we shall say that it varies sub- 
stantially when differentiated by this coordinate; in the opposite case it 
does not vary substantially. 

The membrane and bending states of s t r e s s  a r e  defined a s  states in 
which the components of the state of s t r e s s  and the displacements do not 
vary substantially when differentiated by the coordinates a and b. 

It follows from the elasticity equations ( 6 ) ,  ( 7 )  and the equilibrium 
equations (4), ( 5 )  that in this case, i f  T#O, then T and N a r e  of different 
order  of magnitude; the equilibrium equation (4) then reduces to 

Following 1 2 ,  3 1 ,  we shall consider that the state of s t r e s s  of the shell 

H T = Q .  ( 8 )  

In order  to form the membrane state of s t ress ,  take the general 
solution of the homogeneous equation corresponding to (8) :  

HT=O. 

At  known r (T #0) the displacements of the membrane state a r e  de- 
termined a s  a particular solution of ( 6 ) .  Using the expression found, we 
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determine the moments by ( 7 ) ,  and then the shear ing fo rces  by ( 5 ) .  
the s a m e  scheme, using a particular solution of ( 8 ) ,  we fo rm the solution 
corresponding to the external distributed load Q. 

no extensions and s h e a r s  in the middle surface,  i .  e . ,  

By 

When forming the bending state of s t r e s s  i t  is assumed that there  a r e  

IU =o. ( 9 )  

The displacements of the bending s ta te  of s t r e s s  a r e  determined a s  a 
We then find the moments by ( 7 ) ,  the shear ing general  solution of ( 9 ) .  

f o rces  by ( 5 ) ,  and the tangential s t r e s s  resul tants  by the equation 

HI'+ RK=O 

We shal l  now investigate the asymptotic propert ies  of these s t a t e s  of 
Le t  the s t r e s s  resultants of the membrane s ta te  of s t r e s s  be of s t r e s s .  

o r d e r  9 A :  

j r ( m J  9* ( 1 0 )  

( TC-) a r e  magnitudes independent of 9 ) .  
It follows from equation ( 6 )  that the displacements a r e  of o rde r  yAd2:  

u= 0'1-1 @++2 (11 )  

f rom equation ( 7 )  that the moments a r e  of o rde r  qA-4: 

M = M"!qA--4, 

and from equation ( 5 )  that the shearing forces  are likewise of o rde r  q A - 4 :  

N = NC-1 9A- 4. ( 1 3 )  

The par t icular  solution corresponding to an external distributed load 
has  the following asymptotic properties:  

j r  = 7 ' ( O )  $; 2, i= ,#) q2; M = MLo) q-4. N ="O] 4-4. (14 )  

,y= u ( h )  q~t'5; M = M ( ~ ) ' P ;  N =  ~ ' ~ " q ' ;  T =  j r ( h )  q v .  (15 )  

The propert ies  of the bending state of s t r e s s  a r e  s imilar ly  found: 

The coefficients of qt in (1 1 ) to (1 5 ) a r e  independent of 11. 

The end effect is defined a s  a state of s t r e s s  whose components vary 

We shall  r e s t r i c t  ourselves  to considering the end effect on the line 
substantially when differentiated by the coordinates. 

p = + P o .  
differentiated by the coordinate B. 
tion, we note that i n  this  ca se  the normal  displacements a re ' o f  the form 

In this ca se  the s ta te  of s t r e s s  va r i e s  substantially when 
Passing over the details  ,of the calcula- 

where 'pl (2) and v2 (a )  a r e  functions which do not vary substantially when 
differentiated by the argument; 

on the end p = eo posses s  the following asymptotic propert ies  1 3 1 :  

v1 and vt a r e  a s  yetundetermined numbers.  
The components of the s ta te  of s t r e s s ,  the s t ra ins ,  and displacements 
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( 1 7 )  
(cont'd) 

The end effect on l ines  p = - Bo; 
l& e shall  now establish the boundary conditions for  each of the elementary 

a = c z,, posses ses  s imi l a r  propert ies .  

It was mentioned above that the complete solution of the s t a t e s  of s t r e s s .  
equations of the theory of shells can be represented a s  the sum of the th ree  
s t a t e s  considered and of the solution corresponding to an external distributed 
load. 
the highest-order t e r m s  in each of the s t a t e s  of s t r e s s .  T e r m s  of different 
o rde r  wi l l  then appear in the boundary conditions: 

in the f i r s t  condition: 

We substitute these sums  in the boundary conditions and keep only 

0, A, p $4. ~ ~ 4 - 2 .  v 1 + 2 :  

in the second condition: 

-4,  b -4, p, Vl, V I -  I ;  
in the third condition: 

in the fourth condition: 
0. 1, P, V 1 - 4 .  V2$1: 

0, h P, v1+2, V 2 t - 2 .  

It has  been assumed h e r e  that the cross-sect ional  a r ea  of the side 
element is proportional to the shell  thickness (Q  = 
b, p, v,, vZ must be selected under the following considerations. 

the t e r m s  of highest o rde r  only, we obtain cer ta in  boundary conditions. 
We require  that A, p . .  . . . be such that these boundary conditions contain 
elements of a l l  the s ta tes  of s t r e s s ,  that the components of the par t icular  
solution Tin', S:"' appear in one of the boundary conditions a t  least ,  etc.  
Each of the s t a t e s  of s t r e s s  must  be determined uniquely with the aid of 
these conditions; no state of s t r e s s  must  vanish under any external 
load whatsoever; 
The following combination of values of the numbers  A, p. .  . . 
requirements:  

4-2 ) .  The magnitudes 

If, a t  given values of 1, p - . - .  , we keep in each of the boundary conditions 

the boundary conditions must be f r ee  of contradictions. 
sat isf ies  these 

A EO; p z -4; vl = -2; v 2 -  - -2. (18 )  

The boundary conditions reduce then to the following, when the magni- 
tudes of the highest o rde r  only a r e  kept in them: 

The boundary conditions on the other ends of the shel l  a r e  s imilar ly  
formed.  
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The membrane state of s t r e s s  is determined with the aid of the third 
boundary condition of this system, the end effect with the aid of the second 
and fourth conditions, and the bending state with the aid of the f i rs t  condition. 

of the elementary states of s t r e s s  shows that a t  the values selected for 
A, p. - - the s t r e s ses  caused by the tangential s t r e s s  resultants of the 
membrane state and by the moments in the end effect a r e  of the highest 
order  of magnitude. 

Knowing it, the solution of the problem of the end effect can be found from 
the second and fourth boundary conditions of (1 9 )  for the end p =Bo,  and 
from the corresponding boundary conditions on the other ends of the shell. 
If only the s t resses  have to be calculated, there is no need to solve the 
problem of the bending state of s t ress .  

The investigation of the asymptotic properties of the s t resses  in each 

These s t resses  a r e  the design s t resses .  
The solution of the corresponding membrane problem is given in 141. 
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STUDY OF THE MEMBRANE STRESSED STATE OF 
ELLIPSOIDAL SHELLS OF REVOLUTION WITH A 
REGULAR ROW OF HOLES 

S . V .  P a s h e n t s e v  

(Moscow) 

The complexity of the problem of s t ress  concentration in shells having 
several  cuts makes it necessary to introduce various simplifying assump- 
tions before solving it. One such simplification consists in splitting the 
stressed state into a membrane state and a state of the edge-effect type. 
The advantage of such a splitting l ies  in the relatively simple solution of 
the second problem for shells of positive curvature and in the possibility 
of a clear mathematical formulation of the f i rs t  problem. 

notation 11 1: 
The equations of equilibrium of the membrane state a re ,  in tensor 

Vd Ti.'+ X k  = 0,  

b l p  + z = 0, 
TtR = 7ki, (i, k = 1, 2). 

The introduction of the complex s t ress  function 

reduces the f i rs t  two equations of system (1)  to one: 

z = x1 + i f f .  

By selecting a s  coordinate lines the principal curvatures of the surface 
(orthogonal and conjugated-isometric) we reduce the third equation of (1  ) 
to 

The introduction of the function 
- ci= V g p .  I% 
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leads to 

(1%) 

whose general solution i s  

ri = U" (z, 2) -t U ( z )  + m (2). 

The circumferential force vector % is of the form 

- -  
By specifying the normal load component on the contour Til= TI . I  =f(s) we 
obtain Hilbert' s boundary-value problem for the analytical function I/  (2): 

A similar boundary-value problem is obtained if i t  is the tangential 

The problem formulated wil l  be solved for the case of ellipsoidal shells 
force component Trs (or  a combination of the two) that is specified. 

of revolution with a regular row of holes, i. e . ,  with m identical holes 
having equidistant centers lying on the same latitude. 
shell is cut along the equator. 

the shell is homeomorphically mapped on region G' of the 
of the stereographic projection 

We assume that the 

If the holes have a plane contour, it is easily shown that the surface of 
plane by means 

The contours of the holes a r e  trans- = 1". 
1 %-I) m 

formedas a resul t  into the circles r; I T  - Ae 1 = p, , where k = 1. 2, .  . ., m. In 
addition to G' we shall also make use of the region G, which i s  the canonical 

region of the concentric ring on which the region 2 G; + G' is mapped by 

the fractional-linear transformation 

m 

k-1 

Here 

q = -~ Pa , A+po>c>A-~p , .  
1 -cA 

The Hilbert problem ( 2 )  reduces for the case of loading by a normal 
pressure Z, = Pn X1 = X z  E 0 on plane 1 to 
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I 

d9 ' 8 = - is the contour slope; J is the a r c  along the contours on the plane; d3 
and 

a 4 Z + E  U* = Pn -- (6' - d) ch- __ . 
2 Lfb 2 

The function U ( z )  contains a s  a separate  t e r m  the analytical component 
? ( z ) ,  which is very convenient for  solving problems with equatorial  cut. 

It has  been shown by Gol'denveizer / 2 /  that the function LJ(z)which 
satisfies ( 3 )  must  have poles of second o rde r  a t  l ea s t  a t  points 11 = 0, q = m 
in o rde r  that the s t r e s s e s  be finite. 

The boundary-value problem ( 3 )  will be solved for cyclical boundary 
conditions in o r d e r  to make the greatest  possible use  of the cyclical 
geometry of the region. 
(with region character is t ics  reflecting the presence of m cuts) will be 

extended out of the sector  -? Q I' (rp) < + f by rotating through the cycle 

angle po= 2. 

responding regulating multiplier of the Hilbert problem P(6)  /3/. 

P ( 6 )  a r e  found from the equality on the contour 

To  that end the solutions obtained for one cut 

m 
2- 
m The region character is t ics  a r e  the index x and the cor-  

The problem index x = 2 ( m  - 1 )  and the corresponding regulating multiplier 

[qaeh(l)],. = P ( 6 )  e-ZiR.  ( 4 )  

The separation of the argument in (4) l eads  to the Dirichlet problem for 
the function ~ ( 7 1 )  regular  in 6": 

Re.((?) =--argq--Zi?. ( 5  1 
By expanding the function 7 ( 7 , )  in a series in the concentric region G (a11 
we obtain 

where 

(- 1 Jk-' 1 1 1 
Bb = 2 (m - 1) -___ & 

QL [ (,. - c.--) + (7 - 41. 
This function sat isf ies  the condition of regularity 

0 

It is easi ly  shown that the continuation of qxeil(l) by rotating through the 
cycle angle is analytical. The division of both s ides  of ( 3 )  by P ( 6 )  yields 
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The function $cy) can be an ordinary regular function, since U ( q )  = + (q) .@(q)  
will then have a t  point 7 = 0 a zero  of second order  at  least. 
select  the function 'p(q) in such a way a s  to make the right-hand par t  of ( 5 )  
identically equal to zero  on the shell equator To. By striking out the value 
of the shell parameters  on r, we obtain 

We shall 

'p (7) = 2 c m i l m k .  

m l a z  

It follows from the method itself of selection of y(7) that U' + 'p (q ) i s  the 
function of the s t ressed state of the shell in the absence of internal cuts, 
so that U ( 7 )  is a purely concentration function. 

The load on the inner cuts will be represented by the ser ies  

which is likewise equivalent to a Fourier  se r ies  representation. 

for  the twice-connected region of the concentric ring G .  
The initial problem has now been reduced to the Dirichlet problem ( 5 )  

M'e write the solution of this problem in the form of a Schwarz integral: 

\P ( w )  = 2n Ke [Y (711 T(r ,  w) Idr I -I- iB. ' $  
The Schwarz operator for the region G is well known and is equal to 131 

The condition of uniqueness of the solution i s  the integral equality 

f F ( s )  ds = Jfi;? ds', 
i. r, 

which reduces in our case to 

)'f(s') ds' = 0. 
i., 

The following simplified value of the Schwarz operator was obtained by 
Mikhlin 1 5 1  

W lnw d7 2 + - 92 - 2qZ7 I d r  + - i  - [ z--20) w l n q  7 
T ( r , w ) I d s I = i  -- 

The uniqueness condition requires  that the term containing In w be 
absent. The Mikhlin simplification is based on the smallness of qz 
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compared with unity. Since q = *, i t  is obvious that the hole in the 

shell  must  be  sufficiently small  and not too close to the edge. 
The same  simplification leads to the following expression for  P(6)on rl: 

where a, and 8, a r e  known constants, determined a s  a r e su l t  of the 
summation of the series for  ~ ( w ) .  

Co32jdering the right-hand side of the Dirichlet problem on rl, w e  find 
that f (7) has the following singularit ies inside the circle  Iwl < q :  

1 )  a fourth-order pole a t  point T** with main Laurent pa r t  GY) 

2) a pole of o rde r  s = max ( 1  + m + 1, nz ( R  + 2))  a t  point q'c with Gi?) 

1 -- ( 7 - . * . ) a  

3) a pole of o rde r  2 ( m -  1) a t  point q2/c with Gi$+ 

4) a pole of o rde r  2 (m - 2) a t  point T = 0 with G&2) 

We need, in addition, the Laurent pa r t s  of the expressions a t  the singular 
points T ~ :  

Here  

The knowledge of the principal pa r t s  G ( p )  automatically gives u s  the value 

of the constants sip). 
f 011 ow s : 

' P  
The problem solution can now be represented a s  

l x  L 4  [[B GT(=)+ 1 analytical function qJ (w) =- - 
2*y, p - 1  

2 

Using Cauchy's res idue theorem we obtain 

A = a!') + ai" + 4 3 )  + ~ 1 4 ) .  

A = a i l )  + ~ 1 2 )  + a(3) + ~ ( 4 ) .  
- -  - - -  

The uniqueness condition gives after integration 

- -  
'I = all) + .'i" + 4 3 )  + 4 4 ) .  
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The approximation 

U(T) = 

qz< 1 reduces the s t r e s s  function to 

X 

The solution is easily obtained after the separation in Re [+(.)I of the 

The examination of O(q) leads to the conclusion that it describes a 
principal Laurent par ts  a t  the singular points indicated. 

s t ress  f ie ld  decreasing away from the contour Iwl=  q. so that the s t r e s s  
concentration will be maximum on the contour; 
concentration increases with the increase of q and m. 

case of a large number of holes m. 

form 

it is also seen that the 

Another solution of the problem formulated is possible in the particular 

The boundary condition of the Dirichlet problem can be written in the 

Using the Schwarz operator, we obtain the following solution of the problem: 

where i ( r )  depends on the supposedly large number m. 
in the form (on r,) 

We represent i ( t )  
- I  

(7) =f, (.) ez(m-l)u(B) + jl ( 5 ) .  

after which the integral ( 6 )  is easily calculated by Laplace's asymptotic 
method: 

The uniqueness condition is easily written. Since 

Z l  -U 

c ( u )  = c U + f ( e w  1. 

only the f i r s t  term can lead to a nonuniqueness. a+ (w), = 2+ic[$ (W)]c.r ,  after 
which the solution simplifies and reduces to 
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X 

x [ L (p In +) - c (+ In so, )I 
The uniqueness condition l eads  thus in both solutions to the necessity 

The geometrical  formulation of the conditions of existence of a membrane 
of having one a rb i t r a r ines s  in the contour loading. 

s ta te  l eads  to s ix  more  equilibrium conditions of the shell  a s  a rigid whole, 
which must always be fulfilled. 

Geometrical  conditions which ensure t r ivial  infinitesimal bendings a r e  
the rigid edging ak, = 0 of the inner holes and the rigid clamping of the 
l a r g e  contour. 
has  been proved by Vekua. 

fulfillment of a l l  conditions of Vekua's theorem. 
gives in this  case a z e r o  displacement along the meridian of r,, which 
r ep resen t s  the tangential boundary condition a t  r igid clamping. 

The triviali ty of the bendings for  the case  Fi& = 0 a t  m > 2 

By completing the half-shell by a second symmetr ical  one we obtain the 
The pattern symmet ry  
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STABILITY OF AN ELASTIC-PLASTIC CYLINDRICAL 
SHELL UNDER DYNAMIC LOADING 

A . K .  P e r t s e v  

(Leningrad) 

When a shell is subjected to impact loading, the appearance of residual 
dents caused by buckling occurs under considerably higher s t resses  than 
in the static case. It is expedient to classify dynamic loads according to 
the extent to which the residual dents lower the static stability of the shell. 

We shall distinguish between three characterist ic dynamic loads: 
1) Safe load, whose action does not lead to the appearance of residual 

2) Dangerous load, under whose action there appear visually noticeable 
dents. 

residual dents, but so shallow that the value of the critical load is only 
negligibly reduced. By definition, a load will be called dangerous if  it 
reduces the static critical load by 10%. 

3) Collapse load, which causes the appearance of dents so  deep that 
the shell becomes practically incapable of taking a static load. 

This paper t reats  the problem of determining the dangerous dynamic 
load. 
than the safe load, and it has the added advantage of being easier to 
determine experimentally (by measuring the depth of the residual dents). 

deformations. 
be taken into account when studying the dangerous loads. 
hand, the shell deflections under a dangerous load a r e  small, so that the 
problem can be solved within the frame of the geometrically linear problem. 

and subjected to, besides hydrostatic pressure,  an impact load applied 
uniformly to the lateral  surface of the shell. The shell is supported by 
equidistant lateral  stiffening ribs; i t  is assumed that they do not oppose 
resistance to the pressure applied on the shell and do not lose their circular 
shape. 

We shall study the stability of the middle portion of a fairly lengthy 
shell; the edge effect will accordingly be neglected, and it will also be 
assumed that the distance between the stiffening r ibs  does not decrease 
under dynamic loading. 

The shell has an initial deflection coinciding with the form of the 
buckling. 

The system of equations of motion and continuity of a circular cylindrical 

This load characterizes the carrying capacity of the shell better 

The formation of residual dents is linked with the appearance of plastic 
It follows that the plastic properties of the materials must 

On the other 

Consider the buckling of a circular cylindrical shell immersed in water 

Buckling will therefore occur only between the r ibs .  
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shell is, in a geometrically linear formation: 

Here r and 8 a r e  the radius and thickness of the shell; T,, T,, S,  M,, M,. 
and H a r e  forces and moments per  unit length; E , ,  s2, and o a r e  strains of 
the middle surface; XI, x,, and 1 a r e  variations of the curvature and 
torsion; the superscript "0" designates the values corresponding to the 
initial deflection; 
p is the density of the shell material; p ( t )  is the external pressure;  x 
and 'f a r e  cylindrical coordinates. 

the dot designates differentiation by time. 
designate the longitudinal and lateral  directions of the magnitudes, 
respectively . 
assumed that the s t r e s s  components remain constant in the plasticity 
zones. 
formulas: 

w is the normal component of the shell deflection; 

The subscripts ' l x "  and "p" designate differentiation by the coordinates; 
The subscripts "1" and "2" 

The shell material  will be considered a s  elastic-plastic. I t  will be 

The forces and moments will then be expressed by the following 

where 

(3) 

( 4 )  

( 5 )  

(6) 

E6 
T, = _1 [Ql -I- P'r - ss (XI + PI)] 1 

1 --P . . . . . . . . . . . . .  
M, = Di (3 + P X 2 h  . . . . . . . . . . . . .  

1 
2 

s = - [( 1 -a )2 - 2c (1- e)], 
1 = a ISF(1 -7) + a(3-6:- 22)], 

a is the height of the elastic core of the section; c is the height of the 
plastic zone of extension; E and p a r e  the modulus of elasticity and the 
Poisson ratio. 

By using the following expressions for the curvature and the torsion 

( 7 )  
1 - w x p  1= - 1 

x1 = - wxx, x*  = - - rl W)P% 

and introducing a s t r e s s  function by the formulas 

we can transform equations (1 ) and ( 2 )  to the form 
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where 

(11 1 

Palii 11 1 obtained similar equations for the case of a static load and 

The following assumptions will be used in solving system (9 ) ,  ( 1 0 ) .  
Following 11 1, we shall neglect the te rms  in ( 1 0 )  caused by the presence 

of plasticity zones, since this does not introduce a substantial e r ro r  in 
the determination of the s t ress  function. 

shell, by the following expressions: 

for plasticity zones by the compressed fibers of the shell only. 

The shell deflection will be described, just a s  for the case of an elastic 

( 1 2 )  

( 1 3 )  

X X  
w=f0+ficos-  cos ncp, 

W' = j incos - cos n T, 

I 
X X  

1 

where I is the distance between the stiffening r ibs  and n is the number of 
waves into which the shell buckles. 

We finally take the function i a s  equal to i t s  minimum value 

i r - i  0, (14) 

where io is the value of the function i a t  the point with maximum variation 
of the curvature. 

Then 

L (i, w )  = io VJV'W (15 )  

and equation ( 9 )  will be the same as  for an elastic shell, but with a variable 
flexural rigidity. 

It should be noted that the las t  two assumptions compensate for each 
other to a certain extent, since the first  one leads to an increase of the 
shell resistance to bending while the second one decreases it. Similar 
assumptions have been used in the analysis of the static stability of 
elastic-plastic ba r s  1 2 1 .  

allowed for by means of the coefficient of attached mass,  which can be 
calculated either by the formula of 1 3 1  or by the approximate formula 
obtained by Novozhilov: 

The influence of the liquid on the bending motion of the shell will be 
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X f  where a =  pa is the water density. 

In the case  of axisymmetrical  compression the liquid resis tance is 
determined by means of the hypothesis of plane reflection, i. e . ,  we shall  
consider i t  a s  proportional to the velocity of this motion. 

The p r e s s u r e  acting on the l a t e ra l  surface of the shell  will then be 
equal to 

I '  

P ( t ) L - P o f P d ( t ) - P o a a  fo* (17 1 
where pa is the hydrostatic pressure;  
a,, is the velocity of sound in water. 

(10 )  is integrated rigorously).  
a r e  written a s  follows in dimensionless form:* 

P d ( t )  is the dynamic pressure;  

Equation ( 9  ) will be integrated by the Bubnov-Galerkin method (equation 
W e  obtain a s  a r e su l t  two equations, which 

where 

i,= - 4 io c, - w:: c, -1- B (id+ To) 

Equations (1 8 )  and (1 9 )  will be solved under the following initial 
assumptions; ::<*: 

where 

C,= t,, --, Po <,=O, Co = G= 0, 
P. -Po 

is the upper cri t ical  p re s su re  on the shell .  

plastic extension zone will be determined with the aid of Mises '  yield 
condition 

The height ;of the elastic co re  of the section and the height F of the 

a, = 0 Y' 

where o1 is the s t r e s s  intensity and a y  is the yield point of the mater ia l .  
The calculations have established that condition ( 2 1 )  can be replaced 

in our case  by the s impler  approximate expression 

( 2 1  1 

0,=1.08 o y .  ( 2 2 )  

I t  is assumed that  t he  max imum c i r cumfe ren t i a l  stresses in t h e  shel l  a r e  below the yield point. 
* *  It is assumed tha t  the s ta t ic  pressure does not l ead  t o  plast ic  deformations. 

(20) describes t h e  def lect ion d u e  to t h e  dynamic  load only. 
T h e  function C, in (19) and 
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The following expressions a re  then obtained with the aid of the hypothesis 
of straight normals and the condition of force equilibrium in the shell 
section: 

A 6  2 (1  -0;) (elastic shell) 

a t  
2 ( I - a a ; ) < A < -  (one- sided plasticity) 

1-0; 

a =  

a t  
2 

A >/ 7 (two- sided plasticity) 
1-a2 

Here 

a --?' is the mean la teral  s t r e s s  in the shell section. 
01- 6 

Equation (18)  with formulas (6), (25 ) ,  and ( 2 6 )  is correct  a s  long a s  

The material  will behave elastically during unloading. 
the plastic deformations continue to increase. 

arbitrari ly that unloading s ta r t s  simultaneously a t  all f ibers of the section, 
beginning with the moment when the bending deflections reach the maximum. 

expression 

We assume 

During unloading the term w: io i, in (18) must be replaced by the 

I5 { p a x  - (:pax - Cl)], (28 1 

where i s  the maximum deflection, and i,' i s  the value of the function 
io a t  the maximum deflection. 

In order  to determine the dangerous load it is f i r s t  necessary to find 
the dependence of the residual deflections of the shell on the loadmagnitude. 
We therefore plot the functions C, (7) and C, (T), either by a numerical method 
o r  by means of an electronic computer. 
is represented in Figure 1. 

It is seen from the figure that only an axisymmetrical compression of 
the shell takes place a t  the beginning of the loading, and that the bending 
deflections develop after a certain delay. 
load has  been removed there s ta r t  free vibrations of the shell, which a r e  
described by the equation 

The typical shape of these functions 

A certain time after the dynamic 
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(in the given case we assume for simplicity that p o  = 0). 
Since these vibrations must be dampened due to the internal friction in 

the metal, the residual deflection is found by equating the inertial term to 
z er 0: 

We thus obtain the relationship between the residual deflection and the 
maximum magnitude of the load C r e s = f  (?,)(Figure 2).  

Dynamic shell deflections( 2 =  15.5cm; 6= 0.23cm; 
e = 13.0cm; 6 = 4500kg/cmz). 

FIGURE 1. 

Scheme of determination of the dangerous dynamic load. 

FIGURE 2. 

It is further necessary to obtain the dependence of the static cri t ical  

Such a problem was solved in 111. 
load on the size of the initial dents. 

obtained with the aid of equations (18) and (1 9 ). 
aCr(Cid is represented in Figure 2. 
the magnitude of the deflection which decreases the static critical load by 
10% (this deflection corresponds by hypothesis to a dangerous dynamic 
load). With this deflection known, the dangerous deflection is determined 
from the curve Cres(pm). 

The desired relationship can also be 

Using this curve it is easy to determine 
The shape of the function 
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The laws of variation of the dangerous load were investigated by 

The initial irregularit ies of the shells were selected by the formula / 4 /  
calculating several  particular cases.  

0.2 Gin= -. 
R 

The number n of waves into which the shell buckles was selected on the 
basis of the experimental results.  

application was varied within the l imits 5 < ro < 50. 

coefficient 

The dynamic load had the shape represented in Figure 1. 

It is convenient to characterize the dangerous load by the overload 

I ts  time of 

where adpax a r e  the maximum circumferential s t resses  a t  dangerous load 
under the assumption that the shell does not buckle but is only compressed; 
a c t  a r e  critical s t resses;  oo a re  s t resses  due to the hydrostatic pressure.  

magnitude of the overload coefficient a r e  the frequency of the natural 
vibrations of the shell w ,  the value of the yield point a.y, and the time of 
action of the load T ~ .  

formula 

The calculations established that the main factors influencing the 

The lower the frequency of natural vibrations, determined by the 

the slower is the development of buckling deflections, and the higher is the 
overload coefficient (Figure 3 ) .  
fact that the dangerous load is the same for a shell with small cri t ical  
pressure and low frequency and a shell with considerably higher critical 
s t resses  and natural frequency. 

There results the seemingly paradoxical 

T h e  overload coefficient as a function of the  
t i m e  of application of the load for the  shell 
z- 15.5cm. 6 =  0.23cm. e =  13.0cm,  

G y  = 4500 kg/cmZ. 

FIGURE 3. 
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The existence of a static load influences in the first place the frequency 
of the natural vibrations, which is decreased a s  a result .  
an increase in the overload coefficient. 

This leads to 

The overload coefficient decreases with the increase of the t ime of 
2% When the time of action ~ ,>3T(where  T =  - action of the load (Figure 4). 

is the period of natural vibrations of the shell), the overload coefficient 
approaches unity, i. e. ,  buckling occurs under such a load a t  the same 
s t resses  as in the static case ( i f  the yield point o Y  is the same in the 
static and dynamics cases).  

0 

The experiments corroborated qualitatively these laws. 

The  overload coefficient as a function of the frequency of 
natural vibrations of the shell (to= 25. 2 = 15.5cm. 

6 = 0.23 cm.  G Y  = 4500 kg/cm2. 

FIGURE 4 .  
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ON THE VIBRATIONS OF HOMOGENEOUS AND 
SANDWICH PLATES 

G . I .  P e t r a s h e n '  and L . A .  M o l o t k o v  

(Leningrad) 

This communication is devoted to a logically substantiated derivation 
of the equations of flexural vibrations of thin homogeneous and unlimited 
sandwich plates with plane-parallel boundaries of separation. 
reasoning is based on the example of a homogeneous elastic plate Iz I,< /z 
defined in the Cartesian coordinate system x,  y, z. 

account in any derivation of the equations interesting us. 

for  the displacement w of the points of the middle plane t = 0 of a thin 
plate in the direction of the normal (i. e . ,  thez-axis): 

The 

1. We s ta r t  by formulating the basic propositions to be taken into 

The following equation is used in the engineering theory of vibrations 

L Iw e. Y, 0 1  = M (0 (1  1 
It is assumed that the linear operator L here  contains only a finite number 
of components with derivatives of different orders  by the variables x ,  y ,  
and t .  The right-hand part  of (1 ) is determined by the totality of forces 
applied to the plate. 

I t  is natural to require that the form of the operator L be independent 
of the forces actually applied to the plate and of the spectrum of vibrations 
produced in the plate by these forces (proposition 1). 

Since the middle plane of the plate is inaccessible to direct observation, 
and since, on the other hand, it is the displacements of this plane which 
appear in ( l ) ,  there must exist an exact algorithm by means of which the 
displacements w ( x ,  y, t )  of the middle plane can be determined from the 
resul ts  of observations of the displacement of the plate boundaries z =  
It is assumed in engineering that the displacement of the middle plane 
coincide sufficiently accurately with the displacements of the corresponding 
points of the boundary planes z = 

The classical Kirchhoff equations have successfully been used for a long 
time in the case of low-frequency flexural vibrations of the plates. 
therefore necessary to require that any "refined" engineering equations 
differ at  low frequencies from the Kirchhoff equations by small corrective 
te rms  only (proposition 3). 

Finally, in the derivation of the equations of the engineering theory of 
vibrations it is necessary to strive to achieve the best possible correspond- 
ence between equations (1)  and the true process of vibrations of the plate 
a s  a three-dimensional elastic body (proposition 4). 

h .  

h (proposition 2).  

It is 
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Note that the basic difference between our reasoning and that of the 
other authors of "refined" equations in the engineering theory of thin plates 
l ies  in the interpretation of "proposition 4." The authors known to us allow 
for this proposition by formulating some hypotheses relative to either 
the pattern of deformation of the vibrating plate 11, 2 1  or the order  of 
magnitude of different te rms  in the exact equations of motion of the theory 
of elasticity; the latter procedure enables them to expand the displacements 
and s t resses  in ser ies  by a small (dimensional?) parameter 1 3 ,  41. Such 
an approach is not always justified and does not always lead to a correct  
result .  

It is, however, possible to solve exactly the problems of the dynamic 
theory of elasticity for an infinite layer IzI < h with a subsequent thorough 
investigation of the displacement fields excited in it. 
obtained it is possible to elucidate completely the problem interesting us. 

If any bending forces* varying arbitrari ly with time a r e  applied on 
an infinite layer lzl< /z (either on thelateral  surfaces or distributed through 
the layer thickness), a s t r ic t  solution of the corresponding problem of the 
dynamic theory of elasticity is easily obtained in a form convenient for 
analysis /5-8/. 

Formulas of the following form can be written for the components 
ux = u, uy = v, and u, = w of the field of elastic displacements: 

Using the resul ts  

2.  

00 

w ( x ,  y, z, t )  = a$+ q + w , +  xwr , ;  ( 2 )  
n - 3  

the te rms  in these formulas have quite different properties, in particular 
in what concerns their spectral composition. 

vibrations and become equal to zero after the external force is removed. 
They can therefore be neglected i f  we a r e  interested in the free vibrations 
of the plate produced by arbi t rary bending forces acting during a time 
interval 0 4 t < T. 

Each group(u,, Vmr w,)of the remaining te rms  of the right-hand par ts  
of ( 2 )  str ictly satisfies the equations of motion of the theory of elasticity 
of a f ree  layer.  
the phase velocities and the spectral composition. 

0 < v < m . The following formulas a re  true here: 

The displacements u0. vug. w,, describe a purely forced process of 

These te rms  differ from each other by the behavior of 

The te rms  /&, P,, wl) can contain any frequencies in the interval 

[A, (k, T) sh k z v l  - ~ * z ;  + A, (k, 'pj sh k z ~ l ~ ~ ]  x 

X exp [ik (xcos 'Q + y sin 'p + vsrlt)] dk, 
0 0  

( 3 )  
. . . . . . . . . . . . . . . . . . . . . . . . .  

[C, ( R ,  9) ch Rz If1 - + C, (k, F) ch R z I f l T 3  X 

X e x p  [ik (x cos 'p + y sin p + vSr1t)] dk. 

1. e., forces antisymmetrical relative to  the  middle plane of the  plate. 
longitudinal vibrations only in a homogeneous plate. 

Symmetrical  forces excite 
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In these formuls  the coefficients A, ( k ,  ? ) , a .  -C, (k, 7 )  a r e  determined by the 
form of the forces  acting on the plate; 
equation 

~ , ( k )  is the smallest  root of the 

gz th  kha - 4 4  th &ha = 0, ( 4 )  

where 

If 0 < kha< E, then 
2 

The other t e r m s  on the right-hand side of ( 2 )  will now be briefly 
described . 

The t e r m s  _under the summation sign r ep resen t  the components of the 
eigenvectors un of the vibrating layer.  They a r e  character ized by phase 
velocities differing sharply from the phase velocities of the t e r m s  u,, vl, wl, 
and have each several  nodal surfaces  z = const inside the plate. 
spectral  expansions in Fourier  integrals (by exp ( i 2 d ) )  of the expressions 
u,, contain only frequencies Y higher than 

The 

-+ 

Therefore,  if  we-are considering nonstationary vibrations of the plate 

A s  to the t e r m s  (up. vz. w,), finally, the frequencies in them exceed the 
with frequencies v < yo, there  is no need to consider these sums  in ( 2  ) .  

value v 0 .  

frequency range v o <  v < v 0  1 + - , which adjoins the interval 0 Q Y < V O .  

This expression is represented with sufficient accuracy by the formula 

It will suffice for our needs to  give the expression for  w2 in the 

( a 

- - 
in which C, a_"d C, a r e  determined by the pattern of the external force, and 
the number k, is to be taken a s  smaller  than ( 2 h ) - ' .  

The information given about the displacement field in the elastic layer  
is absolutely sufficient for  determining the form of the operator L in (1 ) .  

3. 
(proposition l),  i t  is eas i e s t  to determine i t  under the assumption that the 
fo rces  applied to the plate have already been removed. 
middle plane of the plate must  then satisfy the equation 

Since L must  be independent of the forces  applied to the plate 

The points of the 

L lw (4 Y, f)l = 0. (11) 

I f  u; = IO3 cm/sec and 2 i  = 20cm.  then yo = 2.5 X103 cycles/sec. 

128 

. ., .. , , . I , , .  ... I 



The operator L definitely ex i s t s  in the case  of low-frequency vibrations 
(proposition 3 ) .  
of the vibrations (proposition l), for the determination of i t s  fo rm it  is 
sufficient to use  the low-frequency par t  of the t rue displacement field in 
the plate (proposition 4). 

But since i t  does not depend explicitly on the frequencies 

We saw that in the frequency range 

O < Y < V  - ' - 4h 
( 7 )  

the spectral  representation of the complete displacement field in the plate, 
excited by the application of a r b i t r a r y  bending forces ,  is given by formulas 
( 3 ) ,  in which i t  is only necessary to cut the upper l imit  of integration up 

to  the value k,- 2. 
2h 

The normal displacements of the middle plane a r e  determined from the 
l a s t  expression of ( 3 ) ,  by substituting in i t  c h t z a  = ch krp = 1.  
coefficients C , ( k ,  y )  and C,(k,  y )  depend on the bending fo rces  acting on the 
plate, equation (11) must  be satisfied by the expression 

Since the 

w = e x p [ i k ( x c o s p  t y s i n p + w , . r , t ) ] ,  ( 8  1 
i n  which T, (k) is the smallest  positive root of the character is t ic  equation (4). 
This  means that the r e su l t  of the substitution of ( 8 )  in (11) mus t  for  r , (k )  
lead to  the same  (o r  to a s imilar)  equation a s  equation ( 4 )  of the exact 
theory. 

of ( 8 )  in (11) can lead only to an algebraic equation for  ~ ~ ( k ) .  The char-  
acter is t ic  equation ( 4 )  being transcendental, i t  follows that our problem 
can be solved only approximately, namely, in the frequency range adjoining 
the z e r o  frequency (proposition 3) ,  in which equation ( 4 )  for ~ ~ ( k )  can be 
replaced by an approximate algebraic equation. 

In o rde r  to obtain such equations, a l l  we have to do is to expand th &ha 
and th kh? f rom ( 4 )  in Taylor s e r i e s  by the powers of (kha)  and (khp). 

region of convergence of these series is determined by the inequalities 

I khk I < -!! and I kha I < fulfilled in the ent i re  frequency range ( 7  ). 

aid of these expansions: 

It is c l ea r  f rom the assumed form of the operator L that the substitution 

The 

2 2 
The following equation for  the determination of 'E is obtained with the 

This equation i s  equivalent to equation ( 4 )  in region ( 7  ) only i f  i t s  solution 
is sought by successive approximations, assuming T - kh and kh << 1.  
value T~ (k) obtained a s  a r e su l t  will be a root of ( 4 )  in the whole region ( 7 )  
of values of Y .  

If we group the t e r m s  on the left-hand side of ( 9  ) according to their  
o rde r  of magnitude relative to ktL,z and keep only the t e r m s  up to  a cer ta in  
order ,  we obtain a s e r i e s  of algebraic "equations" with whose aid we 
determine the form of the operator L in different approximations. 

The 

It is 
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sufficient to require then that the substitution of ( 8 )  in the left-hand 
part  of (11) lead to the corresponding equation. 

In a zero approximation we obtain from ( 9 )  and (8) :  

where A is the Laplace operator (Kirchhoff). 
The next (first)  approximation yields 

where 

etc. 
and on the derivation of the final equations of motion. 
resul ts  a r e  given in 17, 81.  

the explicit expression of the displacement field in a plate corresponding to 
the frequency range (7). 
of the engineering theory of bending vibrations i s  not wider than the region 
of frequencies (7) can be seen from the fact that the field w, ( x ,  y, 0, t )  in 
( 6 ) ,  entering in the composition of the displacement field, does not satisfy 
equation (1,) with the value found for L for frequencies exceeding yo. 

basis of the data of Table 1, which gives the relative phase velocity 
v,:v,=t1(k)as a function of the ratio y : v 0 .  

We cannot dwell here on the determination of the left-hand part  of (1  ) 
Some of the pertinent 

4. In the determination of the form of the operator 1- we made use of 

That the region of applicability of any equations 

The accuracy of the different approximations can be assessed on the 

TABLE 1 

v:vo 10.00 10.05 10.10 10.15 10.20- -. .~ 

It follows from the data of Table 1 a s  well a s  from an analysis of the 
possibilities of satisfying the requirements of proposition 2 that the region 
of applicability of the equations of the engineering theory of flexural 
vibrations must be narrowed somewhat in the side of the lower frequencies. 

additional te rms  (relative to (1 0))  in any refined expression for  the operator 
L must be interpreted a s  small corrective terms.  This leads to a certain 
ambivalence in the form of equivalent (of the same order of approximation) 
refined equations of the engineering theory, always nonhyperbolic, and 
imposes a cautious approach to the characterist ic equations in problems 
dealing with finite plates (in order not to introduce "false" roots in the 
solution). 

There remains in conclusion to s t ress ,  in the first place, that the 
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In the second place, i t  i s  necessary to interpret  our first-approximation 
equations from the point of view of the deformations in the plate. This is 
most easily done on the example of the two-dimensional problem, in which 
case the displacement field in the plate i s  a function of the variables X. z , 
and t only. 

An elementary analysis of formulas ( 3 )  leads to the conclusion that the 
displacement field corresponding to the f i rs t  approximation (11 ) is of the 
form 

- - ( 1 3 )  
u (4  2, t )  = u1+ ut, 791 ( x ,  2, t )  = + w,. 

where w = w ( x .  t )  a r e  the displacements of the middle plane of the plate. 

displacement in the frame of the hypothesis of straight normals.  
second term in (14)  corresponds to the Poisson compression caused by 
extensions a t  bending. This compression leads in turn to an additional 
extension, characterized by the second term in ( 1 4 ) .  
ut, w1 of field (1 3 )  it turns out that t,, = 0, i. e . ,  this deformation is not 
linked with the appearance of shearing forces. 

of the shearing force 

The te rms  w and ( -  zw;) in (14) characterize the principal par t s  of the 
The 

For the te rms  

On the other hand, the displacements (15)  a r e  linked with the appearance 

and determine the rotation of the (undeformed) normals through the 
additional angle 

The ratio between N and ) turns out to be exactly the same a s  in 111. 

all the hypotheses on which Timoshenko’s reasoning / I /  is based. 
incorrect final result  of that author i s  due to the insufficient (for the 
derivation of the equations in a f i r s t  approximation) accuracy in the analysis 
of the dynamic equilibrium of a plate element. 

Our first-approximation equations allow therefore automatically for 
The 
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REFINED SOLUTION OF THE PROBLEM OF BENDING 
OF ORTHOTROPIC CYLINDRICAL PANELS 
AND PLATES 

D .  V .  P e  s h t m a 1 d z  h y a n  
(Yerevan)  

Finite displacements of very shallow orthotropic shel ls  and plates a t  
small  deformations a r e  treated on the bas i s  of the general  equations of 
the nonlinear theory of elasticity / I  1, keeping the nonlinear t e r m s  con- 
taining derivatives of the normal  displacement w .  
on the theory proposed by Ambartsumyan 121: 

The treatment i s  based 

a) the deflections w do not vary through the shell  thickness; 
b) the shearing s t r e s s e s  zxz and . T ~ ~  a r e  represented in the following 

form: 
x+ - x- 

2 
9 

where ' p ( x ,  v )  and $ ( x ,  y) a r e  unknown functions and f i  (2 )  is the given law 
of distribution of these s t r e s s e s  through the shel l  thickness; 

c) the normal s t r e s s  a,, is determined from the l inearized equilibrium 
e qua ti on. 

The meaning of the symbols used in the text h a s  been defined in 1 3 1 .  

§ 2. FUNDAMENTAL RELATIONSITIPS AND 
EQUATIONS 

Let  the shear ing s t r e s s e s  .c=, and fYz vary through the shell thickness 
according to the square parabola law: 

f z ( 2 ) = f , ( z ) = -  ; ( h q i  -- 2 2 ) .  

and le t  there  ac t  on the shell  a uniform p r e s s u r e  of intensity q ( X = Y = O ) .  
The s t r a in  components a r e  represented in the form 
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(2.1 1 
(cont'd) 

The generalized Hooke law, resolved relative to the s t resses ,  has the 
form 

cxI = Bllexr + B,,eyy - Ap,. 
ayy = B,,eXx -i- B2,ey, - Ap,, 

oxy = Bsaexu, O I L  = B,,e,, cy2 = Bloeyr. 
( 2 . 2 )  

The normal s t r e s s  0, is determined on the strength of c) by the l inear 
theory: 

where 
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where 
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In the classical  formulation, the resolving system consists of two non- 
In ou r  

The 

l inear  equations relative to the deflection and the s t r e s s  function. 
ca se  we have two additional unknowns, the functions 0, and Q,, which 
appear  in all equations of system (2 .9)  in the case  of arbitraryft(2).  
additional two equations a r e  l inear  on the strength of assumption c). 

§ 3.  

Consider the problem of bending of a simply supported orthotropic panel 
elongated in the x direction (a  >>b). 
formly distributed p r e s s u r e  applied from the side of the panel concavity. 
This  problem can be exactly solved under some assumptions.  ak W e  shall  
allow for the influence of la teral  shea r s  only (Ai = 0). 

The resolving system of equations ( 2 . 9 )  reduces in our case  (when the 
unknown magnitudes depend on the coordinate y only) to the two equations 

Let  this panel be  subjected to a uni- 

d3w k5 da+ ha 
D2z- + 7 a,,B,, - - + = 0. 

d y 3  1LO ~ J J  12 

Having determined the function + ( y )  from thc f i r s t  equation, using 

the condition + = 0, and having eliminated this function from all  the 

following relationships, we finally reduce the problem to the solution of 
the equation 

(3 

where 

with edge conditions 

A similar problem was solved in the classical foriiiiilation by Bubnov for die case of  a n  isotropic panel /4, 5/. 
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The  edges do not approach. 

ferential  s t r e s s ,  and the maximum bending s t r e s s :  
The following expressions a r e  obtained for the deflection, the circum- 

9* - 
1.44 
2.64 
5.51 
7.15 
29 3 
77.5 

162 

(3 .3)  

-_ 
T* I 5 1 o*  

0 . 2 '  0.28 0.82 
0.4 0.39 1.15 
0.8 0.55 1.61 
1 0.62 1.60 
3 1.07 3.07 
6 I 50 4.32 
10 1.94 5.55 

- 

(3 .4 )  

- 

2.271 0.2 0.28 
3.83 0.4 0.40 
7.16 0.8 0.C6 
8.59 I 0.63 
32.60 3 1.09 
82.3 6 1.53 
168 10 1.97 

At m = 0 we obtain the r e su l t s  of the classical  theory of bending. The 
r e su l t s  obtained for different values of nz for the case of a plate ( k : 2  = 0) a r e  
given in  Tables  1 to 3. 

1.36 
1.?.0 
2 G5 
2.25 
4 89 
6.66 
8.33 

- m=0.5 T A B L E  2 

9* I T* 1 : I a* 

§ 4. 

We shall  now solve the s a m e  problem for the case of an  elongated plate 

a t  y =  0 , b  w =  0 
with the long edges clamped. W e  obtain then instead of (3.2): 

The following expressions a r e  obtained instead of (3 .3 )  t o  (3 .5 ) :  

C =  (4.2) 
8 T* 

I 



n7'* + 0.6 - (4.3) 

The resul ts  obtained from these expressions for different values of rti 

a r e  given in Tables 4 to 6. 

m=O T A B L E  4 

4* 1 T* I I I a* 

1.59 38.12 

m=0.5 T A B L E  5 m=l  T A B L E  6 

10.77 1 0.63 2.08 8.26 1 0.62 0.76 
35.58 3 1.08 3.27 31 2 3 1.06 1.15 
86.39 6 1.52 5.35 80.32 G 1.51 1.52 a 1.89 

It is seen by plotting the data of Tables 1 to 6 that the boundary con- 
ditions a r e  qualitatively similar in the two cases: the hypothesis of un- 
deformable normals leads to underestimated values of the deflection; a s  
to the s t resses ,  the circumferential s t resses  a r e  underestimated and the 
maximum bending s t r e s ses  overestimated when the Kirchhoff hypothesis 
is used. Quantitatively, however, the resul ts  of the classical  theory 
diverge considerably from the refined resul ts  in the case of clamped edges. 
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SOME DYNAMIC PROBLEMS OF THE THERMO- 
ELASTICITY OF THIN SHELLS 

Ya.S .  P o d s t r i g a c h  andR .N .  S h v e t s  
(L 'vov)  

1. FUNDAMENTAL EQUATIONS O F  THE THERMO- 
ELASTICITY O F  THIN SHELLS 

In the general case, the temperature of a rigid body subjected to 
deformation can vary both with time and from point to point. 
can be caused both by heat exchange with the external medium and by the 
process of deformation itself, during which a part  of the mechanical 
energy i s  transformed into heat. 
important part  in nonstationary problems; 
causes for the dampening of the vibrations in an elastic body. 

curvature lines, and let  a and 
T the distance of an arbi t rary point from the middle surface, and .E the 
time. 
normal element, we then obtain the following physical relationships for a 
shell in a nonstationary temperature field and subjected to an external 
load: 

This variation 

The thermoelastic scattering plays an 
i t  is in particular one of the 

Consider a thin shell with middle surface expressed through the 
be coordinates of the middle surface point, 

Starting from the well-known hypothesis of the unvariability of a 

N,=D, ( ~ , ~ - v r , - a t ( I + ~ )  TI] ,  .M,=D2 x , + v x 2 - z  ( 1 + v )  T2 , 
h I 

1 
2 

SI, = -- D, (1- v)  El,, 

Here ?,. .E.,  eIZ. xl, xz, xI2 a r e  strain components of the middle surface, It is 
the half-thickness of the shell, and 

The equations necessary for determining the integral characterist ics 
TI and Tz ,can be obtained from the law of conservation of energy, written 
in a differential form /1, 2/ :  
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Here  1. is the thermal  conductivity; 
volume; T i s  the absolute temperature;  E and v a r e  the isothermal  modulus 
of elasticity and the Poisson ratio,  

c, is the specific heat a t  constant 

In accordance with the assumption ozl = 0 made in the theory of shells,  
the volume expansion of a shell element will be 

where E = + E*, x = X, + x2. 

Substituting ( 4 )  in ( 3 )  and introducing the designations 

we find 

Using the operatorial  method 1 3 1 ,  we obtain from h e r e  

The integration of ( 7 )  by z in accordance with ( 2 )  yields 

Eliminating fZ-o and %( from ( 7 )  and ( 8 ) ,  we obtain 
02 2-0 

phcospz p2hZ s i n p z  t=.- - Ti+ -- r* - 
sin p h  3 sinph-phcosph 

- 3 z p  ( 9  1 

It is easily seen that ( 9 )  sa t isf ies  equation ( 6 )  a t  any values of TI, 
7;, E, and Y .  

the temperature  t. 
which in the case  of shells a r e  of the form 

7 ,  and T2 a r e  determined from the boundary conditions for  
In the case  of boundary conditions of the third kind, 
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we have the following equations for  determining the unknown magnitudes 
TI and T,: 

P' L, T1- "1 LT, - y -!- (L, + p,) E+ E? ccr-3)  h x  = - (p, t:+ p,tT), 
3 PZ 3 pz 

= - 3 (Pl t i -  + Pz t:), 
where /I, and h, a r e  relative heat  r e l ease  coefficients; tf, 6 a r e  values 
of the temperature of the medium washing the surface 2 = h ; 

By restr ic t ing ourselves to the first t e r m s  in the se r i a l  expansions of 
the operators  ctgph and (L-phctgph)-',  we obtain the following approximate 
system of equations, which coincides with the equations obtained in  /4/ by 
a different method: 

At pz = 0 systems (1 1 ) and (1 3 )  spli t  into two independent equations. 
Equations (1  ) form together with the equation of motion, and the physical 

and geometrical  relationships, a complete system of equations of the 
theory of thermoelasticity of thin shells.  

2 .  EQUATIONS OF THERMOELASTICITY AND 
RHEOLOGICAL RELATIONSHIPS 

It is known that r e a l  bodies do not behave a s  perfectly e las t ic  bodies 
under deformation. Various models have accordingly been created fo r  
describing their  mechanical behavior, which differ f rom each other by 
the s t ra in  law adopted. It turns  out that i f  the variation of the body 
temperature is subjected to equations (11 ), then under some restr ic t ions 
the thermoelastic relationship t ransforms the shell  mater ia l  into elastic- 
plastic.  

Eliminating the integral temperature  character is t ics  T,  and 7; f rom 
(1 ) and (1 1 ), and taking p2 =0, 7,, = a, 7 ,  we obtain the following differential 
relationships between the forces,  moments, and s t r a ins  of the middle 
surface of the shell: 

P2 
LIA;-DILl ( z ,  + 71D1 ( I + . )  ( ~ l + p l ) ( ~ l + ~ l ) = ~ l D 1 ~ ~ ( I + ~ ) ~ ~ r  

P 
(14) 
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The 
H12, and the s t ra ins  remains elastic. 

heat flux through the shell surface ( pl finite) and for the irreversibil i ty 
due to the finite heat fluxes inside the shell ( h  finite). 

allow only for the irreversibil i ty due to the heat fluxes inside the shell. 

Relationships (14 )  and (15)  allow for the irreversibil i ty caused by the 

At p1 = 0 and finite h we obtain from (1 4 )  and (1 5 )  equations which 

If we write in (14 )  and (15 )  h=O(then p 2 = - p T  =--- )and take pl 
a, d T  

a s  finite, we obtain the following strain law: 

L,N, - D,L3 (9 + v:J- ylDl (1+ v)(&- p I ) ( : I + ~ l ) =  - P I @ z t  ( I + v ) t $ ,  

(%+YZ~)-T~D~ ( I + v ) ( L 3 +  PI) (:1+~2) = -PI Dlz/ (I+v)t:, 

~,~l--D,L,(xl+~x,)-~l~1(1+v)[L,-3(1+tL~)](x, tS)=-3tLlD,z/(l+v)C, ( 6 ,  

Expanding the operators cthp,h and (l-p,hcthplh)-l in a ser ies ,  we 
obtain from (1 6 )  differential relationships of infinite order.  
ourselves to the f i rs t  t e rms  only in the expansions, we obtain the following 
strain law for the shell: 

Restricting 

( 1 7 )  
Nl+r& =Dl [ : l + v ~ t + r ( . [ t ^ l ~ t i l ~ z ) - ( l  + v ) ~ t t : ] ,  
N2+rN2 =D, [ e z + v ~ l + r ( ; 3 ~ 1 + ~ z : 2 ) - ( 1  + v ) z t t $ l .  

where the dot stands for differentiation with respect to time, 

Only relationships (17) a r e  taken into account in the case of themembrane 
theory of thin shells. 
the equations given in / 5 /  for an Ishlinskii medium. 

At p , = x a n d  t $ = t ; = O  we obtain from ( 1 7 )  and (18)  physical relation- 
ships for thin elastic shells, which correspond to Hooke' s law i n  the case 
of isothermal deformation. 

characterist ics a r e  determined from boundary conditions of the f i rs t  kind 
we obtain the rheological relationships for a shell whose material behaves 
a s  a Voigt body. 

At t;' = 0 relationships (1 7 )  coincide in form with 

It can similarly be shown that in the case when the integral temperature 



3 .  EXAMPLES 

A. 
internal pressure Qo ( 7 )  and a temperature to.  
m1 = x I  =0, 

Consider the forced vibrations of a spherical shell caused by an 
We have in this case 

M, = M,= H,, =0, T,=O, Nl =A’, = N. 

( 1 9 )  
R 

R ’  2 
E,  = e2= 3 N= - hp Rw + -Q0. 

h? d d 
R a ,  ds df 

Introducing the dimensionless magnitudes ?!I? = w. p:h2= - - = - = pe and 

substituting ( 1 9 )  into the first  equation of ( 1 6 ) ,  we obtain 

( ~ ‘ + w a  ( 1 + 2 ~ 1 ) ] ( ~ * - t  Q. ( 2 0 )  

Applying the Laplace transform to equation ( 2 0 )  at homogeneous initial 
conditions, we find 

where 

The denominator in ( 2 1  ) has an infinite number of negative rea l  roots, 

Taking into account that for rigid bodies 
and also two complex roots with negative real  par ts .  

unity, we can expand the roots in a ser ies  
is small  compared with 

s = so + sl-(, -k sp 7?+. . . . . , ( 2 2 )  

whose coefficients a r e  determined from the equations 

Since the rea l  par ts  of the denominator roots a r e  negative, we obtain 
the damping of the natural vibrations caused by thermoelastic dissipation. 
If we write p, = 0, we obtain, a s  expected, undampened natural frequencies 
of the shell. 

insulated infinite cylindrical shell ( p, = O ) ,  allowing for the heat fluxes 
inside it only ( X #  0). 

B. Consider now the longitudinal axisymmetrical vibrations of a heat- 

1ntro.ducing the dimensionless magnitudes 
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we can write the equation of motion and the equation of heat conduction(l3) 
in this case in the form 

d21t d,w d T  - (1-VZ) - +v - -(I + v )  - =o d Z u  
dx2 dr2  dx dx I 

an d2za 
d x  d;? 

v- +W+(!- - .P)  - - ( l - + v )  T-0, 

_ -  

Writing 
d a 2 c p  d2  0 

u=- d x  [l+(l,.v);;2]o, w =  d x 2  - ( I + v )  -, dr' 

we obtain from ( 2 5 )  

W e  shall  now study vibrations of the type 

0 ( 2 8 )  cp = a, ,I (S+ + Y T )  

where s and VI a r e  generally speaking complex magnitudes, satisfying 
the equation 

( 1 - W 2 ) S '  - [W'- ( I - V " ) m 4  ~ - ~ ~ ~ O ' ( ~ ~ ~ U 2 - l - 2 y l ) ]  S2--ii,03 [ ( I  - V )W*-~2]=o. ( 2 9 )  

Taking w a s  real ,  we find 

It follows f rom the analysis of (30 )  that the roots  a,, a, correspond to 
the longitudinal e las t ic  wave, while p,, p2 character ize  the heat wave. 
roots  a r e  complex. 

Y and the dampening coefficient q of the elast ic  wave will be equal to 

All 

In the dimensionless system of coordinates adopted, the phase velocity 

where is the root characterizing the diverging elastic wave. 
In the initial system of coordinates we have 
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The expressions for  the roots  al being ve ry  bulky, we shall  find the 
approximate values of v and q at  small  and l a r g e  W .  At UJ<< I w e  have 

At UJ >> 3 w e  obtain 

The  dampening coefficient of the elast ic  wave is an increasing function 
of the square of the frequency for low frequencies ( 1 1 1  <l) ,  and tends asymp- 
totically to q, when 

1 + r,(l+ v)/2 than the velocity no i n  an  elast ic  ba r ,  while at  l a r g e  frequencies 
UI >; 3 i t  becomes equal to the wave velocity in an elast ic  plate.  

UJ+ 00. 

The phase velocity for low frequencies is l a r g e r  by a factor of 
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ON THE APPLICATION OF THE METHOD OF SUM 
REPRESENTATIONS TO THE NUMERICAL SOLUTION 
OF BIHARMONIC PROBLEMS 

G.N.  P o l o z h i i  a n d E . M .  P r i k h o d ' k o  

(Kiev) 

Let 
where 

x and y directions) is an equation in finite differences corresponding to 
the biharmonic differential equation 

Applied to the finite-differences equation ( l ) ,  the method of sum re -  
presentations yields a solution for the internal points of an arbi t rary 
rectangle D ( x , , y b )  ( 2 = 2 , 3 , - . - , m - l ;  k = l .  2 . - - . , n )  ( see  figure), either in 
an explicit form through the boundary conditions of the problem, o r  in the 
form of formulas containing a small number of parameters determined 
from the corresponding system of linear algebraic equations / I  1. 

FIGURE. 
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We give here a certain modification of the formulas of sum representa- 
tions 11, 2 1  which simplifies the computing scheme and reduces the amount 
of calculations involved in the solution of the system of linear algebraic 
equations relative to the indeterminate parameters.  Several numerical 
examples a re  solved for the case of a large number of nodal points 
(equal to 3600). 

We introduce the designations 

the square matrix 

p =  1/1[,," E]" pz E, 
n t l  n + l  1 , C = l  

and the n-dimensional vectors 

QUk (x) = 2a*4 ( x  + h )  - 4 ( 1  4 a') a*uk ( x )  -t 21'4 ( x  - h) ,  
( k = 0 ,  n+ 1). (7) 

The vector defined by the equality 
-+ 
A A I  A - 
0 = (a,. a*, ..., a,] =Pa 

+ 
will be called the F- transformation of the vector o = (al, os, - . .,a,). 

The formula of sum representations suggested by u s  is of the form 

+ + 
u ( X I  ) = Pa (xi ) A + pi, ( X I  ) B' + P (xi ); + PB ( X I  ) + 

m-1 -D 

P-2 

+ 2 PD (i, P) Plh47 ( x p )  - w ( x P )  -, a4G (xp) ]  ( 9 )  

(i = 0, I , . . . ,  m + I ) ,  
where 

a r e  vectors of indeterminate parameters 
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( k =  1, 2,..- n) a r e  diagonal matrices of order n, 

The other magnitudes introduced here  a r e  determined for values of u 
given at  all contour points of the rectangle, and under the condition that 
a t  the horizontal sides of the rectangle, the sums of the values of u out- 
side and inside the contour a r e  determined according to the type of the 
second boundary condition on the vertical sides of the rectangle. If the 
sums of the values of u inside and outside the contour a r e  specified on 
the vertical sides of the rectangle, we have 

ak(x l )  = ( i  - 1) ch (i - 1) ptr, 

B k ( X l )  = (i - 1)  sh ptch ( i  - 1) - ch p t * s h  (i- I )  pk, 

7&(xt) = ( i - m ) c h ( i - t n ) p k .  

Actually, proceeding in the same way a s  in 11, 2 1 ,  we reduce the 
solution of the equation in finite differences (1) to the solution of the 
system of linear algebraic equations 

( x  + 4h) - 4ak i k  ( x  + 3 h )  + 4 (a: f 2) 11, ( X  + 2h) - 
A A A - 4a,ut ( x  + h)  + uc (x) = k4fk ( x  + h )  - 

- G t ( x + h )  - a4hk(x+12) ( k = 1 , 2 , . . . , n ) .  ( 1 6 )  

Each of these equations will now be examined separately. 

of the homogeneous equation corresponding to (1 6 ) .  
of the nonhomogeneous equation will be sought, by the method of variation 

We take the functions (1 4) a s  linearly independent particular solutions 
A particular solution 
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of arbi t rary constants, in the form 

hL ( x , )  = A, ( x , )  ( x / )  $- B, 0, ( X I )  + ' k  ( x / )  y k  (x,)  + D, (x , )  ' k  (x , ) ,  

( A h ( x , ) ,  B , ( x , ) ,  C,(x.),  D , ( x , )  a r e  some functions of x l ) ,  requiring the satis-  
faction of the boundary Conditions 

W e  find 

m-1 

A; (x,) = 2 ~ ( ~ 1  (i, p )  [h'fk (xp )  - ik (.'cp) -- (xP)l. 
P - 2  

The general solution of (1 6 )  will therefore be 

' i k ( X , ) = A k a k ( ( x , ) - c B , , B k ( X , )  + C A . ( ~ ( ~ I )  + D k B k ( x ~ ) f  

m-1 + 2 D"' (i, p)[h4j, (xp )  - :k ( x p )  - a4 .41~  CX,)~. 
P - 2  

The general solution of the system of n equations ( 1 6 )  will be - 
u* ( x , )  = a (.,G + P ( X I )  z-t y (.,)e+ ( X I )  E+ 

+ 2 D ( L P )  [ d ( x p )  -: ( x D ) - - 4 ~ ( x p ) l .  
+ .. -. 

(17) 
m -  1 

P=2 

By multiplying both sides of ( 1 7 )  by the matrix P we obtain the wanted 
formula of sum representations ( 9 ) .  

through the boundary conditions on the vertical sides of the rectangle, 
and namely: 

The vectors of the indeterminate parameters a r e  easily determined 

+ -+ * 

11 E A - '  ( [ ? ( x m + l )  + ~ ( x m - I ) l ; ( x m ) - ~ ( x m ) i ( ~ m ) ) ,  

- +. * 
~ ( x m )  = 1~ (xm+I) + u (xm-1). 

We shall now consider several  numerical examples. 
N u m e r i c a l  e x a m p l e  1. Let it be required to solve the finite- 

differences biharmonic problem A/,A,,u = 0 in the rectangle D ( x , ,  y,) (i= 1, 2,..., 
59, k = 1, 2, .  . ., 59) a t  boundary conditions a t  the horizontal sides of the 
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rectangle 

up (Xi) = 0. I/-I (x , )  + "1 (x , )  = 0 (i = 1, 2,. -, 59), ( 2 0 )  

( I = ] .  2,...,59). (21 1 

( 2 2  1 U& (.KO) = 0, 

U&(&+l )  = 0, Uk(X,+2)  + q ( x m ) = 2 y  (Y = 1.2..*.* 59). (23)  

U#+I (x , )  = 60 (x' - 6 0 X ) ,  Un;p ( W , )  + ~n ( X , )  = 120 (x' - 6 0 ~ )  

and a t  the vertical  sides of the rectangle 

lIk (x-1) + a, ( X J  = 2y (Y = 1.2..-.. 59). 
I 

We obtain from the formula of sum representations ( 9 ) ,  in accordance 
with (18),  (19) :  

where a ( x i ) ,  p (x , ) ,  7 (xi), S ( X , )  a r e  diagonal matr ices  with elements respectively 

X = 2shpksh2(m+ 1)p, 
1 

.+ 
Allowing for ( 6 )  and (1 1 ), we see that u, ( X I )  = 0 if the boundary conditions 

a r e  zero on the horizontal sides of the rectangle: 

UO (xi) = 0, u n + l  (x,)=O, 

U n + Z  ( ~ 1 )  + un (xi) EO. 

u- I (-rJ +ut (xJ = 0, 
(27)  

When these las t  conditions a r e  fulfilled formula ( 2 4 )  acquires an ex- 
ceedingly simple form: 

+ -b 

E(x,)  = P.(x,)fu(x,)  + P P ( X , ) P U ( X , + l )  + f Y  (x,)P[;Z(x-d+&xl)l+ 
+ - + P8(x ; )P Iu(x* )  + u ( X m + z ) l ,  (24)  

where the index x means that the zero boundary conditions ( 2 7 )  a r e  satisfied 
on the horizontal sides of the rectangle. 
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+ 
It is easily seen that the wanted solution u ( I , )  can be represented in the 

form 

(1 - - 1, 0. I , . . . ,  GI, k =  - 1 ,  0. 1 Gl), -. 
where uf ' (x , )  ( k  = 1, 2.0. ., 59) a r e  components of the vector u, (x,) defined by 
equality (24); 
defined by an equality similar t_o (24). 

Thus, in order to calculate u (x,, y,), it suffices to calculate the k -th 
componpt  of the vector u', a t  point xi and the (60-i) -th component of the 
vector uy a t  point y,, and to add them. The fundamental calculating 
operation is then, according to ( 2 4 ) ,  the multiplication of the vectors of 
the boundary conditions by the matrix P, then by a diagonal matrix, and 
once more by the matrix P. 
and, due to the character of the matrix P, does not require a large memory. 
We give here  the values obtained by the method indicated on the "Ural" 
computer, and also obtained with the aid of desk calculators: 

ad',)-, (y,) ( 5 0 4  = 1. 2,. . ., 59) a r e  components of the vector zy (yJ, 

This computing process is easily programed 

u (x5 ,  y,) = - 276, U ( X g ,  yz) = - 555, u ( ~ 5 ,  ya) - 832, 
IL ( ~ 5 ,  ~ 4 )  = - 1109, U (x5 ,  y 5 )  = - 1387, 

tl (X5. yo) = - 1663, It ( ~ g ,  = - 1938, .U (15, ~ 8 )  = - 2218, 
U (Xs, y p )  = - 2192, U (Xg,  yxo) = - 2767. 

The comparison of these numbers with the values of the exact solution of 
the corresponding differential biharmonic problem shows that the total 
e r ro r  of the approximate values found l ies  within the l imits of 0.1 to 0.9%. 
It follows in particular from here that the computing e r r o r  is sufficiently 
small, in spite of the large number of nodal points (3600). This is due to 
the fact that, in accordance with the general idea underlying the method of 
sum representations 121, the solution a t  a given nodal point is independent 
of the values obtained a t  most of the other nodal points of the grid. 

N u m e r i c a l  e x a m p l e  2. Let the problem conditions be the same 
a s  in the preceding case, with the sole difference that a t  the points of the 
left-hand vertical side of the rectangle (xo. yz,). (q,, Y,,), (xol Yzs). (xo, Y3J, (XO, ~ 1 1 )  

a re  given the following differences between the values of the solution 
outside the contour and inside it, respectively: 3240, 3360, 3480, 3600, 
3720. 

By reasoning a s  in the preceding case we obtain a system of linear 
algebraic equations for determining the additional indeterminate parameters,  
representing the values of the solution a t  five points inside the contour. 
This system is: 

64.85217a1+ 30.7923ta2+26.i 2S52a,+23.53494a4+ 21.0422a5 = -1233798.96, 

30.79238a1+ 61.9506 lo,+ 30.847451,+26.77080z,+23.56329a5 = - 1 1959.97, 

26.i2E,52a,+30.84745a2+ 64.9G294a3+30.87578x,f26.78472is=-135084.70, 

23.53494a1 + 26.77080a2 + 30.87578a3+ 64.97682a4+30.87578z6= - 133474.75, 
2 1 .04221a1 + 23.56329a2+ 26.78472i,+30.87578ar,f64,Y62~4i5= - 126691.22. 

By solving this system we find the numerical values of the sums of the 
values of the solution inside the contour and outside it a t  the points 

(xi. ~ 2 7 1 ,  !xi, ~ z d ,  (xi, ~ z o ) ,  (xi, Yau), (xi, ~31). (29 1 
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The calculation proceeds then in the same way a s  in the preceding 
The calculations conducted for points ( 2 9 )  of the rectangle example. 

D (xi. y,)show that the total e r r o r  remains sufficiently small  and l i e s  within 
the l imits of 0.1 to 0.9%. 
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S T A B I L I T Y  OF R E C T A N G U L A R  F L E X I B L E  P L A T E S  
MADE FROM N O N L I N E A R L Y  E L A S T I C  M A T E R I A L S  

V . M .  P r o s k u r i n a  
(Moscow) 

This paper t r ea t s  the problem of determining the cr i t ical  s t r e s s e s  and 
the pattern of deformation af ter  buckling of a flexible rectangular plate 
made from a nonlinearly elastic material .  

The theory of stability of flexible plates, which is being widely applied 
lately, is based on Hookers law, i. e . ,  on a l inear  s t r e s s - s t r a in  relationship. 

There exist, however, many mater ia ls  ( cas t  iron, aluminum alloys, 
high-strength alloys, certain plastics) which do not behave according to 
this law. 
and is established experimentally, 
s t ra in  diagram is then approximated by an analytical law, a s  shown in 141 ,  
and i t  is this law which is used in the theoretical calculations. 

In the solution of this problem use is made of a l l  the initial assumptions 
and hypotheses of the theory of l a t e ra l  bending of flexible plates made from 
a nonlinearly e last ic  material .  

The s t r e s sed  s ta te  of the plate is characterized by the theory of small  
elastic-plastic deformations, with the addition of the following hypotheses: 

a) the plate mater ia l  is incompressible; 
b) the loading is assumed to be simple and the s t r a ins  can be only 

active; 
c) the s t r e s s - s t r a in  relationship is assumed to be exponential 

The s t r e s s -  s t r a in  relationship for such ma te r i a l s  is nonlinear 
The empirically obtained s t r e s s -  

a,=AeP, whereO<k<l,  

and 

The pa rame te r s  A and k a r e  determined from the equality of the ult imate 
strengths of the experimental and analytical curves  and the equality of their  
specific energies,  in the manner shown in 141. 

This  law reduces in the particular ca se  k = 1, A = E  to Hookels law, and 
in the particular case k =  0, A = a y  to the law of a rigid-plastic body. 

Under these hypotheses 

A e!-' (2t + e y ) ,  
O = = Z  
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The deformed state of the plate is characterized by the Kirchhoff 

=,=e,-  t x , ,  

= ey - 2xY, 

hypothesis 

'IxY=2(T:y - Z"XY). 

( 4 )  

where z is the distance from the neutral layer to the fiber considered; 
e, and in  a r e  s t ra ins  of the middle plane of the plate, equal respectively 
to 

d~ dv 8~ aw 
dy d x  dy dx  

' I xy=  - + -+-. - 1 

where IL, v, and w a r e  displacements of the points of the middle plane of 
the plate in the direction of the corresponding coordinate axes. 

We shall use the energy method in solving this problem. 
The total energy of the plate is made of the strain energy U and the 

potential energy V of the load acting on the plate, 

w=u+ v. ( 6 )  
Under the above-adopted hypotheses the strain energy i s  written in the 
following form: 

Using relationships ( 5 ) ,  the total energy of the plate is expressed a s  a 
function of the three displacements: 

w =  W ( u ,  'u, w). ( 8  1 
Consider a square plate simply supported in the direction o f  the x axis. 
The coordinate axes a r e  oriented a s  shown in Figure 1. 

Lateral  expansion in the y direction is prevented by a rigid frame. 
The plate being square, it can be assumed that buckling occurs in the 

direction of each side of the plate in one half-wave; the longitudinal and 
lateral  edges of the plate remain straight throughout the deformation, the 
longitudinal edges sliding freely along the supports. 

A s  a f i rs t  approximation of the displacements, satisfying the boundary 
conditions, we take the following expressions: 

xx xy 
a 2a 
x y  x x  

a 2a 

u=csin -cos --ex, 

u=csfn -cos- 9 

nx xy w =wocos- cos- t 

2a 24 

( 9 )  

where c, wo, and e a r e  constants. 
become equal to zero a t  the edges y = 

It is obvious that the displacements v 
a, and that a t  the boundaries x = f a 
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the displacements P a r e  equal to the displacements caused by the uniform 
compression strain e in the x direction. The plate edges x = f u are sub- 
jected to compressive forces, whose mean value per  unit length will be 
designated by Nl. a a r e  subjected to internal forces of 
mean intensity N,. 

The edges Y = 

IP 

FIGURE 1. 

At given displacement functions ( 9 )  the work of the external forces is 
written in the following form: 

V = 4a2N,e. (10) 

Using expressions ( 9 )  for the displacements u, v ,  and w, and integrating 
expression ( 8 )  with the aid of the cubature formula 

1 1 1  1 f (x ,  y ,  z )  dxdydz=3 f(l,o,O)+f(-l.o,o)+f(O,--l,O) + 
(11) 

' [  
+f ( O , l , O ) + f  (0,0,1) +f(0 ,0 , -1) ]  

-1 -1 -1 

we obtain the total energy of the plate, written in dimensionless parameters: 

-1.4142cIf~+4.5c~- fiel +5.6568clel+2e:]y + [0.125/:+0.707Ic,j~ 4- 

+ 4&-0.5f; el-5.6568clel +2e: T+ 0.125 $ - 1.4142clf~+4.5c: - 

-0.5fj,+2.8284cle,+2e: T + 0.125fu +0.7071cJ: +4c:-f%, - 
-2.8284cle1+ 2e: ril+ [ (0.125~-O0.35E55cJ~+c~ +0.75j; + 2 4 - k  

4- (0.25-1.5J0e1+ 0.7071 cJo) + 0 . 5 8  1 11- [ (0.125$-0.35355:&+ c: + 

]It1 [ 
1"" [ 

I+! 

+0.:5$+2e:) -(0.25-1.5]0e1 t 0.7071cJ0) + 0.5f: - xz/i*Nlel, (12 ) 
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where 

At given unit compression e the constants c and w, in ( 9 )  can be found 
from the condition of minimum of the total energy of the plate: 

These two equations lead to a system of two nonlinear algebraic 

At k =1, A = E  it follows from ( 1 4 )  that the parameter 
equations. 

c =0.0055823 j : ,  ( 1 6 )  

(17) 

and equation (16 )  yields the relationship between the parameters  e and f:: 
e,=0.222 j- 0.3719 fi . 

Timoshenko's solution for such a plate a t  p = 0.3 yields the following 

e, = 0.2565 + 0.36 ji . 
A system of equations af this type cannot be solved rigorously in the general 
case for an arbi t rary value of k. 
solve i t  approximately. 

the relationship of the elastic problem: 

expression for e,: 

W e  shall proceed a s  follows in order to 

We assume for c, and fo, with an accuracy of up to a constant factor, 

c, = m A ,  (18 1 
where the parameter 'lml' is independent of the parameter fo. 

It also follows from the solution of the elastic problem for k = 1 that 
relationship (18 )  will remain correct a t  any value of e,, including e, = 0. 

Under the assumptions adopted equations (14) and ( 1 5 )  become 

-- *W- f, (m.  k )  =0, 
dc1 

of 0 

!?= ft (m, fo, e,  k)=O.  

In other words, the system of equations (14) and (15) splits into two in- 
dependent equations, the f i rs t  relative to the parameter " m " ,  while the 
second one gives the connection between e and f,. 

for every value of the index k .  

plotting the e, - j o  curve. 
corresponding to every value of the deflection parameter.  
of calculations is involved in this procedure. 
determined by trial  and er ror ,  leading to great inaccuracy. 

The, parameter "m" can be found by solving approximately equation (1 9 )  

Equation ( 2 0 )  can likewise be solved for each value of the index k by 
It i s  then necessary to find the value of e ,  

A large amount 
Every value of e, must be 

156 



There exists, however, a second procedure for solving the problem, 

In the theory proposed the deformed state of the plate is described by 
which consists in the following: 

the same relationships as  in the theory of elastic plates. 
be assumed that the final relationship between the parameters  e, and fo 
in the general case of a nonlinearly elastic plate will be the same, up to 
constant factors, a s  in the elastic problem. 

cri t ical  strain, while the second term characterizes the strain due to the 
bending of the plate. 

value of the index k can be written in the form 

It can therefore 

The f i rs t  term on the right hand of ( 1 7 )  represents  the value of the 

The solution of the system of equations ( 1 9 )  and ( 2 0 )  for an arbi t rary 

where e?' is the value of the cri t ical  strain of a nonlinearly elastic plate, 
depending on the index k (its determination wi l l  be considered later) ,  and 
L is a magnitude likewise dependent on the index k and independent of the 
parameter fo. 

Substituting fo = 1 in ( 2 0 ) ,  we obtain 

In order  to determine the strain behavior of the plate after buckling 
i t  remains to find e:' a s  a function of k. The magnitude e? represents the 
plate strain corresponding to the beginning of the bending, i. e . ,  the point 
fo = 0 wi l l  be one of the extreme points of the e, - f, curve, and therefore 

the condition 9 = 0 must be fulfilled a t  this point. 
a f o  (f. - OJ 

Taking the derivative of (20)  a s  of an implicit function of fo, and 
de 

equating -' and fo to zero, we obtain the value of the cri t ical  strain: 
df 0 

e~'=0.222-0.125 (1- k). (29)  

The critical strain of a plate made from a nonlinearly elastic material  
thus represents a certain par t  of the critical strain calculated by Hooke' s 
law, 

The solution of ( 2 2 )  a t  k = 0 yields the value L = 0.3511. 
index k varies  from 1 to 0 this coefficient will vary within the l imits 

When the 

0.3719 > L> 0.351 1. 

The range of variation of L being small, we can assume with a certain 
approximation that L is independent of k and determine i t s  value from the 
solution of the elastic problem. 
determination of the strain will be largest  a t  k = 0 and fo = 5, when i t  will 
be equal to 5.92 70. A t  other values k +  1 and k f  0 i t  will be considerably 
smaller,  decreasing still further in the determination of the s t resses .  

Thus, a t  the price of a negligible e r r o r  in the determination of the 
strain, we avoid the numerical solution of a complex system of equations. 

It follows that we can write relationship (21 ), which gives the strain 
law after buckling, in the form 

The e r r o r  allowed a s  a resul t  in the 

e, ~0 .222-0 .125  ( 1 -  k)+0.3719f:. (24)  
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In other words, the strain of a nonlinearly elastic plate can be considered 
as the strain of some equivalent elastic plate, and i t  can be assumed 
in addition that the plate strain caused by the bending is independent of the 
physical properties of the material, and depends on the boundary conditions 
only. 

In the initial parameters  relationship (24) will be written a s  follows: 

e=- x*h' [0.!!22-0.125 (1- R)+ 0.3719j:l. (25 1 
(2aY 

Knowing the value of the strain, it is now easy to determine the forces 

According to the general theory of nonlinearly elastic bending of a 
acting at the middle points of the plate edges. 

plate 161, the expressions for N1 and N2 a r e  

where 

In our case e, = e, 
At the points x=  2 B and y =  k a 

Then $=e:-', J1 i- ek-' h, J2 20. 
We obtain for N ,  and N,: 

-0 .  
x, = xu = xxy = O  

Y -0 x =o 

N, =( )*i'Ahek, fl 
2 h+l 

N9 -0.5(-) Ahek, 
v 3  or, with the aid of (25)  

k + I  $ k , ~ l h Z k + l  
N , = ( L )  ___ 10.222-0.125 ( 1 -  k )  +0.371!vt?]h, (27 1 If 3- (2a)*h 

N2 = 0.5 N,. 
At k = 1, A = E we obtain the value of the longitudinal force for the 

elastic problem: 

The f i rs t  term of the equation obtained corresponds to the value of the 
critical force and coincides with the value given by Timoshenko /7/ and 



by Vol'mir 1 2 1 .  
longitudinal force appearing a s  a resul t  of the plate bending, coincides with 
the Timoshenko solution and differs from the Vol 'mir solution. This  
discrepancy is due to our use  of boundary conditions a t  the l a t e r a l  edges 
different f rom those used by Vol'mir. 

The second term,  which corresponds to the value of the 

At k=O. A =aywe obtain the case  of a rigid-plastic body: 

2 iv, = __ ayh. 
Lr3- 

This  r e su l t  coincides with the resul t  for a plate undergoing small  de- 

The same  re su l t  is a l so  obtained by using the theory of l imiting 

In o r d e r  to p a s s  to the s t r e s sed  state of the plate we introduce the 

flections a s  ought to be expected. 

equilibrium. 

additional dimensionless pa rame te r s  

Relationship (28  ) then becomes 

[0.222--17.125 ( I  - k) +0.3719 $ I k .  

Curves of the cr i t ical  s t r e s s  parameter  as  a function of the deflection 
parameter  have been plotted in Figure 2 for several  values of a, and for 
k equal to  1, 0.137, and 0. It is seen from them that the cr i t ical  s t r e s s  
pa rame te r  i nc reases  with the index k and the pa rame te r  a,. Both these 
con,clusions ag ree  with the physical interpretation of the problem. 

2% 
3 5 O h  

FIGURE 2. 
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The shape of the curves given is similar to that of the curves obtained 

The method described here can be applied to other similar problems 
by Bozhinskii 18 I .  

a s  well. This l ies,  however, outside the scope of this paper. 
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ON THE CALCULATION OF HANGING ROOFINGS 

G . I .  P s h e n i c h n o v  
(Moscow) 

The fundamental equations of the problem of a hanging roofing circular 
in  the plan and made of two systems of prestressed shallow fibers(upperand 
lower) were given in / 1 / and solved in the axisymmetrical case. *< 

jected to the simultaneous action of a uniformly distributed and a snow 
load: 

We consider here  the nonaxisymmetrical case of such a roofing sub- 

4 ' 4 0 + 4 l C O S I p ,  ( 1  1 
where q,, and q1 a r e  constant magnitudes, and P,= M , = O  (for the meaning 
of the symbols, cf. / 1 /) . 

It follows in this case from the condition of symmetry relative to the 
axis 'p = 0 that uI = y, = 0 and that the equilibrium equation of the upper 
fiber has the following particular solution: 

The problem considered reduces to solving a system of seven equations: 
the geometrical boundary conditions a t  the external and internal contours 

u (R,  ?) = w (R ,  T) = 0, 
w ( r .  '9) = a', + ( r  - a,h) 'I1 cos 'p. 

u ( r .  '9) = wOal + u, cos '9 + ( h  + air) y1 COS 'P; 
( 2 )  

the equations expressing the conditions of equilibrium of the internal 
supporting ring 

The expression for pa in / I /  contains a misprint. The correct expression is 



Equations ( 2  ) and ( 3 ) contain the following unknowns: 

Cl(Y), CZ(?), G(rp), Nl(cp), 4, wo. TI. 

By eliminating Cl(p), Ct(?), and C,(I~) fromthe four equations of ( 2 )  we 
obtain a cubic equation for the determination of the relative elongation of 
the upper ropes: 

E' + (bo -t b1 cos v) i* - a$ = 0, 

where 
(4 )  

h +alr  r - a l h  
b1=E+--Yl--'qr R -  r CYl, 

a =  - P'R' (4 + 7k + 4k') (1 - k)', 3600;- 

It was assumed in the derivation of (4) that the magnitude (r--s1h)*y1cosrp 
can be neglected in comparison with 2 ( R  - r )  ( h  +a , r ) .  

Equations ( 3 )  and ( 4 )  represent thus a system of four equations with 
unknowns C, E ,  T ~ ,  E .  

This complex system of nonlinear equations can be solved in the 
following way. We assume some values for  the magnitudes 5 ,  E, 7,' and 
calculate from ( 4 )  the value of E corresponding to given values of 9 .  
obtain a s  a result  the values of the integrands of ( 3 )  a t  different points, 
using which i t  is possible to calculate approximately the integrals. 
left- and right-hand sides of these equations a r e  then compared, new 
values of the magnitudes C, E ,  il a r e  selected on the basis of this comparison, 
and the process is repeated. 

In a first approximation the values of the unknowns C, E, yl can be found 
under the condition that E can be represented in the form of the sum 

We 

The 

in which is a certain constant magnitude, and (f )'< 1. A s  will be shown 

by example, such a representation wil l  be correct for the elongation of the 
upper ropes even in the case when the shell is loaded by a surface load very 
different from an axisymmetrical load, and the solution obtained need not 
be refined. 

In this case eo must satisfy in accordance with (4) the equation 

e t  -t bo:: - aq, = 0, (6) 
while for the function characterizing the deviation of e from we obtain 

A l l  this remains correct  even in the more general case of shell loading 
by a surface load, namely in the case when q ( + )  = q ( -  T); in this case qo 
represents some "mean" value of q(cp). 
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By substituting ( 5 )  in ( 3 )  and integrating we obtain 

where 

aq: (atqf - Sl)  t 
J - - +  * -  21 p 

h + . a r  r - u 2 h  1 
p a -  R 1. - T 1  + R=-; CY* - E. 9 = €2 + u2c + -- ca, 2 

1 = 2b,=,, B = 2aq,ql - bl=z, f = 3;; + 2b,zo, 

and it is assumed that t > l .  
In order to simplify the system of equations still further we shall assume 

that, from physical considerations, the te rms  in the second equation of ( 8 )  
which contain 
reduces then to 

and E a r e  small and can be neglected. This equation 

P + 3u,V + 2 ( t2 + a;) C -t 2va, (C - El) + ZU,E, = 

By solving simultaneously ( 6 )  and ( 1 0 )  we find the unknown magnitudes 
C and e,,. This system can be solved in the following way. We assume a 
certain value of C and find from ( 6 )  the single positive value of E , ;  the 
left-hand part  of (10 )  is then calculated and compared with its right-hand 
part. 
repeated. 

unknowns E and T~ a r e  determined from the f i rs t  and third equations of ( 8 ) .  
Applying to ( 9 )  the rule of approximate calculation of the square root, we 
obtain 

A new value of I i s  selected if  necessary, and the process is 

After the magnitudes C and E,, have been found, the remaining two 

Assuming further that J ,  < eo, we obtain the following system of linear 
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algebraic equations for the determination of E and T~: 

After the unknowns t, i ,  T ~ ,  E~ have been thus determined, it remains to 
check the accuracy of the assumptions used for simplifying the problem. 
To that end, the values of PI, Pa, M 1  a r e  calculated by (8 ) and compared with 
the specified values. It is necessary in addition to tes t  the accuracy of 

the assumption ( $ > ’ < I .  

E x a m p l e  of c a l c u l a t i o n .  It i s  required to check the section of 
the ropes of a hanging roofing circular in the plan and i t s  rigidity for the 
following values: R = 32.0m; r = 2.5m, a, = 0.07; az = 0.10; p, = p2 =0.224; 
upper ropes (I, 55” (Fl=13.78cm2), lower ones 9 5 9 ”  ( F,= 15.96cm); 
collapsing forces for the upper and lower ropes, respectively, equal to 
P,  = 169 t and P 1 =  195 t; 
E = 1.7X106kg/cm2, constant vertical load 400 kg/m2, snow load 140kg/m2; 
dead weight of the inner ring P = 5 t; prestressing of the lower rope 
H2 = 40t  (the load is given with the corresponding overload coefficients). 

We f i r s t  determine the value of the tension of the upper ropes which 
ensures the specified structure geometry before its loading by a surface 
load. 

modulus of elasticity of the steel ropes 

Using the las t  formula of /1 /  we find 

Hl=x(azHz-+)  1 PP = - - ( 0 . 1 . 4 0 - L  1 0 224.5 =54.6 t .  
0.07 2-3.14) 

1. When the shell is calculated for the case of the simultaneous action 
of a constant load and a uniformly distributed snow load, we have: 
40==400+140=540kg/cm2; q l = O ,  Pl=P,=Ml=M,=O,P,= 15.6 t (axisym- 
metrical  loading). 

In this case we obtain from the simultaneous solution of ( 6 )  and (10 ) :  
C=4.43.10-2; ~~=0.67.10-~.  The force acting in the upper rope will be 

T,+Hl-eoEFl=0.67~10~z~1.7~10’~13.78~10~4 = 157 t <169 t 
and that acting in the lower rope (cf. / 1 /) 

T2 + H,=Q P I C  +-&P) + H2 = 1.7.107-15.96-10-4 (0.1.4.43.10-2+ 

+40=1S7t <195t. 
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The deflection of the inner ring of the roofing wil l  be 

wo = I ( R  - r )  = 4.43. (32 - 2,5) = !.31 m. 

2. We shall now calculate the case when the snow load i s  given by the 
formula 70 (1 + cos 7 )  kg/m2. 
q, = 70kg/m2. Then Pl = 0, Pa= 14.1 t, 

We must write then in (1 ): qo = 470 kg/m2; 

- X& = 3.14.0.07.2.5' __ = 1.15 t-m. 
l -  3 3 

The simultaneous solution of ( 6 )  and (IO) yields 

C=4.02-10-2; ~0=0.612*10-2. 

By solving system (1 1 ) allowing for the values obtained for I and so 

we obtain 
E 0.986.10-3; 71 = 1.C4. lo-'. 

F rom ( 5 )  and ( 7 )  we obtain 

- 0.028 cos 'p + 0.051 COS' 'p 
E = (o'612 + 16.8 + 2.32 COS 'p -) 10-2 

The value of E will be maximum a t  y = - x :  c~~~ = 0.621X0-2; the maximum 
tension of the upper rope wi l l  be 

Tl + HI= 145 t < 169 t. 

The forces  acting in the lower ropes, determined by the formula ,'1/ 

will be equal ( in tons) to 

T, + Hz = 171 - 0.27 COS p + 0.08 COS'C~. 

It is thus seen that the forces acting in the upper and lower ropes vary 

By substituting the values found for the unknowns in the system of 
very little with the variation of the angle 'p. 

equations ( 8 )  we observe that no further refinement of the solution is 

necessary. In addition, (-:)lax= 2.2X and therefore the assumption 

( - y  (< 1 is fulfilled. 

BIBLIOGRAPHY 

1. P s h e n i c h n o  v ,  G. I. K raschetu visyachikh pokrytii, kruglykh v 
plane (On the Calculation of Hanging Roofings, Circular in the 
Plan). - Inzhenernyi Zhurnal, Vol. 11, No. 3. 1962. 

765 



ON THE CALCULATION OF PLATES ON AN 
ELASTIC FOUNDATION 

G. M .  R e i t m a n 
(Moscow) 

The calculation of plates on an elastic foundation is usually based on the 
assumption that the foundation can be considered a s  a linearly deformable 
medium 111. Use is made of the combined-foundation model proposed by 
Shtaerman 1 2 1 ,  of the Fuss-Winkler hypothesis ( interest  in which has  been 
renewed as a result  of new experimental data), of the Pasternak hypothesis 
of a foundation with two foundation moduli, etc. The values obtained for the 
s t resses  and s t ra ins  depend strongly on the foundation model selected. 

Lately there has ar isen a trend toward a more accurate calculation of 
structures on an elastic foundation and toward the study of soils possessing 
very varied mechanical characterist ics (the papers of Korenev 1 3 1 ,  
Cherkasov 141, e tc . ) .  

The relationship between the contact pressure  q ( x ,  y )  applied to the 
foundation surface and the depression of the surface points w ( x ,  y )  can be 
represented in a general form by the following linear integral law: 

wix,  y ) =  j. f K ( x - t .  Y - I ) q ( E .  ' i)dEdq, (1 1 
- 0  -_ 

where K ( x  - i ,  y - T ) ,  the kernel characterizing the foundation properties, 
represents  the deflection produced a t  point X, y by a unit force applied a t  
point 5 ,  T,. 

Two problems a r e  of interest. 
1. The foundation properties a r e  known, i. e . ,  the kernel K (x - 5, y - 11) 

is specified. It is required 
to find the contact pressure q (.rl y). 

The pressure distribution q ( x ,  ?)is given for a certain foundation, 
and the depressions w [ x ,  y )  of the surface points have been determined 
experimentally. It is required to find the kernel K ( x  - . E ,  y - q) which r e -  
presents the foundation properties. 

Both of these a r e  inverse problems relative to the usual statement of 
the problem of determining the depression surface under the action of a 
given load, and consist in solving the l inear integral equation (1 ) . 

This equation will be solved by the methods of operatorial calculation, 
using a two-dimensional two-sided Laplace transform / 5  /; a solution is 
obtained for a large class  of problems, including a s  a particular case 
many solutions described in the l i terature 1 6 ,  7, 8 1 .  

The depression surface w ( x ,  J) is specified. 

2. 
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Consider now the following rule of operational calculus 1 5 1 .  Let 

The double integral on the left appears in the integral equation (1 ), 
which shows the expediency of applying the two-dimensional two- sided 
Laplace transform to the solution of this equation. 
that the functions f ( x ,  y) and g ( x ,  y) must be of bounded variation in any 
finite region. This is the condition for a two-dimensional two-sided La- 
place transformation. It is satisfied by kernels reflecting the properties 
of various foundations met in practice (the Fuss-Winkler foundation, the 
foundation with two foundation moduli, etc.) .  We shall not deal here  with 
the elastic half- space, the combined foundation model, and other founda- 
tions to which this condition is inapplicable. 

By applying the convolution theorem to equation (1 ), in those cases 
when this is possible, we obtain 

It should also be noted 

( 2 )  
1 

P Q  
W ( P ,  @=- K O I ,  G) Q @ ,  41, 

where 
q w ,  y )  = Qv, 91, ~ ( x ,  Y ) =  W ( P ,  d,  K ( x ,  Y ) =  K(P, 4). 

Using relationship ( 4 )  it is possible to solve the two problems formulated. 
1. We obtain from ( 2  ) 

Returning to the original space, we obtain 

4 ( x ,  Y 

2. We obtain from 

and, using the inversion formula: 
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The following problem will be considered a s  a n  example of the applica- 

A uniform p r e s s u r e  q,, applied on the region - a  
tion of the method proposed to the second type of problem. 

x .<< a ,  - u < y <a  of 
a cer ta in  foundation causes  a depression of the surface points expressed 
by the formula 
a t  -a,<x,<a. - - n , < y < a  

( I  - e - "  cIi k.r - e-k"ch k y  + e-2k" ch kx ch ky) ,  4mq 
k2 

.zgJ ( x ,  y )  = 0 

a t  

a t  

sh'ka, 4mqo - b i . r l - h ! y l  ~ ( x ,  y)=---e 
kz 

x>a,  - a < y < a ,  
x<-a,  -a,<y.<a, 
4/izq0 

k2 
w ( x ,  y )  = __ shkae--k '" '  (1 -ee-kochky), 

a t  

It is required to find the kernel of the integral equation (1)  corresponding 

Passing from the functions w ( x ,  y)  and q ( x ,  y) to their  t ransforms,  we 
to the foundation considered. 

find 

The t ransform of the kernel of integral equation 
applying formula (4). 

I .  

(1)  is obtained by 

which corresponds to the original 
- k l  x I -k I Y I K (x,  y )  = me 

The kernel is therefore of the fo rm 

K ( ~ - E ,  y - q )  = m e - k l X - r ' - k l Y - l l  ( 5 )  

i. e., is s imi l a r  to the kernel K ( x -  5 )  = m e - k ' x - E '  considered by Wieghardt 
for  the one- dimensional problem / 6 / .  

the method described, consider the problem of an ideally rigid square 
punch of side a penetrating to the elastic foundation described by kernel ( 5 )  

A s  an example of the solution of the f i r s t  of the problems formulated by 
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of the preceding example. It is required to determine the foundation reaction. 
Before proceeding to the solution of the problem, note that i f  the s u r -  

face of the foundation considered is f r ee  of load except for  some portion 
- a  < x  4 a, - a < y <a then the depression surface outside of this portion 
is expressed by an exponential law. 
the cylindrical surface 

Thus, a t  x>a, - a < y  < a  we have 

-k(+--o\ 
W ( X ,  y) =woe , 

where w, is the depression under the punch; a t  

n>a, > a w ( x ,  y) = w o e - k ( - - k ( ! ' - a )  etc .  

The depression surface can be represented in this  ca se  by the following 
formula, introducing into consideration unit functions: 

where V ( X )  and V { y )  a r e  unit functions, whose t ransform is 1 
The t ransform of the depression surface is 

+ e-Op-Oq (k' + p 9  - p k  - q k )  + e4pp-aq (- fi' -1- p q  - p k  + q k )  i- 

+ e-ap+aq ( - - z + P 4 + P ~ - q k ) l ,  

and the t ransform of the kernel is 

F r o m  here,  allowing for  formula (3), we find the t ransform of the 
reaction p r e s s u r e  

Q (P. 41 = -% [eup+nq (kz + p q  + p k  + 4 k )  + 
fe -np-ac (h"+pq-pk-qk)  + e n p - o q ( - k * + ~ ~ - p k + q k ) +  

41?l 

(-- .Liz + P 4  + P k  - 4 k ) l .  + e-w+w 
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which corresponds to  the original 

w k2 
4m q ( x ,  y ) = L [ V ( x + a )  V ( y + a ) -  V ( x f a ) V ( y - a ) -  

- V ( x - - )  V(Y +a)+  V ( x -  a)  V(Y - a ) ] +  

1- *.I2 ( x  + a )  V ( y +  a )  - - E  ( x +  a )  V ( y -  a )  + 6 ( x  - a)  V ( y  + a)-  
4m 
- 6 ( x  -a) V ( y  - a )  + V ( x  + a )  8 ( y  + a )  - V ( x  - a )  6 ( y  + a )  + 

+ V ( x  4- a )  a ( y  - a )  - V ( x -  a)B(y-  a ) ]  + 
W + 7; P(x + 4 8 (Y + a )  + a(X-aa) 6 (Y  + a )  + 8 ( x  + a)8  (Y - a )  + 

-i-8(x-a) E (y--a)]. 

Here  6 ( x )  and 6 (y) are Dirac impulse functions, whose physical application to 
the case  considered is unit concentrated fo rces  applied a t  the coordinate origin. 

The reaction under the punch thus r ep resen t s  a uniformly distributed 
wok2 
4m 

p r e s s u r e  of intensity - acting in the portion - a < x  s a ,  - a  Q y <a, a 

uniformly distributed p r e s s u r e  of intensity 2 acting along the punch 

per imeter ,  and concentrated forces  - acting a t  the corners .  

Winkler foundation and the foundation with two foundation moduli, whose 
model can be represented a s  an inextensible diaphragm lying on a system 
of spr ings (the Filonenko-Borodich model) /8/, and whose load-deflection 
relationship can be written in the fo rm 

w k 
4m 

WO 

4m 
It is obvious that the c l a s s  of foundations considered includes the 

The class of foundations (1 ) considered a l s o  includes all the foundations 
for which the load is determined as the right-hand pa r t  of a l inear  differential 
equation in par t ia l  derivatives with constant coefficients relative to the 
depressions of the surface points, i. e. ,  the foundations whose surface de- 
formation is described by the equation 

L [w (4 Y ) l  = 4 (x, Y L  ( 6 )  

where L is a l inear  differential operator with constant coefficients. 
I t  is obvious that the c l a s s  of foundations (1 ) is l a r g e r  than c l a s s  ( 6 ) .  

Thus, the foundation with kernel K ( x  - E, y - T) = Ae-'"(L-')"'(Y-'i)'' is not 
described by equation ( 6 ) ,  but belongs to the c l a s s  of foundations (1 ). 

In this case the function w is function of one variable only, and equation ( 6 )  
can be written a s  follows: 

Consider the case  when the load is distributed along a s t ra ight  line. 

w(n) ( x )  + C,W("-') ( x )  + . . . + caw ( x )  = mq ( x ) .  ( s a )  

The kernel corresponding to the foundation described by equation ( s a )  
is of the form 
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The transform of a kernel of the form of (7) is a rational-fractional 
The kernel itself can therefore be found from i t s  transform, function. 

without using the inversion formulas, by expanding the transform in  
elementary fractions and finding the originals corresponding to them from 
standard handbooks. 

This suggests the advisability of approximating the kernels of arbi t rary 
foundations by kernels of the form of ( 7 ) .  In other words, an a rb i t ra ry  
function is approximated by means of an exponential function by suitably 
selecting the factors A,,; and mi. 

dimensional case: 
The following approximating formulas can be proposed in the three- 

or 

Using such an approximation i t  i s  possible to solve problem 2, approxi- 

We specify the form of the kernel K ( x ,  y )  in accordance with formulas 
mately in the following way. 

( 7  ) or (8 ), leaving the values of the parameters  indeterminate at this 
stage. 
function w ( x ,  y) by formula ( l ) ,  and select  then the indeterminate para- 
meters  in such a way a s  to make the function w ( x ,  y )  obtained reflect best 
the given depression surface.  

Knowing by hypothesis the function q ( x ,  y ) ,  we determine the 
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STABILITY OF REINFORCED CYLINDRICAL SHELLS 
UNDER AXISYMMETRICAL LOADS 

K .  A .  R o d i t  e l  e v 
(Moscow) 

The problem of the stability of a cylindrical shell reinforced by 
s t r ingers  and enclosed between stiffeners under axial compression o r  
axial compression with an internal or  external pressure is solved by the 
energy method in a nonlinear formulation. It is assumed that the skin 
and stringers buckle simultaneously. The study of the stability of a re- 
inforced cylindrical shell reduces, as a result, to the study of the stability 
of the skin, along whose l ines of contact act radial forces depending on 
the stringers rigidity. 

"* 

FIGURE. 

The necessary number of stringers i s  determined on the basis of the 

In order  
resul ts  of the studies given in /1 I, i. e . ,  the number of half-waves in the 
circumferential direction is determined from the given R,  I, h .  
to increase the cri t ical  s t r e s s  in the skin the stringers must be arranged 
a t  a distance smaller than the half-wave in the circumferential direction; 
more precisely, the number of stringers must be no l e s s  than four times 
the number of half-waves. 

1. A s  shown by the resul ts  of experiments, a cylindrical shell, re-  
inforced by a set of stringers,  buckles in one half-wave along thegenerator. 

The radial displacement can therefore be selected in the same form a s  
assumed in /1/ 

Irx ny IrX 

I R  1 
w = f , + f , s i n -  sin- +f,sin?-. 
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The resul ts  of the studies given in / I /  satisfactorily agreed with the ex- 
perimental data for the case of a smooth cylindrical shell. 

Using ( 1  . I  ) we determine the strain energy of the middle surface a t  
bending, the work of the external forces applied to the shell ends, the 
work of the internal or external pressure,  and also the work of the radial 
forces from the stringers to the skin. 

The las t  is given in an expanded form by the following expression: 

Using the fact that the cri t ical  s t r e s s  of the skin and stringer a r e  equal, 
we can write the expression for the total energy in the following form: 

hq 
[(mz+n2)2g:+ 8m4g;j - m ? ~ ( a g : + Z B g ~ )  f 

+ 12(1--v)R2 E 
PR PR 0 P R  
Eh [ Eh E Eh 

+ h ! - g g : - 4  +-+-- * - - .  ( 1 . 3 )  

By varying the expression for the total energy by g,, g,, and n we 
obtain the following expressions for determining the cri t ical  stress:  

where F ,  J ,  and S a r e  the area,  moment of inertia, and number of stringers; 
E and Y a r e  the modulus of elasticity and the Poisson ratio. 

buckling a r e  
The dimensionless parameters of the shape of the reinforced shell after 

where a is the number of half-waves in the circumferential direction. 

s t r ingers  a r e  
The expressions linking the geometrical parameters of the skin and 

where a is a coefficient characterizing the support conditions of the 
stringer ends. 

value of the internal or external pressure a r e  determined by the formulas 
The dimensionless value of the critical s t r e s s  a t  compression and the 
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The coefficients, which a r e  functions of the parameter p, have the 
following values: 

The following obvious relationship exists between the parameters  p and q~ 
and the geometrical parameters of the skin and s t r ingers  R, 1, h ,  and E: 

The following cubic equation gives us the value of 'I: 

The magnitude i s  determined from the expression 
W t  

'I - _ _  
W2 

At E = 0 equations (1 .4)  
At given R. 1, h, and 

the value of the critical 

-_ - -. I .  ( 1 . 7 )  
7 

to (1.7 ) coincide with the equation obtained in / 1 /. 
E we can determine the value of a, andthereforealso 
axial force of the reinforced shell: 

P,, =2?rEZh2 (1+ E), (1.8) 

and the geometrical parameters of the stringer 

where a = 1 for hinged support; 
clamped ends; 

cylindrical shell. 

given. 

a = 2 for support at  the end; a = 4 for 
a = 2.5 is the approximate value corresponding to ( 1 . 1  ). 

2. 

Let the value of the axial force P and the shell dimensions L and R be 

It i s  now possible to determine the minimum weight of the reinforced 

It i s  required to select the skin thickness h, the distance between 
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the stiffeners 1,  and the magnitude E in such a way that the shell be of 
minimum weight; the following conditions must therefore be fulfilled: 

Pc,=2xE~h' (If E ) =  P, 
G = d - D R L h  (1+E + E , ) = G m i n ,  

F where d is the specific weight of the material; 

of the stiffener. 
following way: a number of values of h and E a r e  selected for each value 
of I, and the corresponding values of P,, and 0 a r e  determined. 
the set  of values of 1, h ,  and E we select the values I*, h*, and E : g  for which 
( 2 . 1 )  is satisfied, and the value of Gin (2 .2)  is smallest. The following 
condition must be imposed on the selection of the stiffener area: 

E, = L, Fs, i s  the area 
Ih 

The minimum weight of the shell is determined in the 

From 

Fst >, 1.5 F s t , .  

If an internal pressure acts  in addition to the axial force, we must impose 
an additional condition imposed on the selection of the shell thickness: 

It is seen from expressions (2.1) to ( 2 . 3 )  that the selection of the minimum 
weight of the shell depends on the mechanical characterist ics of the material  
and i t s  unit weight. 

shells made by chemical milling, i ts  cross- sectional dimensions a r e  easily 
determined by the formulas 

3. If the stringer is of rectangular section, which is characterist ic for 

- 
h, = c,l , (3.1 ) 

where the coefficients c,, c, depend on the conditions of fastening of the 
stringer ends. 

Conditions of fastening of the ends: 

a 01 cz 

Hinged support 1 .o 1.09 0.92 
Support a t  the end 2.0 0.77 1.30 
Clamped edges 4.0 0.55 1.82 
By formula (1 .I ) 2.5 0.68 1.45 

It is seen from (3.1) and (3.2) that at  E = const the a rea  of the stringer 
c ross  section decreases with the increase of the number of stringers; 
the height remaining constant, this means that the stringer width de- 
creases,  which can lead to a local buckling of the stringer.  It follows 
that the number of stringers is restricted from above by the local buckling 
of the stringer, and from below by the buckling of the skin between the 
stringers,  i. e. ,  

4 n < S  < S,. (3.3) 
where S, is the number of stringers for each of which occurs a local buckling. 

115 



4. 

A similar approach can be used in solving the problem of modeling 

The modeling of the stability of smooth cylindrical shells was 
considered in 111. 

reinforced cylindrical shells. 
(1.4) to (1.9). 
compression s t resses  and the s t resses  due to the internal or external 
pressure  in the original shell and in its model a r e  equal: 

Use is made in the modeling of equations 
The modeling is based on the condition that the cri t ical  

acr = ( O c r ) G  %= (0,)l. (4.1 1 
The following condition must also be satisfied: 

It follows from 

When condition 
be satisfied: 

e = e,. 
(4 .2 )  that 

ax= a. - = $ .  C -=%.  R 
R A,' h h,' 

(4 .2)  

a =a, is satisfied i t  is necessary that the following equality 

i = ( E ) ,  a = %, (4.3) 

i. e., a t  the same number of stringers,  the loads transmitted to the full- 
scale stringer and skin must be equal to the loads transmitted to the 
stringer and skin in the model. 
must be identical, both in the full-scale shell and in the model. Thus, i f  
conditions (4.1) to (4.3) a r e  fulfilled, a model of a reinforced shell sub- 
jected to axisymmetrical loads is created. 

experimental resul ts  a r e  presented below. 
pression had the following geometrical characteristics: 

The conditions of fastening of the stringers 

5. The resul ts  of the comparison of the theoryexposed in Section 1 with the 
The shell tested a t  axial com- 

R 
A h 
_ -  ' -2.664; - =1340; F,, -0.651 m2; S -100. 

Mechanical characterist ics of the material: 

~ 4 . 2 . 1 0 5 - k  =0.3. 
cm* 

R e s u l t s  o f  t h e  c a l c u l a t i o n .  Take a =  2.5; 5 = 0.773; (I= 1.464; 
& = 0.536; p = 0.366; e =  9510; a t  p = 0.16; + = 0.319; = 0,303; = 1.481, 

0.349. 
Minimum calculated value of the axial critical force is Per= 28,000 kg, 

E x p e r i m e n t a l  r e s u l t s .  Buckling s ta r t s  under a load of 
number of dents n =  8 . 3 6 ~ 9 ,  fo = 12h;  f l =  9 h ;  f2 = 13h. 

26,300 kg without disturbing the carrying capacity. At  a load of 30,500 kg 
the skin and s t r ingers  buckle with a disturbance of the carrying capacity; 
this buckling is accompanied by the formation of one half-wave along the 
generator and nine dents in the circumferential direction. 

The comparison of the experimental resul ts  with the calculation shows 
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that the discrepancy between the calculated and experimental critical loads 
does not exceed 6%. A satisfactory agreement between the calculated and 
experimental number of dents was obtained, which proves the correctness 
of the premises of the theoretical studies. 
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ON THE RIGIDITY OPERATORS OF A STIFFENEB 
PLATE AT CREEP 

M . I .  R o z o v s k i i  and G . I .  B u l a k h  
(Dnepropetrovsk) 

1. RIGIDITY OPERATIONS 

Consider the problem of the creep a t  bending of a plate reinforced in 
the two directions by mutually perpendicular r ibs  arranged close to each 
other and symmetrically on the two sides of the middle plane. 

fastened to each other and symmetrical relative to the middle layer, with 
transient and steady-state Young moduli Eok and E,a. transient Poisson ratios 
v O k ,  and heredity (relaxation) characterist ics p, and z n ( k = 1 ,  2, 3,..., 

Let the plate be made of 2n+ 1 isotropic homogeneous layers  rigidly 

2n+ I ) .  
Introduce the operator 

- 
E a = E o k l l - & . Q * ( - ~ L ) ] ,  (1.1 

where Q* (- p,) is the integral operator with relaxation kernel Q ( - P k ;  t, s), 
acting in the following way on some function { of the coordinates and the 
time t :  

Q (- Pb; t, s) C (s) ds. (1 .2 )  

Let  the operator (1.2) satisfy the condition 

Q* (xi) - Q* (xz) = (XI - xJ Q* (4 Q* (xz) ,  (1.3) 

where x, and x1 a r e  arbi t rary numbers, with x, + x,. 

of Rabotnov’s type 111: 
Condition (1.3) is exactly satisfied by the integral operator with kernel 

and by the integral operator with simple exponential kernel 

E ,  (xi; t - s) = exp [x ,  (t - s)]. 

A kernel of Arutyunyan‘s type 1 2 1  satisfies condition (1.3) only 
approximately . 
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According to Rabotnov / I / ,  it can be assumed that the dilatation 
operator does not vary with time, i. e . ,  

The substitution of (1.1 ) in (1.5) yields 

where Vk is the operator Poisson ratio, x- = xk  pk,  
where E,k is the steady-state Young modulus, and E-k< EOk. 

the distance between the r ibs  by d, and d,, the transient Young moduli 
by Eil ,  and the heredity (relaxation) characterist ics of the material  of the 
r ibs  by and x i ,  xi = I ;  e;, Xi = (E;, - EL,)/E;!, where E- ,  is the steady-state 
Young modulus of the material of the ribs,  Ea, < E;, (i = 1, 2) .  

= ( E o k  - E d )  , 

Designate the moments of inertia of the sections of the r ibs  by J ,  and J , ,  

The operator of normal deformation of the r ibs  i s  

Using formulas (65.6)  and ( 6 6 . 6 )  from Lekhnitskii's book 1 3 1 ,  and 
operators ( l .]) ,  ( 1 . 6 ) ,  and (1.7), we obtain by applying Volterra's 
principle /1/ the rigidity operators of a sandwich plate stiffened by r ibs  
placed close to each other: 

where 

The operator r,,, and the magnitude To,n+l a r e  determined by formulas 

Formulas (1.8) to (1.10) correspond to the case when the sandwich plate 
(1 .9)  and( l . lO) ,  respectively, for k = n +  1 .  

a s  a whole represents a body possessing not only geometrical symmetry 
but also elastic-heredity symmetry relative to the middle plane. 
h,, h,,..., h~,,+l a r e  distances from the middle plane to the boundaries of the 
layers; 
one to n respectively (cf. Figure 131 in 131);  Eok, E+ VOk, p k ,  xk  a r e  the 
elastic-heredity characterist ics of these layers.  
= E-;an+t  vm=Yo;n+l, XI = XZ,,+I- P I  = B2,,+l, etc. 

must be reduced to a nonfractional form which does not contain products 
of the operator Q* with different values of the parameters or powers of 

Here 

(h ,  - hJ,  (h ,  - h,),. . ., (h. - /"I). and 2/r,,+l a r e  thicknesses of layers  

We have EoI=Eo;z,,+I, E,,= 

In order  to be able to use formulas (1.8) in practice, the operator (1.9) 
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this operator. 
corollaries 

This can be realized by using formula ( 1 . 3 )  and its 

I1 - xQ* (- B)1-'= 1 + xQ* (X - 13). ( 1 . 1 1 )  

Having found the inverse operators of those in the denominators of 
(1.9), we obtain from ( 1 . 1 1 )  

- 
T k =  TOk 11 - XkQ* (- I j k ) ]  11 + Xk 71kQ' ( x k  ' I l k  - 8 k ) I  x 

x f 1  - X k  T Z k Q *  (- X k  'Izr - P k ) ] '  (1.12) 

By twice applying formula ( 1 . 3 )  in ( 1 . 1 2 )  we obtain the required ex- 
pression for the operator %: 

since 0 .G VOk Q 0.5, then b1k > 0 and m i k  > 0. 
The third rigidity operator E, is of the form 

(1.15) 

which naturally enters  into the composition of operator ( 1.8 ). 

2 .  SOME APPLICATIONS 

The solution of any problem relative to the determination of the de- 
flection w ( ~ .  y, t) of a sandwich plate reinforced by r ibs  placed close to 
each other a t  creep reduces to replacing the rigidities D,, 0,. and D, in 
the formula determining the deflection of an ideally elastic orthotropic 
plate by the operators (1.8) and ( 1 . 1 5 )  with subsequent determination of 
the function of the operator Q* thus formed. 

Take for instance formula ( 7 2 . 5 )  in 131 ,  which determines the de- 
flection of an orthotropic plate, supported on i t s  four sides, under the 
action of a normal load distributed according to some arbi t rary law 
(varying in the general case with time). We have 

The operator can be presented in the form 

.- "+I 2 2 
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where 

a and b a r e  lengths of the plate sides; c = n i b .  

The latter can be realized by using the theorem of 141.  
To find the deflection W it suffices to find the operator inverse to n. 

We have 

where rlk and r ;  a r e  the roots of the equation 

and the coefficients ai, and a, a r e  determined from the system of linear 
e qua ti ons 

For a concentrated load P ( t )  = .M COS I I J f ,  applied a t  point (xo,  yo) ,  and the 
case when 4 ( - $ ; t , s ) = e x p ( - - ; f - s )  it follows from ( 2 . 3 )  that 

[w  sin d - 
4.W miixO iryo " + I  2 

n 
k-11 -1  H 

The deflection Wwill be rheologically stable a t  t + w ,  if R e ( r , , ) < O  and 
R e ( r ; ) < O  ( k = 1 .  2 , - . - , r ~ + l ) ,  ( i - I ,  2 ) .  

center of an ideally elastic orthotropic plate, supported by the sides 
x =f0.5a and y=O, y = b ,  under a uniformly distributed load q, is ap- 
proximately determined by the formula 

A s  known ( 1 3 1 ,  p. 289), a t  large sides ratio c = a/b the deflection a t  the 

W, = 5qbJ/384 D,. (2 .7 )  

By substituting the rigidity operator (1.8) instead of D, in (2.7) a t  i = 2, 
we obtain an operational expression for the deflection W,, which remains 

78 1 



to be deciphered. 
thickness of each layer is h/3 )  with elastic-heredity characterist ics 
EOI, xl, v, ,  -01 =0.5 (the outer layer), .EO?, x2 = 0, voz (the middle layer), Ei2, xi, p; 
(the strip) we obtain for q ( t )  = qo = const 

In a three-layer sandwich plate of thickness h (the 

where 

( 2 . 9 )  

LetQ*=E:, where the kernel of operator E: i s  of the form (1.4). It 
follows then from (2.8) that 

wc (0 = wc (0) [ 1 + a,Ei (71) + %E: (r,)l, (2.10) 

where r, and rp a r e  the roots of the quadratic equation 

r2 + p1' +A = 0, (2.11) 
, X l +  x;P2 PlP2& + %l ' P1 = ?le; - - 1 + Pl + Pz p1= 81 + P, - -____ 1 + P l  + Pz (2.12) 

The coefficients a, and a, a r e  determined by the formula 

( 2 . 1 3 )  

At rl=r2 expression (2.10)  becomes indeterminate, and is solved by 
l lHospitalls  rule (cf. /4 / ) .  

It follows from (2 .9)  that 

ak 

k - I  rk 
1 + - [exp ( ~ r ~ t l - ~ )  -- 11, where 7 = (1 -a)'-'. (2.14) 

The expression was obtained from the relationship between the operator 
E:(rk) and the function of Mittag-Loffler E1-=(rkt1-*),  and also its approxima- 
tion according to 141. 

It follows from (2.14) that a t  t -oo 

405q,b4 ,whereRe(rk)<O. (2 .15)  
4992 EOI ( 1  + PI + PA 

W,(oo) = 

Formulas (2.8) to (2.16)  correspond to the case when the outer layers  
and the r ibs  display the property of creep, while the filler is ideally 
elastic. The same formulas can be used for determining the deflection W c  
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of a plate with the following elastic-heredity characterist ics Eok, x r  P k  
( k =  1, 2 ) ,  ~ 0 1 ~ v o 2 = 0 . 5 ,  EA2, i .e . ,  for the case when all the layers  possess  
the property of creep, while the r ibs  a r e  ideally elastic. 
that end to write voz = 0 . 5  in the calculation of p1 and to replace the 
parameter p; and the product p& by p2 and pIxl, respectively, in the 
formulas given above. 

by r ibs  and with four built-in sides, bent by a uniformly distributed normal 
load 9 .  
and of the r ibs  Eil, y.; ( i = l ,  2). 

responding ideally elastic orthotropic plate is, a s  known 1 3 1 ,  

It suffices to 

Consider the problem of creep of a rectangular simple plate, stiffened 

The elastic-heredity characterist ics of the plate a r e  E,, yo, y., P, 
The formula approximately determining the deflection Wof the cor- 

49q 
W ( X .  Y) = - 8 7D,b' + 4Daa2b2 + iD,a4 (2 .16)  

(- 0.5a 4 x -5 0.5a; - O.5b < y < 0.5b). 
- -  

By substituting the operators Ll,, D 2 ,  and E,  from (1.8) and (1.15) instead 
of D,, D,,  and D, in (2.1 6 )  for n = 0 and 2h1 = h (where h is the thickness 
of the plate consideEed) we reduce the problem to finding the operator 
inverse to 7D1b4 + 4Daa2h2 + 7D2a4. 

i . e . ,  in the case of a square plate made from the same material  a s  the 
ribs,  we have a t  Q* = E: and 9 ( t )  = qo = const 

In particular, a t  a = b, y. = y.; = xi, p = = p;, Eo EL, = E,',,, d, = d2, J, = J 2 ,  

(2.17) 

where rlr ( k  = 1, 2, 3) a r e  determined from the equation 

mi and bl li = 1, 2) a r e  determined by formulas (1.14), dropping the index R ;  

The coefficients ab(&= 1, 2, 3 )are  determined from the system of 
equations 

3 a  
1 - rc = 0 (i= 1 .  2, 3). (2 .19 )  

b-1 mlf  rt 
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(2.20) 

Let E, # E:] # Ei2 # 0 and x, + = = 0, i. e. ,  the plate material  possesses 
thepropertyof creep, while the r ibs  a r e  ideally elastic. 
= ,5&12d;l, E;,J,d;l = iEoh3/12, where 1 is specified. 

Let also E&d, = 
Then 

2 z a  
= 1 + 2 akE: (rk)=  I +  2 [ E l - .  (rktl-=)- 11, 

h-1 k-1 ' k  

where 

and r1 and r, a r e  the roots of the equation 

At Re(rk)<O i t  follows from ( 2 . 2 2 )  that a t  t + o o  

( 2 . 2 1 )  

(2 .22 )  

(2.23) 

( 2 . 2 4 )  

The magnitudes mi and bl (i = 1.  2) a r e  determined by the same formulas 
as in the preceding case. 
depends on the value of 1 and is determined by the formula 

The elastic-transient deflection w ( x ,  y;  0 )  

We give a s  an illustration the resul ts  of the calculations corresponding 
to lead and synthetic rubber a t  room temperature, and copper a t  a tem- 
perature of 165'C. 

PI = 0.3299 for 
leadand x2 = 0.2099, 3, = 0.4665 for rubber, were obtained on the basis of 
Bronskii's experimental data 151, and the values x = 0.500 and p = 0.862 for 
copper on the basis of the experimental curve of simple relaxation represented 
in Figure 598 in / 6 /  a t  a = 0.3. 

The values of the rheological parameters xl= 0.1979, 

TABLE l a  

pa =0.2 

Pa I 0 I 0 . 2  I 0.4 1 0.6 1 0.8 I 1.0 

I 
1.0983 1.0112 I 
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wc(p”’ I 1.0526 1 0.9699 1 0.8999 1 0.8403 0.7870 
WO 

Tables la ,  lb, and I C  give the results of calculations by formula 
(2.15), allowing for (2 .11 )  to (2.13), for the case of lead supporting r ibs  
and rubber outer layers  of a sandwich plate a t  various values of p2 for 
pI = 0.2 (Table la ) ,  p1 = 0.4 (Table lb), and pl = 0.6 (Table IC). Here 

Table 2 gives the results of the calculations on the basis of (2.25), 
Wi = 405 9&~~/4992 EUI.  

(2.23), and (2 .24)  for a simple copper plate a t  yo = 0.3, reinforced by 
elastic ribs. 
plate. 

Here W ,  is the elastic-transient deflection of a nonreinforced 

TABLE 2 

0.7439 

Table 3 gives the results of calculations by (2 .20 ) ,  (2.18), and (2.19) 
a t  vo = 0.3 for a simple copper plate reinforced by r ibs  made from the 
same copper. 

TABLE 3 

_ _  - -  
a l o  1 1  1 2 1 3 ) 5 1 7 1 1 0  

-- - 
W(m)/W(O)l 2.379 I 2.567 1 2.315 I 2.382 1 2.384 1 2.333 I 2.360 

- 

It follows from a comparison of Tables 2 and 3 that stiffening by r ibs  
made from the same material a s  the plate gives the poorest results.  
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I 

ON THE BENDING OF LENGTHY ANISOTROPIC 
P L A T E S  MOVING IN A GAS A T  CONSTANT 
SUPERSONIC VELOCITY 

V . S .  S a r k i s y a n  
(Ye re  van) 

The state of s t r e s s  and s t ra in  of a thin elastic rectangular plate of 
uniform thickness hinged on two opposite sides and moving a t  constant 
supersonic velocity in a gaseous medium was treated in 121 on the basis 
of Il'yushin's piston theory 111. 

Numerous papers have been devoted to the subject of the stability of 
deforn;ation processes of solid bodies moving in a gas (cf. /3/). 

The nonlinear problems of the stability of plane panels at high super- 
sonic velocities were considered in 141 and other papers. 

The problem of the bending of lengthy elastic plates moving in a gas 
a t  constant supersonic velocity was solved in 1 5 1 .  

We use here  the small-parameter method for an approximate solution 
of the problem of the bending of a long and narrow anisotropic (nonortho- 
tropic) plate of arbi t rary symmetrical shape clamped by the edges, 
moving a t  constant supersonic velocity in a gaseous medium, and inclined 
under an angle a to the direction of motion. 

The solution is represented in the form of a power ser ies  of the small  
parameter X, introduced in the equation of the region contour. 
question of the asymptotic convergence of this s e r i e s  is examined. 

The 

1 .  STATEMENT O F  THE PROBLEM 

Consider an elastic homogeneous anisotropic plate of uniform thickness 
deformed under the action of a bending load. 
is not orthotropic in the general case, but possesses  a t  each point a plane 
of elastic symmetry parallel to the middle plane. 

The problem of finding the deflections of a nonorthotropic plate bent 
under the action of forces perpendicular to its plane reduces, asknown 161, 
to solving the equation* 

It is assumed that the plate 

* We use here and below the generally accepted symbols. 
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a t  given boundary conditions. 

constant supersonic velocity in a gaseous medium, be inclined under an 
angle a to the direction of motion. 
load on the plate, calculated by Il'yushin's formula /1/ 

Let a nonorthotropic plate clamped by the edges, and moving a t  a 

In this case 9 ( x 1 y )  is the aerostatic 

q ( x , y )  = P?. (.+ $) . 
CO 

In the case of a plate clamped by the edges we have a t  the boundary 

w =o, dw =o. 
d n  

2 .  THE SMALL-PARAMETER METHOD FOR THE 
PROBLEM CONSIDER ED 

Let the region Q be bounded by the curves (Figure 1) 

y =  i- '0 ( x ) .  (2 .1  1 

(2.2)  

Designate by Q1 a region contained in 8 and bounded by the curves 

y = + I. 'p ( x )  (O< i < I ) .  

The boundary-value problem for region 9, will then be of the form 

B, 
aiw aw + a,. dy' + A .  - = 

dx  

d w  d w  
d x  d y  

w = - = -=0 at  y = + I . ?  ( x ) ,  

(2.3) 

where A =  -'E, B = - A a .  
CO 

Note that to each value of the parameter I. there corresponds a single 
solution w = w (xl y;  I.)regular in region 9, of the boundary-value problem 
( 2 . 3 ) .  

FIGURE 1. 

Passing to new variables by the formulas 

( 2 . 4 )  
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we can represent equation (2 .3)  in the form 

and the boundary conditions in the form 

dw dw 
dx d q  

w=-=-=O a t  - q = + ~ ( x ) .  

We shall represent the solution of the boundary-value problem in the form 
of a ser ies  by the powers of a small parameter: 

By substituting the value of w from ( 2 . 7 )  in (2.5). multiplying by A4 
and requiring the identical satisfaction by A ,  we obtain the system of 
differential equations 

d4wo d4,w2 d ' , ~ ,  D,,.- +4D,,.d4ler,-1-2(Dl,+2D,,).- - +4D,,.dz+ 
dx4 dx3dq dx2dr,2 

In order  that the ser ies  (2 .7 )  satisfy the boundary conditions (2 .6)  it is 
sufficient that these latter be satisfied by each of the functions wk(x,q). 

3. SOLUTION OF THE SYSTEM O F  EQUATIONS (2.8) 

We obtain from the f i rs t  four equations of system (2.8 ) and the boundary 
conditions (2 .6)  

wo = w1 = w1 =w3 =o. (3.1) 
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The fifth equation reduces to 

D,. d24 = B. 

By solving this equation at  boundary conditions ( 2 . 6 )  we obtain 

B w, (X,?) = -.($ - $)2. 

24022 

( 3 . 2 )  

From the sixth equation of system ( 2 . 8 )  and the boundary conditions ( 2 . 6 )  
i t  is clear that 

'w, (X,?)  =o. 
The following differential equation is obtained for determining w, ( x ,  7): 

Its solution yields 

The following differential equation is obtained from (2.8)  for the de- 
termination of w7 (x ,q) :  

We find from here, with the aid of (2.6) :  

where 

We next obtain for w,(x,g) the expression 

where 

( 3 . 4 )  

( 3 . 5 )  
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The following expression is obtained thus for determining the plate 
deflection w (x,q; A )  with an accuracy of the order of XQ: 

Knowing w, we calculate by the standard methods the bending moments, 
the torque, and the shearing forces (cf. 161) .  

aerostatic load: 
The following expression is obtained from (1.2) and (3.7) for the 

The resul ts  obtained become simpler in the case of an orthotropic plate. 

4. P A R T I C U L A R  CASES 

1. I n  f i n i t e s t r i p . Consider the action of an aerostatic load on an 
infinite s t r ip  of width 2a (Figure 2). 

, 
I ' - I  

FIGURE 2 .  

The equation of the infinite strip is y = ka or  q =  _+ a .  It is easily 
We obtain then from seen that all a!k with the exception of w4 vanish. 

(3.7) the exact solution of the boundary-value problem (2.3): 
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The bending moments, the torsional moment, the shearing forces, and 
the aerostatic load a r e  determined a s  follows: 

Ny= - By, 

2. E l l i p t i c a l  p l a t e  (Figure 3).  The contour equation is 

b y = t Ay ( x ) .  where.9 ( x )  =v--, A = - 
U 

From ( 3 . 7 )  we obtain 

A B x  x ( T , ~ + X ~ -  a2)2 - ih8. - . [ q6 - 312. (d- x2 j '+2( a2 - x2)3] +O (Le). ( 4.2 ) 
3 4 2  

The following expression is obtained for the aerostatic load: 

x [ [ 96--3-q2 (d- x y  + 2 ( d -  x?)3j $- 12 x"u2 -xq. (27, + a* - X*)] $0 ( 1 9 ) .  ( 4 . 3  ) 

FIGURE 3 .  

3 .  S t r e a m l i n e  p r o f i l e  (Figure 4 ) .  The contour equationis 

27 
16a 

y =  + ) . y ( x ) , w h e r e y 2 ( ~ ) = ~ l ~ ( a - x ) 2 ,  el= - a  

rom ( 3 . 7 )  we obtain the expression for the deflection 

- x ) 2 ] l -  A?. -. [A*- ~ , x ( a - x ) ~ ] ~  $0 (a'). 
51 

The expression for the aerostatic load is 
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A s  seen from the examples considered, the question of the convergence 
of ser ies  (3.7) is essential. 

FIGURE 4. 

We shall study the asymptotic convergence of se r ies  ( 2 . 7 ) ,  which is 
more general. 

5. PROOF OF THE ASYMPTOTIC CONVERGENCE 
OF SERIES ( 2 . 7 )  

We formulate the following lemma in order to prove the asymptotic 

L e m  m a  . If  w(x ,  y )  satisfies the equation 
convergence of ser ies  ( 2 . 7 ) .  * 

L, ( w )  = B 

inside region D and the conditions 

on the boundary (r), then f o r  any function F ( x , v )  which satisfies the 
equation 

L,(F) = f ( x , y )  

in region D, c D and the cunditions 

at  the boundary (f,) of region Dl we have IF(x,y) l< lw(.r,y)l inside and on the 
boundary of D,, only i f  i f (x ,y)  I <B in this region and on its boundary. 

We shall now prove the asymptotic convergence of ser ies  ( 2 . 7 ) .  
that end we shall study the solution of our problem a s  a function of X. 

Form the difference 

T o  

Equation (5.1) is reduced by an affine transformation to the equation considered in /5 / ,  for which the 
lemma was proved. 
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Apply on it the operator L4:  

(5.3) 

We shall now as ses s  expression (5 .4) :  

*&(..+) aw, 
The expression ai?a,2 and A - a re  regular functions of the argument dX 
x and simply polynomials of the argument 7 inside and on the boundary of 
Dl. Introducing in region D the symbols 

we obtain the following estimates for the function gn ( x , ~ ;  A) in region D,: 

I gn (x, 7; A) ]  .5 An..3* [Dii apn-3  +4D,e ' 4-2-12 (D12 + 2 0 6 , )  qn-l+ fn -3 ]+  

+ A*-'* [Dii*pn-~ + 4Die.ln-lf2 (Dizt2D6e),qn+ rn -21  +An-'*[D1l. Pn-lf 

+ 4&.&1+ m-d+ hn.lD1l-pn+ f n l ~  g h ) .  (5 .6)  

From the boundary conditions for w (x.y) and expression (5.2) we obtain 

a t  the boundary of region D,, 
Pn (x,Y; A)=O 

ah _-  -0 
am 

where m is an inner normal to the contour r,. 
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Introduce a new function, defined a s  follows: 

Form 
R', = L4 (Ifn). 

We shall obviously have, in a manner similar to (5.4), 

The determination of the function p: ( x , y ;  A) reduces thus to solving the 
following boundary-value problem: 

1 L,  (p i )  = R: ( x , y ;  A) in D, c D, 

(5.9) 

The conditions of the lemma a r e  obviously satisfied. Therefore, 

I P:I < l w  (X,Y)l 
or, allowing for (5.7): 

(5.10) 

Let an infinite s t r ip  of width 2a contain the region D within it. It is 
easily seen that we can select an infinite s t r ip  of width 2 in .  which will 
contain the region D,.  
satisfy the inequality 

Then, according to (4.1), the deflection for D, will 

(5.11) 

Using (5.11), we finally find from (5 .10)  

or 

The estimate (5.12) obtained solves the problem of the asymptotic 
convergence (in the Poincare sense) of ser ies  (2.7), since it follows from 
it that for any value of n 
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USE OF THE METHOD OF DYNAMIC RIGIDITIES 
FOR CALCULATING THE FREQUENCIES OF 
NATURAL VIBRATIONS OF BUILT-UP SHELLS 

I . E .  S a k h a r o v  
(Moscow) 

The determination of the frequencies of vibrations of built-up shells is 
of considerable practical interest. 
the method of dynamic rigidities used in the theory of vibrations of bar  
systems 11 1 .  
the problems of axisymmetrical vibrations of annular plates and cylindrical 
shells /2/. The region of application of the method of dynamic rigidities 
can be broadened still further and made to include the study of arbi t rary 
vibrations of built-up shells. 

generalized force, acting according to some harmonic law, to the amplitude 
of the generalized displacement caused by it and varying likewise 
harmonically . 
of natural vibrations by the method of dynamic rigidities is a s  follows: 
by means of several  cuts we split the built-up shell into several  shells of 
simple types (cylindrical, spherical, conical, etc. ), and introduce a t  the 
planes of separation forces and moments varying harmonically with an a s  
yet unknown frequency w .  

vibrations of each of the simple shells under the action of the end forces. 
Using the values obtained for the displacements a t  the ends we form the 
dynamic rigidities a s  the ratio of the amplitudes of the forces to the amplitudes 
of the displacements caused by them. 
interactions and the conditions of strain compatibility, we obtain the 
equation for determining the frequencies of natural vibrations of built- 
up shells. 

It makes sense to calculate them by 

This method has already been used by the author for solving 

The dynamic rigidity is by definition the rat io  of the amplitude of the 

The scheme for solving problems on the determination of the frequencies 

We then solve the problem of the forced 

Next, using the equality of the 

1. DYNAMIC RIGIDITY OF A CYLINDRICAL SHELL 
SUBJECTED TO DISTRIBUTED BENDING MOMENTS 
ACTING AT ITS EDGES 

Consider an isotropic cylindrical shell (the same treatment is applicable 
to an orthotropic cylindrical shell a s  wel l )  of radius 6, length 21, thickness 
h, Young's modulus and Poisson ratio of the shell material  E and a ,  
and mass  of unit surface of the shell M. 
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X Introduce the dimensionless coordinates E = - and 'p. The x-axis is 
1 

directed along the shell generator; 
c ross  section. 

We shall res t r ic t  ourselves to the case of vibrations which a r e  sym- 
metrical relative to the plane perpendicular to the shell axis and passing 
through i ts  middle (the problem of antisymmetrical vibrations is similarly 
solved). 

'p is the central angle in the shell 

The equations of vibrations will be derived from Gol'denveizer' s 
a2U aiv d'w equations 131 ,  by introducing the inertia forces M -, - M - . - M - 
dt' at* at' 

instead of X, Y, Z, respectively. 
We have the boundary conditions 

I 
1- 12 (1 - 9) bz ?E2 E. b 

M Eh3 8 w l  =M,cosmcpcoswt a t  € = + E , -  f- 

We shall look for a solution in the form 

u = ek: cos my cos w t ;  z' = ek: sin mp cos w t ;  w = ekE cos mp cos ot. 

The value of k is determined from the characteristic equations 

4(1+v2)mm2- (: - 1," -E 4vz) Q2] ka + [ [6 + v2( 1- a')] in*- 

2 
1 - a  

- 2 (4 - 2) m*+ (1 -3) (4-v-2) + - Q4- 

-[ ( 3 + 2 a ) v - 2 + 4 + 2 ~ z v - z + 3 ~ m 4 - ~  1 - a  
1 - a  

2 1 
1 - 0  1-a 

+ m4 (m*- l)2--v-*Qe + - ([2 + m2 (3 - a)] v - *  + 2m* (m'+ 

i n 2  
+1)) Q4--1m*(m?+ 1) r2+ - (2 + (3 - a) ma - ( 3 +  oj m4I1 Qz = 0. I 1 - 0  I 

Here 

The general solution will  be written a s  sum of the eight particular solu- 
tions corresponding to the different k .  
determined from the boundary conditions. 
deflection. 
of the slope at  the shell edge. 

The eight arbi t rary constants a r e  
Form the expression for the 

Its differentiation by E and the substitution E = E, yield the value 
By dividing M, by the amplitude of the slope 
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at the edge we obtain the expression for the dynamic rigidity 

Here 

-t ("-"+ 4P) Q2) 'pPj4)+ [m4 ( 1  + v') + 
1 - 3  - 

2 
1 - 0  

+-Q'- 

Here 'pl (i = 1, 2, 3. 4) (and their derivatives) a r e  functions of the form 
chpE,, cos qE,, shpE,. sin qE,. ch AXo, cos pE depending on the form of the roots of 
the characteristic equation (p iq, A, i p ) .  

2. DYNAMIC RIGIDITY OF A SPHERICAL SHELL 
SUBJECTED TO DISTRIBUTED BENDING 
MOMENTS ACTING AT THE EDGE 

Consider a spherical shell of radius R ,  thickness 8, Young' s modulus 
E ,  Poisson ratio p, and mass  per unit surface M .  The middle surface 
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will be characterized by the geographical coordinates 0, rp, where 8 is the 
angle complementary to the latitude angle and p is the longitude. 

The vibrations equations will be / 4 /  

dv 1 du ~ = - + ~ t ~ e ~ - - - .  
s ine  at ao 

Here A is the Laplacian in spherical coordinates 

The boundary conditions a re  (we restr ic t  ourselves to the case of a 
spherical shell closed a t  the top a t  0 = 0): 

.u = 0, - ucos a + w sin a =0, TI sin a + Q;cos a =0, 
MI = M,cos mpcos ut a t  0 = a. 

Eliminating c)  from the f i rs t  two equations, we obtain an equation for 
w. The solution wi l l  be represented in the form 

w = W(0) cos mrpcos ot. 

The function W i s  expressed in the form of a sum of the attached Legendre 
functions f$ (cosu) 

w (0) = A,P: (COS 0) + APE (COS e) + A ~ G  (COS e). 
They represent solutions of the equation for W if k 

satisfies the characterist ic equation 

p 3 - - p 2 ( 4 + k 2 ) + p c 2 ( l - - )  k2 . + c 2 ( - 2 -  - 1-33~ 
1 --p* 

Here p=n ( n  + 1). 
The solution of the equation for x i s  likewise an attached Legendre 

function. 
determining 8, x expressions for I I  and z) in the form of sums of spherical 

We then find the expression for 8, and obtain from the formulas 
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functions, with n, for the fourth function found from the equation 

p--2  ( I+- l k lp )=o .  

The arbi t rary constants a r e  determined from the boundary conditions, 
The expression for the dynamic rigidity is formed by the formula 

a,, = E, + ql ctgap;', 

a,,=w? + ctga (d,w? + dzwF), 

a,, = w? + c tga  [dzw? - d,w?]. 
c tga  
sin a 

a,, = --m - P t .  

u2, = q,P;, aZz = d2qm - d,w?, 

m 

a,, = d,w? + d,&, 
slna ,,,- a*, = - -fn., a,, = (1 - p) qlc tga  + ).zctga (1 -2q,)P1+2p + 

m2 
sin a 
m2 

sin a 

+{- (1  + P ) + P ~ ~ ~ - ( ~ - - I L ) - [ ~ , , + A * ( I  -22q,)ctgza1 

- (1 + p) + (1 - p) - 1 [ctg a - d, (1 - 2Pctg*a)]  i- 

ma +(ad,- 5d,)'w?+ (1 -p)- d , ( l  -22h2ctg2a- (ad,+ bd,))l.? + I sin2 a 

a - 2 (ad,- bd,) + 
. - ( I  - p ) d , c t g a +  

+ A 2 c t g a ( - b + 2 ( a d , + b d , )  + 2 ( 1  -p)d,* sin a lb~?', J 

(I,, = {(ad, + bd,) - (1 - p) d, ( 1  - 2).2ctg2a) )my + 
mz + (- (1 + p) + ( I  - p) - [ctg a - d, (1 - 2AzctgZa)] + 

sin2 a 

m2 
sinz a 

801 



= u - 2 (ad, - 6d3) + (1 + P) - (1 - p) (1 - 2dZ) - - W? 4- 
sin2a m2 1 

+ - 6 + 2 (ad, + 6 4 )  - 2 4  (1 - 1') m? ]w? + 
[ 

sinZ a 

+ [( 1 - p) (1 - 2 4 )  ctg a]  m2"' + 2 (1 - p) d, ctg a W?'. 

a4, = 6 - 2 (ad3 + bd,) + 2 (1 - p) d, 7 TU? + 
sin- a 

" ' 1  3 -  

[ nL2 1 
+ ~ - 2 ( ( n d , - 6 b d ~ ) - I - ( l + p ) - ( ( 1 - ~ ) ( 1 - ~ 2 6 ~ )  - W m  

sir2a 

- 2 ( 1  - 1') d,ctgawF' + (1 - p) (1  - 2d2) crg azeJT', 

I 
U S 1  = - (1 + ql) P,", a,, = - ( I  - & ~ W r ' - d 3 W 3 " ,  

m 
sin a 

US1 = d,7@' - (1 - d*) w:', US4 = ~ P,", . 

Here kz = 62, P,", (cos 6) is the Legendre function corresponding to the 
12R2 

rea l  value of the root of the characteristic equation; 
the rea l  and imaginary par ts  of the Legendre function in the case of complex 
conjugate roots p2,3 = a 

wF(cos8). w;.(cose) a r e  

ib of the characteristic equation; 

f& = w," (COS e) iw," (COS e) ,  

if p 1  is rea l  and $2.3 = d, f id,, if p2,aare complex conjugate roots. 

3 .  DYNAMIC RIGIDITY OF AN ANNULAR PLATE 
SUBJECTED TO DISTRIBUTED BENDING 
MOMENTS ACTING ON THE OUTWARD 
EDGE 

Consider an annular plate of thickness 6 and external radius 6 .  E ,  p 
a r e  Young's modulus and the Poisson ratio of the plate material, and M is 
the mass  of unit a rea  of the plate. 

The equation of vibrations will be / 7 /  

D v 4 u + M - = 0  a2U (D= ). 
a t 2  12 ( 1  - I") 

The boundary conditions a r e  

u = O ,  Ml=M,cosmrpcosot a t  r = 6 ,  
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The solution will be represented in the form 

u ( r ,  7 ,  t )  = (C,J, 0.2) f C,Y, ( i . :)  -+- C J ,  0.5) -t 
-:- CaKm (A : ) )  COS / I I ~ C O S  wf. 

Here i.4 = -'!1-'l ut2, 5 = I_, J , ,  ( i s ) ,  Y ,  ( i . ; ) ,  I, (A:), K, (A!) a r e  Bessel  functions 
D b 

of the first and second kind of o rde r  m o f r e a l  and imaginary arguments.  
We shall  consider in what follows the case  m = 2. 

The a r b i t r a r y  constants are determined from the boundary conditions. 
The expression fo r  the dynamic rigidity is formed by the formula 

0 dE I= 
The expressions determined A,* and b a r e  given in 1 5 1 .  

4.  EXAMPLE O F  DETERMINATION O F  THE 
FRE(;I.UENCY OF NATURAL VIBRATIONS OF 
A BUILT-UP SHELL 

The dynamic rigidit ies reduce, a t  a frequency of the exciting force 
w = o  , to the static rigidity of the corresponding type of loading. 
numerator of the dynamic rigidity there  appears  an expression which 
gives the equation of natural  vibration frequencies of a hinged shell. 
the denominator there  appears  an expression which gives the antiresonance 
frequencies, i. e . ,  the frequencies of vibrations corresponding to the case  
when the section on which the external force is applied is built-in. 

Knowing the dynamic rigidities, we can find the frequency of natural  
vibrations of a cylindrical shell  closed a t  the ends by pa r t s  of spherical  
shells or  by annular plates. 
that a supporting r ing  i s  placed a t  the place of contact. 
shell  by the ends we obtain one cylindrical shell  and two spherical  shells,  
loaded a t  the ends by distributed bending moments. 

the dynamic rigidity and the slope MC=KcDC. 
spherical  shell  will be . I d s t  &ItS. 
slopes a t  the place of contact a r e  the same.  
will therefore  yield an equation for calculating the frequencies of natural  
vibrations of a built-up shell. 

tions of a cylindrical shell  with flat bottoms. 
a r e  

In the 

In 

In the case of spherical  bottoms i t  i s  assumed 
By cutting the 

The moment acting on the end of a cylindrical shell  is expressed through 
The moment acting on a 

The conditions K ,  + K ,  = 0 
But the intsractions a r e  equal, and the 

The problem is solved graphically. 
Consider a s  an example the problem of the frequency of natural  vibra- 

The dimensions of the shell  

b = 35 cm, 21 = 21 cm,/  h = 1.7 cm.  
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Themater ia lcharacter is t icsare  E = 2.1 X106kg/cm2, a = 0.3, 7 = 0.00785 
kg/cm. The dimensions of the annular plate are:  b = 35 cm, a= 28 cm, 6 = 
= 1.2 cm. The material is the same a s  that of the shell. The calculations were 
conducted for m = 2. 
forms. 

The results a r e  presented below in tabular and graphical 

TABLE. Frequency of vibrations in cycles/sec 

hinged 

2,150 

8.730 

Type of structure 
ni= 2 

built-in 

2,820 

11,700 

I 
I 

I Built-up shell 

865 I' 
2,800 11" i 
9,280 11' 
- 11" 

0 

0 
rec - 

FIGURE. 
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The dotted line on the graph represents  the dynamic rigidity of the plate, 
and the unbroken line the dynamic rigidity of the cylindrical shell. 
abscissas  of the intersection points give the frequencies of the built-up 
shell. 
can differ considerably f rom the frequencies of the separate elements. 
Thus, the frequency of vibrations of the cylindrical shell fil = 21  50 cycles/sec 
splits in two, fil = 865 and fit = 2800 cycles/sec.  
the f i rs t  vibration mode the cylindrical shell and the plate vibrate in phase, 
and in the second one in antiphase. 

Makshantsevinrealizing this study, andby L. M. Moskovkin in programing the 
calculations of the dynamic rigidity of a cylindrical shell for the Strela 
computer. 

The 

It is seen from the table that the frequencies of the built-up shells 

They differ in that a t  

The author acknowedges the help given him by N. K. Pesennikov and G. M. 
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GENERALIZED PROBLEMS OF THE WATER 
HAMMER IN AN ELASTIC CONDUIT 

I . T .  S e l e z o v  a n d S . N .  N i k u l i n s k a y a  

(K iev )  

The problem of the water hammer has been studied by numerous 
authors, who have generalized in different manners Joukowski' s solution 
111. 
equations of the theory of shells a r e  being drawn to describe the motion 
of the conduit 12,  4, 5, etc. 1.  This paper t reats  the propagation of small 
disturbances in a system consisting of a conduit and of the liquid filling it. 
The conduit motion is described by a system of two differential equations 
of the hyperbolic type, correct for thick shells 131.  
effects a r e  studied in an acoustic approximation. 

We introduce the following designations: p is the liquid pressure;  v is 
the mean velocity of the liquid in the conduit; is the liquid density; 9 is 
the velocity potential; x and r a r e  the axial and radial coordinates; t is 

the time; r, is the shell radius; 1 is the wave length; c1 = l/k i s  the 
T O  

velocity of sound in the liquid; k is the modulus of elasticity of the liquid; 
uo and wo a r e  the axial and radial displacements of the shell; 2 h  is the 
shell thickness; p is the density of the shell material; a is the Poisson 

Lately, there have appeared papers in which more and more general 

The hydrodynamic 

- 

ratio; X and p a r e  the elastic constants; cs=b/ 

distortion wave; 1: is the phase velocity; q i s  the pressure on the 
surface of separation between the liquid and the shell. 

Dimensionless magnitudes (p$: ,  q * )  = T ( p ,  q). 

is the velocity of the 

1 

PCS 

1 X 2h 

r0 r0 r0 r0 
(Ui, WJ = - (uo, W J ,  x* = -, t* = c. t ,  E = -. 

1 .  Consider a liquid-filled circular cylindrical shell. The action of the 
shearing forces on the surface of separation between the liquid and the shell will 
be neglected. The differential equations of motion of the shell a r e  then 13 1 
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The coefficients a i ,  b j ,  and dk depend on the Poisson r a t io  and a r e  given 
in 1 3 1 .  

Thc motion of 
velocity potential 

the liquid i s  described by the wave equation for  the 

where 

If the systemliquid-shell  is a t  r e s t  a t  t* = 0, the initial conditions cor-  
responding to this ca se  can be written in the form 

u:’, .-~= W&.,~=O at  - w < x:k< 00; 

p:~~,.-o=~*It.=.o=O at  O < X * < W ;  

p* I t.-o=pi, W *  I p - 0  - wi a t  - 00 < x* < 0. (4) 
Me also a s sume  that on the external surface of the conduit, a t  -w<x*(O, 
a uniformly distributed load p i  ac t s  constantly. 
assumed correspond approximately to a r e se rvo i r  ( x * < O )  with a conduit 
(n”>O), in which a flap is suddenly opened a t  moment t* = 0 in section 
n* = 0 1 5 1 .  

The initial conditions 

Finally, the condition 

must  be satisfied a t  the boundary of separation between the liquid and the 
shell. 

2. 
s tages.  
rigid conduit. 
and the functions v : ~  and p* a r e  equal to 

An approximate solution of the problem can be achieved in two 
W e  f i r s t  solve the hydrodynamics problem for an absolutely 

The velocity potential is determined from equation ( 3 ) ,  

I .  * *  
vl=vO, pl=pO a t  x*<c;  t*; 

v;=o, p;=o a t  x*>c; t :p .  ( 6 )  

Using the solution obtained we determine the p r e s s u r e  a t  the boundary of 
separation between the liquid and the shell, which r ep resen t s  the load 
acting on the shell: 

where p;=pi a t  O<xz<c;  t* and p i  = 0 for the other values of x*. 
solving the sys t em of equations ( 1 )  to ( 3 )  with the aid of conditions (4) 

By 
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and ( 5 ) ,  i t  is now possible to determine the function 'pz. and therefore 
v?, p 2 ,  and a l s o  the functions u; and w i .  

and to a Laplace t ransform for  t*, with a transformation pa rame te r  
multiplied by 1/? for  convenience. 
and the t ransforms are determined by the formulas  

t .  

The problem will be solved by passing to  a Four i e r  t ransform for xz: 

The relationships between the originals 

The system of equations (1)  to ( 3 ) ,  ( 5 ) ,  allowing for  ( 4 ) ,  ( 7 ) ,  has the 
following fo rm in the transform space: 
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( 1 9 )  
(cont'd) 

3. The examination of the solution for the displacements TU; ( 1 3 )  shows 
that the denominator of the integrand has an infinite number of roots which 
satisfy the equation 

It can be concluded from physical considerations that a t  real  s all  the roots 
w of the transcendental equation ( 2 0 )  a r e  rea l  ( a t  values of E which do not 
exceed the l imits of applicability of equations (1 ) and (2)). 
roborated by the calculations. The resul ts  of the calculation of the phase 
velocities corresponding to the lower mode of vibrations for a water-filled 
duralumin shell, with parameters 

This is cor- 

€2- 3 0 ,  c -  -0.3, 3 =0.178, c;=0.453, 
3p 

a r e  given in the figure. Curve 1 corresponds to equation (ZO), curve 2 
to the theory which allows for the radial inertia and the flexural rigidity 
of the shell walls 1 2 1 ,  curve 3 to the Joukowski formula, which allows 
only for  the circumferential s t resses  in the shell 111. It is seen that the 
velocities corresponding to a given value of E differ considerably from 
each other. 
values of the velocities (I* -+ w) coincide. 

There exist apparently values of E for which the limiting 

1.2 

0.8 

0.4 

2 4 6  8 IO 

FIGURE. 

Al l  the roots of equation ( 2 0 )  lie on the real  axis of the complex plane, 
and the internal integral of solution ( 1 3 )  can be represented in the 
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I 

form of an infinite sum of residues. 
becomes of the form 

The expression for & then 

- 
2 M cos sx*sinwl* ds 4- --A. 

2P 
(Lo f IU* N2 M, ) 

The integrand function in ( 2 1 )  depends on the real  variable s, and an 
approximate solution can be obtained by numerical methods. 
and (15)  can be similarly represented. 
functions wi, rp*, and p* are more general than those found in the l i terature  

Solutions (14)  
The solutions obtained for the 

1 2 ,  4, 5 1 .  
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ON THE INFLUENCE OF CREEP ON THE 
S T A T E  OF THIN SANDWICH SHELLS 

Ya.G. S k o m o r o v s k i i  
(Leningrad) 

The allowance for the creep of the material  plays an important part  in 
the assessment of the reliability of a given structure. This paper con- 
s iders  the influence of creep on the state of s t r e s s  of reinforced shells, 
in particular those made of reinforced concrete. 
proposed which can be applied in many cases  of reinforcement. 

of principal curvature. 
variants of reinforcement: a) reinforcement by a net with an equal number 
of fittings in the two directions; b) reinforcement in one direction (the 
influence of the distributing framework will be neglected). The concrete 
(or  any other material  of which the shell is made) will be considered a s  
an isotropic homogeneous body, possessing the property of linear creep. 
Neglecting the protective layer of concrete, we shall initially assume that 
cracks in the elongated zone during the service of the structure a r e  
inadmissible. 

A s  computing model of such a shell we take a shell made of layers  of 
isotropic or orthotropic material. 
two basic reinforcement variants by isotropic o r  orthotropic reinforcing 
layers,  respectively. 
orthotropy axes coincide with the lines of principal curvature. 
case we obtain a shell made of isotropic layers  of different mechanical 
and rheological characterist ics.  
tropic layers  in one of the directions must have a rigidity equal to zero. 

has the following elastic constants: 

A computing scheme i s  

Consider a shell with a double framework in the directions of the l ines 
We shall distinguish between two fundamental 

The framework will be replaced in the 

In the latter case it will be considered that the 
In the f i r s t  

In the second case the reinforcing ortho- 

This condition can be satisfied if we assume that the reinforcing layer 

El = 0, v12 = 0,  Ez = E,. vZl = vu,  GI, = G,, (1) 
where G, is the modulus of shear; E, is the modulus of elasticity; vu is 
the Poisson rat io  of the framework. 

The thickness of the reinforcing layer i s  selected in accordance with 
the framework area  per running meter,  i t s  center of gravity coinciding 
with the center of gravity of the framework. 

The computing model proposed for  a reinforced shell makes i t  possible 
to elucidate the influence of creep on the distribution of the internal forces 
and s t resses ,  allowing for the nonhomogeneity and orthotropy caused by 
the reinforcement in one direction. 
conduct a study on the basis of the experimental data on the creep of 

Using this model it is possible to 
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concrete,  without introducing average rheological character is t ics  of 
the reinforced s t ructures .  

It was shown in / I /  that the equations describing the s ta te  of s t r e s s  and 
s t ra in  of bodies possessing the property of l inear  c reep  do not differ f rom 
the corresponding equations of the theory of l inear  creep, i f  w e  replace 
the functions entering in them by their  Laplace-Carson t ransforms,  with 
the pa r t  of the elastic constants played by the functions 

where E and p a r e  the modulus of elasticity and the Poisson ratio,  
respectively, of the material;  v is the coefficient of l a t e ra l  creep s t r a i n s .  

F= p ~ ( t )  e - p t  dti  J 
K ( t )  is the influence function ( c reep  kernel) .  

boundary conditions according to Laplace- Carson i t  is possible to solve 
the problem in t ransforms,  and then, using the well-known inversion 
formula 1 2 1 ,  to find the components of the s t r e s s e s ,  s t ra ins ,  and dis- 
placements. 

When considering a sandwich shell  i t  is necessary to satisfy the con- 
ditions between the l a y e r s  in addition to the surface conditions. 
writing these conditions in curvil inear coordinates a, C, 'I (the normal  to 
the surface of separation between the l a y e r s  coincides with 
we obtain 

Thus, by transforming the equations of the theory of shel ls  and the 

By 

direction) 

(3) , a = l L h + l ,  u1 = U I + l  I l f = u l + l .  
b 9 '  7 7 9  

Ti = 7;:'. 75, = q', o l =  at+'. ( 4 )  "7 7 7  

In the case of a thin sandwich shell  i t  follows from the hypothesis of 
undeformable normals  that conditions ( 3 )  are satisfied identically /3/, 
and conditions ( 4 )  reduce to the equilibrium equations. 
relationship i s  expressed in the case  of identical l a y e r s  symmetrically 
arranged relative to the middle surface by the following relationships,  
transformed according to Laplace- Carson: 

The s t r e s s - s t r a i n  

where 

F j k  = 2 [B;f'hi+l+ 2 B;, (hi - hi+l)], 
D j k  = 2/3[8:2'h:+, + 2 E;k (h:- /z:+~)]. 

The coefficients E j k  a r e  given by the following formulas in the 
different cases:  
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I 1  1.1III1111 111.. I I ,,.,,,,,,,,,, I II.1.111..111 .. 1..11 .I. .I,,. ,.,.., -. 11...1.-11,-,-.,. . . . .. 

a) in an isotropic reinforcing layer 

b) in an orthotropic reinforcing layer 

c) in a layer of concrete 

Here E,, nu a r e  the elastic constants of the framework; E b ,  a r e  the 
above-mentioned functions, which replace the elastic constants of the 
concrete. 4: 

gineering theory reduces, a s  known 131 ,  to solvingan equation of the eighth 
order relative to some potential function q ~ .  
according to Laplace-Carson we obtain, in the case of a shell with sym- 
metrically arranged layers  of equal modulus of elasticity and thickness, 
subjected to a normal load Z (X=O,  Y=O): 

The problem of the calculation of a shell in the framework of the en- 

By transforming this equation 

The rigidities C,k and D~.L here a r e  determined by formulas ( 6 )  and ( 7 ) .  
The formulas for determining the rigidities a r e  considerably simplified if 
i t  is assumed that the concrete and reinforcing layers  have the same 
Poisson ratio. 
calculations involved, while the e r r o r  introduced by i t  does not exceed 5yo 
for practical values of the reinforcement coefficient. 
without reducing the accuracy of the calculations, that V: = 0. 

Such an assumption drastically reduces the amount of 

It can also be assumed, 

* It w i l l  be assumed in what follows that p = Y &, 
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On the strength of these assumptions, the resolving equation in the 
case of isotropic reinforcing layers  can be presented in the form 

where i 

If the shell is reinforced in one direction (or  if the influence of the 
distributive framework can be neglected), it is necessary to take into 
account the orthotropy of the reinforcing layer.  Introducing the additional 
assumption that the Poisson ratio of concrete is zero, and taking ( 1 2 )  into 
account, we obtain the following relationships: 

Note that expressions similar to (14) a r e  obtained for the coefficients 
entering in the resolving equation in the calculation of very shallow shells. 

Consider a cylindrical shell of open profile reinforced symmetrically 
relative to the middle surface. 
case of hinged shell, i. e . ,  a t  boundary conditions of the form 

The integration of equation (13)  in the 

can be realized by representing the functions by double trigonometric 
ser ies .  If the shell is loaded by a concentrated force Q applied statically 
a t  a point of coordinates a =a, ,  p = pl, the function $can be represented in 
the form 

- - c .  - mxa nxp 
14 = 2 E A , , s i n -  sin -- . 

m-On-0  a0 Bo 

Then, by expanding the load in a double Fourier ser ies ,  we obtain 
from equation ( 1 3  ) 

where 

;i = ao/p,; w = aopo. 

In accordance with this, we shall have the following expressions for 
the transforms of the internal forces  and moments: 
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m2n2 ntna nliP mna, 
sin ~ sin -sin 

-- 4Qa9.2 
T - - - Cxx sin- '- n%bR a0 B O  a0 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  
I 

- 4Qa* M,=- (iSl,m2 + ZTzn2A2) x 

E'  
P O  A m n  a0 B O  a0 

m n  

mxa nnP mxa, m p ,  
sin - sin - sin - x & sin- 

. . . . . . . .  . . . . . . . . . . . . . . . . . . .  . .  J 
The following relationships, similar to those introduced in solving the 

problem of an elastic shell, a r e  obtained for the transforms of the s t r e s s  
components in the shell layers: 

m m  nrp mna nnp, , sin l s i n  - X sin- sln __ 
00 B O  a0 P O  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

where 
1 - 

A;, = T (m4 + n4k4 + 2mzn2h2). 
c,, 

Formulas ( 1 9 )  remain correct in the case of an orthotropic reinforcing 
layer, when the shell a s  a whole likewise becomes orthotropic; 
cordance with (14), we obtain in this case 

in ac- 

( 2 2  1 
- - 1 a' 
Amn = P&, + + Ala + 1 m4, R 

where 

Do, Ca a r e  rigidities of the reinforcing layers.  - Q2 A = __-- - 
3 [EShz f c&] ' 

The determination of the internal forces and s t resses  in the shell layers, 
allowing for the creep of concrete, reduces to applying the inversion 
formula to (1 9 ) and ( 2 0 )  and calculating the following time- dependent 
integrals: 

The calculation of the s t resses  and forces, allowing for the creep of 
concrete, can be conducted only after the analytical form of the creep 
kernel K ( t )  has been established. 
recommended by Rzhanitsyn for concrete: 

The following form of this function was 
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K ( t )  = ue-bf/tl-c, (25) 

where a, b, c a r e  some constant positive magnitudes, with O < c <  1. Such 
a relationship, a s  was noted in 111, approximates satisfactorily the 
empirical curves of creep, and makes i t  possible to solve the problem in 
a closed form; the coefficients a, 6 ,  c a r e  obtained by an elementary 
processing of the experimental data. 

In accordance with (25),  we obtain for the function K 

where r(c] is the gamma function. 
By substituting ( 2 6 )  in the expression for the rigidities ( 6 ) ,  (7), and 

then in (24),  we reduce the integrals, whose calculation is necessary for 
determining the forces, s t resses ,  and displacements, to the form 

k 

The coefficients n k  here depend on the mechanical and rheological 
constants of the concrete and the reinforcing layers, and also on their 
thickness. 

Contour integrals of the type of ( 2 7 )  a r e  calculated by the standard 
methods used in the case of existence of points of bifurcation and poles 
of the integrand. 

The following conclusions can be drawn from the resul ts  of our study. 
1. In isotropic and orthotropic reinforced shells a t  stationary boundary 

conditions the creep causes a redistribution of the internal forces produced 
by the action of an external load. 

The creep of concrete causes a redistribution of the s t resses  and 
eventually leads to an increase of the s t resses  in the reinforcing layers  
and a decrease of the s t resses  in the concrete. 

a shell reinforced by layers  with mechanical characterist ics coinciding 
with the corresponding characterist ics of concrete, we obtain that in a 
homogeneous isotropic shell the creep does not lead to a redistribution of 
the s t resses  and forces. 
place in this case. 

2. 

3. Considering a homogeneous isotropic shell a s  a particular case of 

Only an increase of the displacements takes 
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FUNDAMENTAL EQ UA TIONS OF THE SEMIMEMBRANE 
NONLINEAR THEORY OF PRISMATIC SHELLS 
AND FOLDS 

I .  N .  Slezinger 
(Odessa) 

Consider a prismatically folded shell of average length, consisting of 
a finite number (m) of thin rectangular plates (figure). 
to the fold be large, so  that its deformation is considerable. 
strained state of each plate must then be described by Karman’s system 
of nonlinear equations 

Let the load applied 
The stressed- 

or  
ex = K’ (Tx - yTy), E y ” F  (Ty - VT,), w = K‘ (1 + v )  s, 

(2’) 
X, = D’ ( M I  - vM~), xy = D’(My- vM,), T =  D‘(1 + V) H 

and 
dTx dS dS d.Ty ~ + - + X = o ,  - + - + + = o ,  dx  ay 

dY 

where 
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Note that, on the bas i s  of ( 2 )  and (2’  ), the third equation of ( 3 )  can 
a l s o  be written in the form 

( 3 ’ )  
d2Mx d2M, d?H D’ 
d ~ 2  f 7 + 2 - - - (E,M, + “MY + ~ u J H )  + F: = 0. dY dxdy I(’ 

FIGURE. 

We adopt a p r io r i  the hypotheses of Vlasov’s semimembrane theory 
M, = I-I = 0. iy = (11 E 0, and determine the 1 3  remaining unknown functions 
from the s ix  relationships (1). the f i r s t  relationship of ( 2 ) ,  the fifth 
relationship of (2 ’ ) ,  the first ,  second, fourth, and fifth relationships of 
( 3 ) ,  and (3 ’ ) .  It is easi ly  seen that, by arranging them in the following 
o rde r  

we can find all the magnitudes interesting u s  by solving the equations ( 4 )  
one af ter  the other. 
presented in the following fo rm ( i = I ,  2 . . . . , m ) :  

The general  solution of these equations can be re- 
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(5  
(cont'd) 
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and further on 
1 

P~(X,Y) = - ~ w : , ~ ,  ~,(x,Y)= - w y , m , i ,  r i (x ,  ~ ) = w ~ ~ , i w ~ . i ,  

1 
SI ( x ,  Y )  = 7j- ul:.,i, 

XI,1 = + Ul,.r,i, Ri ( x .  )I) = Y y ,  1 - X l , x , i ;  (7 1 

ai , i (x) ,  a ? , l ( x ) ;  P l , i ( x ) ,  l h . ~ ( x ) ;  y~ , i (x ) ,  p , f c x ) ;  ; I , I ( x ) ,  &,,(x) and El,,,!2,1; [ I ,  C J  a r e  
a r b i t r a r y  functions and integration constants, determined from the con- 
ditions of connection of adjacent plates, the boundary conditions a t  the 
extreme longitudinal edges of the fold, and the boundary conditions at i t s  
l a t e ra l  edges. 

The connection conditions a r e  written in the form (i = 1, 2.. . ., m - 1) 

U i + i ( X ,  0 )  = Ul ( X .  6 ) .  VI+I (X, 0) = -I- V, ( X ,  b )  COS '71 $- " 1  ( X .  6 )  S i n  ai ; 

zu,,.l(x, 0 )  = - W I  ( x ,  6 )  sin +h + 7~~ ( x ,  6 )  cos 0 1 ,  ws, I + I  ( x ,  0 )  = 7t$, i ( x ,  6 ) ;  
( 8 )  

Si+I(x, 0) = SI ( x ,  6 ) ,  T,.,i+i ( x ,  0 )  = + 7'?, i ( x ,  6 )  COS ai 4- A',, i ( s ,  6 )  sin8 I ; 

Ny, ,+ l (x ,  0) = - Ty, I (n, b )  sin lbi  4- N,,, I (x, 6 )  cos 91 ; 

4, f + 1  (x.  0) = MY, 1(.r, b ) ;  

where 7fi is the angle between the planes of the i- th and the (i + 1)-thplates.  
The substitution in the f i rs t ,  second, third, sixth, seventh, and eighth 
equations of system ( 8 )  of the corresponding expressions of ( 5 )  makes  i t  
possible to expres s  the 8 m  functions a I , ,  ( x ) .  a 2 , i ( x ) ;  ( x ) .  ,32,i ( x ) ;  T ~ , ~  (x), ~ . , ( ( x ) ;  
il,, ( x ) ,  82,i(x) and the 2 m constants El.,, E?., through 2m + 6 new unknown 
functions m , ( x ) ,  q(x)  ( i = 0 . 1 . . . . . m ) ;  w,(x,O), w , , , ( x , b ) ;  T y , l ( x , O ~ ,  T,.,,,,(x, 6 )  and 
m + 1 new unknown constants ki V = O .  1 . . . . . ~ t )  by the formulas 

- (cosec L1-l-ctg 8 i - l l i ) ;  

1 
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where 

PI,I(x) = - q ( x ,  0). Pl,i(x) = cosecQi-Ivi--l(x, b)-ctgBt-Iw(x, 0) 
( I  = 2, 3,-. ., m); 

pz,i(x)= ctgaivi ( x ,  b) - cosec 8 1 ~ i + l  (x ,  0) (i = 1, 2 , m . a .  m -  I), 

and 

with 
cosec 8, = ctg 8, = cosec 8, = ctg 8,,, =O. 

The substitution of expressions (5 )  for wy,l and Si in the fourth and 
fifth equations of ( 8 )  leads to a system of 2 ( m -  1) integral-differential 
equations [z=I, 2 , . . . , m - l )  

i+z * 1+1 X 

- 2 dij J ~ I  (XI) d% + 2 eii 0; (XI = J[+ [Qw (4 - Q2,l ( 4 1  - 
1 - 1 4  i=i-l 

0 

* 
[Q1,1+1 (4) - QZJ+I ( 4 1  dx, -k Wl ( x ,  b) - WI+I ( x ,  r))+ :1 -CC~+I, I -- 

bi+l 

connecting the unknown magnitudes with the load acting on the fold. 
following symbols a r e  used in (12): 

The 

1524 822 



and 
cosec 81-1 

br 
= - -____ , 

E is an a r b i t r a r y  magnitude having the dimensions of s t r e s s  ( the "reduced 
modulus of elasticity" of the system).  

a l l  2m + 6 unknown functions. The remaining 8 equations can always be 
obtained from the conditions of fastening and loading of the extreme 
longitudinal edges of the fold. By substituting ( 9 )  in ( 5 )  we obtain the 
following expressions for the fundamental geometrical  and dynamic 
character is t ics  a t  the left  edge of the f i r s t  plate and the right edge of 
the tn-th one: 

Obviously, the 2 ( m  - I )  equations of ( 1 2 )  are insufficient for  determining 
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(15 )  
(cont'd) 

Using these expressions i t  is possible to form additional equations for  any 
combination of kinematic and static boundary conditions a t  the extreme longi- 
tudinal edges of the fold. Together with the fundamental equations (1  2 )  they form 
a complete system, whose solution yields all  the unknown fuctions of the problem. 

The solution of such a system obviously necessi ta tes  the knowledge of 
the constants k,  k L ,  I [ ,  C , ( i = l ,  2 . . . . ,  m )  and the initial values a i (0 )  U = O ,  l . . . . . m ) .  
In o rde r  to find the l a t t e r  i t  is necessa ry  to consider the conditions of 
fastening and loading of the l a t e ra l  edges of the fold. Since this scheme 
is incapable of fulfilling these conditions exactly, we shall  require  in what 
follows only their  approximate fulfillment in the pa r t  connected with the 
deformation of the middle surface of the fold. 
in ( 5 ) ,  we obtain the following expressions for the middle values of the 
displacements u, v and forces  T , , S  a t  the la teral  edges: 

Substituting once more  ( 9 )  
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Using these expressions i t  is always possible to find the values of 
k,, ki, 11 ,  C,, o f ( 0 ) ,  and thus make the solution of the problem wholly 
determinate.  

In conclusion, we note on the most  efficient method of integrating 
the system of nonlinear equations derived. 
a load a r e  not too large,  the method of successive approximations wi l l  ob- 
viously be the simplest .  The solution of the problem reduces then to a 
repetition of the procedure worked out by Vlasov for calculating l inear  
systems.  In the case  of weak nonlinearity the convergence of the p rocess  
is fair ly  rapid, so that the solution can be obtained relatively simply. 

If the fold deformations under 

It is easi ly  seen that the assumption M,=H = s y =  w = 0 adopted by u s  
a t  the beginning is not essential .  
are a l so  obtained a t  different values (specified beforehand) of M,. H, E,,, UJ. 

The only difference l i e s  in the fact that in the case  of values of these 
magnitudes different from z e r o  i t  is necessa ry  to use  expressions for 

x , ,  v l , , , . - .  which a r e  somewhat more  complex than those given in ( 6 ) .  
The fundamental equations (12 ) ,  and a l so  relationships ( 1 5 )  and ( 1  6 ) ,  
which a r e  necessary for  forming the additional equations and boundary 
conditions, remain unaltered. This  means that the r e su l t s  obtained above 
can be used a l s o  for  studying pr ismatic  shel ls  and folds in which al l  the 
static and kinematic factors  of deformation without exception a r e  of 
essential  importance. 

determined by the i teration method. 
expressions for these 4 functions, we conduct the calculation described 
above, and determine the corresponding values of the 13 remaining 
character is t ics  of the s ta te  of s t r e s s  and s t r a in  of each edge of the system. 
New (refined) values of the moments M,, Hand the s t r a ins  E ~ . W  can then be 
found from the fourth and sixth relationships of ( 2 ) ,  and the second and 
third relationships of (2 ' ) .  
those values and the s tar t ing ones, the p rocess  described is repeated. 

Results s imi l a r  to those given above 

The actual values of the moments M,. H a n d  the components E ~ ,  w can be 
Assuming f i r s t  a r b i t r a r y  acceptable 

If a considerable discrepancy exis ts  between 
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VIBRATIONS AND S T A B I L I T Y  OF ANISOTROPIC AND 
SANDWICH CYLINDRICAL SHELLS OF A R B I T R A R Y  
CROSS SECTION 

B . I .  S l e p o v  
(Leningrad) 

All the s tudies  conducted s o  f a r  on the subject of the vibrations and 
stability of simple anisotropic and sandwich cylindrical shells have dealt 
only with the case  of shel ls  of c i rcular  section. 
vibrations and stability of shel ls  having the shape of a cylinder of a r b i t r a r y  
c r o s s  section has been ignored. 

Such shel ls  a r e ,  however, being used in  some ship s t ructures ,  and the 
development of methods for calculating their  stability and vibrations s e e m s  
therefore desirable.  

relatively easi ly  i f  i t  is assumed that the initial s t r e s sed  state of these 
shells can be determined by the membrane theory. 

the stability of a simple anisotropic shell having the form of an elliptic 
cylinder simply supported by the end sections and loaded by an all-round 
uniformly distributed p r e s  sur e.  

A s imi l a r  problem is considered for the case  of a sandwich elliptical 
shel l  with r igid incompressible fi l ler .  

Both problems a r e  considered in a l inear  formulation, and the approxi- 
mate  solutions obtained are presented in the form of relatively simple 
formulas  for the frequency of flexural vibrations and the cr i t ical  p re s su re .  

p re s su re ,  since the l a t t e r  does not differ in the given case  by more  than 
30 yo f rom the upper cr i t ical  p re s su re  obtained in the l inear formulation. 

a simple anisotropic elliptic shell. We shall  s t a r t  f rom the equations of 
motion of a cylindrical shell  of a r b i t r a r y  c r o s s  section, in which the 
tangential inertia fo rces  are neglected and only the inertia fo rces  due to  
the normal  deflection a r e  allowed for. 

It is assumed that the shell  is initially in a membrane state of s t r e s s .  
The corresponding fo rces  and moments a r e  assumed to be given by the 
expressions obtained in /I 1.  

The question of the 

An approximate solution of the problem considered can be obtained 

This  paper deals  with the problem of the free flexural vibrations and 

N o  par t icular  necessity a r i s e s  for determining the so-called lower cri t ical  

1. Consider f i r s t  the problem of the f r ee  vibrations and stability of 

The system of equations for  the displacements u, w and w is 

a 
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x (L -. x )  d*w dZr _ -  
h? d t2  

where F: is the differential operator 1 2 1 ,  

u, Y, and w a r e  displacements along the generator, the directrix, and the 
normal, respectively; x. s a r e  coordinates measured along the generator 
from one of the end sections of the shell and along the cross-sectional 
a r c  from the fixed generator; L ,  h a re  the length and thickness of the 
shell; a,  b a r e  semiaxes of the shell c ross  section; so is i t s  perimeter, 
expressed a s  known through a complete elliptic integral of the second kind; 
r = r ( s )  is the radius of curvature of the c ross  section; E, and p1 a r e  
Young's modulus and the Poisson ratio in the direction of the x-axis; 
E2 and pz a r e  the corresponding magnitudes in the direction of the 

s-axis; G = 

density of the shell material; p is the uniformly distributed pressure;  
t i s  the time. 

The system of equations (1)  can be reduced by the standard method to 
one differential equation relative to w, which is written in dimensionless 
coordinates E and q in the form 

is the modulus of shear; p c  is the mass  €1 = ~ 4 
2(1 +PI) 2(1  'Po) 

{ [ ( E (5;- E) d2.w d2p d2w dp 
dE2 dq2 dEdq dq 

p;4 p viw-q ____- -+(2E-Eo)--- 

where 0: and 0: a r e  differential operators 1 2 1  in the dimensionless 
coordinates E and 7 :  

r, is the maximum radius of curvature of the shell c ross  section; 

q = 12p( l  - p1pJ (%y; 4b:= 1 2 ( 1  - p1pJEJ2 (2y; 
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Equation ( 2 )  will be solved by the Bubnov-Galerkin method. In the 
case of a s h e 2  simply supported by the end sections, we adopt for the 
deflection .ret the expression 

w = sin kE 2 TA ( t )  sin kvy  sin QPt,  (3) 
k 

where l=?!?L=r; .=e. , 

accordance with the Bubnov-Galerkin method we can write 

9,, = 3; Qk is the unknown frequency. In 
L Eo 90 r0 

'1. E. 

[ vf + sin At sin kvq dEdq = 0, 
0 0  

where 
E (Eo - E) d? d2p d2w dp 

dEdq dq dil G+ (2E - Eo) __ - - f ( E ,  9, t)  = P v;w--q 

rub d2w 
s,ro d i2  dq2 D, dt2 

d 2 ]  + pC -- h* d%), 

I 
( 4 )  

( 5 )  

or a f t e r  integrating by pa r t s  and allowing for the boundary conditions: 

1 
Assuming that the functions p and - a r e  continuous and differentiable, we 

P 
can r ep resen t  them in the form of s e r i e s  

whose coefficients can be determined by one of the numerical  methods. 

and to calculate the expressions obtained. 

deflection. 
as is usual  when using the Bubnov-Galerkin method, we retain only the 
k-th term,  which corresponds to the principal harmonic, and the sub- 
sequent t e r m s  located near  it.  

The calculations showed that in a first approximation, when only the 
k-th t e r m  in ( 3 )  is retained, the k-th frequency is determined with an 
e r r o r  not exceeding 4 to  5'30. 

When, in addition to the k-th term,  we retain the (k-1)-th and ( k + l ) - t h  
t e r m s  a s  well, the e r r o r  in the determination of. the frequency is reduced 
to  1 to  2%.  

of the flexural vibrations of an elliptic shell  was obtained by the method 
described above: 

It is now necessa ry  to substitute series ( 7 )  and ( 3 )  in equation ( 6 ) ,  

We proceed to the selection of the approximating function for  the 
Instead of retaining in series ( 3 )  the t e r m s  of lowest index, 

The following approximate expression for the square of the frequency 
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X 
4b;A4 

E&' + E,A2k2v2 + E,k'v' 
( Elk4 -+ E,kzk%'! + E,k'v') po .{- 

1-1.2 

( 8  1 

In the case q = 0 (unloaded shell) the squa re  of the frequency is given by 
the expression 

4b:h' ( 9 )  
+ €1A4 + E4A2k'v* + E,k4v4 [ ( ($)zJ]. 

By writing Q k  = 0 in  (8 ) ,  we can obtain an approximate expression for  
determining the cr i t ical  load of an elliptic shell. This expression is 

The minimum cri t ical  load can be found by assuming some values fo r  "k", 
calculating the corresponding values of the cr i t ical  load, and selecting 
the smallest  one. 

If a more  r igorous determination of the cr i t ical  load is required,  the 
t e r m s  of index k +  1 and k - 1  are allowed for in the system of equations 
relative to T k ,  in addition to the t e r m  of index k .  Assuming that in this 
system of equations the frequency t e r m s  vanish, and equating the de- 
terminant of the system to zero,  we obtain a n  expression from which the 
cr i t ical  load is determined by assuming several  values for  "k". The 
e r r o r  of such a refined value does not exceed 2 t o  370 relative to  the 
higher approximations, obtained by retaining in the system several  more  
additional t e rms .  

( 8 )  to ( 1 0 )  reduce to 
In the case  of an isotropic shell, when El = ?,=E and p1 = pa = p, formulas 
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where 

In o r d e r  to t e s t  the reliabil i ty of the computing formulas obtained for 
determining the cr i t ical  p re s su re ,  we conducted several  experiments with 
celluloid models of elliptic shells, in which the rat ios  of the cross-sect ion 
semiexes were equal t o  1.2 and 1.7. 
semiaxesof  the c r o s s  section were the same  in all  the models tested, and 
only the magnitude of the small  semiaxis  was varied.  

table: 

The thickness, length, and l a r g e  

The calculated and experimental  data obtained a r e  given in the following 

TABLE _ _  ~- 

I c m  
- 

0.15 

0.15 

p t h a r m  k f h  exp  
CI 

___ 
0.62 3 0.62 

0.48 I 3 0.47 -1 3 
___ 

It is seen from the table that the experimental  and theoretical values 
for  both the number of waves into which the shell  buckles ( k )  and the 
cr i t ical  load coincide practically. 
computing formulas  obtained for  determining the cr i t ical  load of elliptical 
shells are sufficiently reliable.  

filler is treated in the s a m e  way a s  that of a simple anisotropic elliptical 
shell .  

The r e su l t s  obtained for a rigid f i l ler  can be t ransferred to the c a s e  of 
light filler by neglecting the tensile and flexural r igidit ies of the filler, 

Consider the case  of a rigid f i l ler  whose l a t e ra l  deformation can be 
neglected. 
theory of shallow shells.  

It can therefore be concluded that the 

2. The problem of a sandwich elliptical shell  with a rigid incompressible 

The problem will be solved in a l inear  formulation, using the 
We adopt the standard assumptions: 

a) the mater ia l  of the load-carrying l a y e r s  is homogeneous and isotropic; 
b) the load-carrying l aye r s  a r e  symmetr ic  relative to the middle surface 

c) the Poisson r a t io s  of the load-carrying l a y e r s  and the filler a r e  

d) the Kirchhoff-Love hypotheses are applicable to the load- carrying 

e) the straight-l ines hypothesis is used for the filler. 
Consider a sandwich cylindrical shell  of a rb i t r a ry  c r o s s  section with 

of the shell; 

equal; 

layers ;  

r igid incompressible fi l ler ,  subjected to the action of an all-round uniform 
p res su re .  
system of stability differential equations, keeping in mind that (unlike /3/ 
and 141) the radius  of curvature  of the shell  is an a rb i t r a ry  function of the 
coordinate s, and the initial membrane state of s t r e s s  i s  determined by 
the expressions already used in the treatment of a simple anisotropic shell .  

We take the system obtained in /3/ and / 4 /  as the initial 
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0211, 1 - pd2u, 1 + b d2v. p dw -+-- + ---+--=o, 
dx* 2 ds2 2 dxds R dx 

dw 

1 + p d2np + 1 - p d2vo 

dw 
d s  

- h, - -up =O, 
ax 

dw 
A -+---- [ "d? 2 dxds dS 

d w > l  + 

- h1 - - vg = 0, 

dW - Glh, - up + A1 - .t - vp + h, - 
[d"x( d x )  2 ( ds 

1 d2w dtw w d2w dR 
2 dt' [ ds2 R dxds ds  

2 dx2 dsa so dx' 

+ - - p c  - +- R - + - - ( 2 x - L ) - - -  

~ ( L - x x )  d'wd'R+ =o, d2w1 - _-  

where 

E, h' , D c = .  ti E&' h l = h + - *  D =  
2 12(1-p') 3 (1 - p2) 

Ech , E6 
B = - - .  1-pp' Bc=-' 1- P 

pc is the density of the material of the load-carrying layer per unit middle 
surface ( i t  is assumed that all the layers  a r e  made of the same material); 
t i s  time; 

u,, a,; ic2. v1 a r e  displacements of the points of the middle surfaces along 
the coordinates x. s of the upper and lower load-carrying layers, respective- 
ly; 8 is the thickness of the load-carrying layer; 2 h  is the thickness of 
the filler; R = R ( s )  is the radius of the middle surface of the filler; 
L is the shell length; E is the modulus of elasticity of the material  of the 
load-carrying layers; E,, G a r e  moduli of elasticity and shear of the filler; 
and p i s  the Poisson ratio. 
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The system of equations ( 1 4 )  (which can likewise be obtained directly 
by the variational method) will now be reduced to one differential equation 
relative to w ,  by eliminating al l  the unknown functions except w. 

Such a n  equation can be written in  the form 

where 

The problem has  thus been reduced to integrating equation (15 )  a t  the 

In the case of a shell  simply supported by the end sections we adopt 

Integrating ( 15 ) by the Bubnov-Galerkin method, we obtain 

corresponding boundary conditions. 

for w expression ( 3 ) .  

The following approximate expression is obtained f o r  the frequency by 

using expressions ( 7 )  f o r  2 and -and taking into account the considerations 

developed in Section 1 in the selection of the approximating function in the 
form ( 3 ) :  

1 
P 

where 
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In the casc of a c i rcular  shell  p o =  ($ )62 ;  p, = ( $ ) I  = 0 (i>l) and 

formula (18 ) ,  reducing to 

DCE D-- 
I 2 h 

R' 
- - p c  0 2 -  - R  - -- (n2 + A*)Z $. 

coincides with the formula obtained in 141. 
to thc formula obtained in / 5 /  a t  p = O .  

From (18 ) one passes  to the case  of a shel l  with light filler by writing 
/j, / I I  - ' 1. 

The following approximate formula can be written for the cr i t ical  load 
of a sandwich shell having the shape of an  elliptical cylinder, in the case  
of rigid incompressible filler: 

The latter formula reduces 

where 

These formulas yield a s  particular ca ses  the formulas for an elliptical 
shell  with light f i l ler ,  for a c i rcular  sandwich shel l  with rigid o r  light 
f i l ler ,  and for  a simple circular  shell  ( the Mises  formula). 

It follows that the approximate computing formulas obtained for de- 
termining the cr i t ical  p r e s s u r e  and frequency of f r ee  flexural vibrations 
of the shell  r ep resen t  a generalization of the s imi l a r  formulas for c i rcular  
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cylindrical shells,  reducing to the l a t t e r  by passing from the elliptical 
c r o s s  section to the particular ca se  of a ci rcular  c r o s s  section. 

The procedure used in the case  of an elliptical shell  can likewise be 
applied to the case  of a circular  shell  of a r b i t r a r y  c r o s s  section, provided 
the radius  of curvature  of the shell  section and i t s  derivatives a r c  
continuous. 
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COMPRESSION AND FLEXURE OF HYPERBOLIC 
SHELLS 

K .  V .  S o l y a n i k - K r a s s a  
(Leningrad) 

1 .  Shells having the shape of a hollow single-cavity hyperboloid of revolu- 
tion a r e  used in certain structures,  such a s  the ventilation pipes of 
thermoelectric power plants, whose height attains 100 m. 
designed and manufactured to have a variable wal l  thickness. 
external and internal surfaces ( see  figure) a r e  formed by rotating cofocal 
hyperbolas about an imaginary axis. It follows that the general equations 
of the three-dimensional theory of elasticity can be used in calculating 
their strength. 

The pipes a r e  
Their 

0 r 

If 
FIGURE 

The loads acting on a shell of the type considered a r e  mainly the wind 
forces and the dead weight of the structure.  
a l inear distribution of the wind forces along the shell height, with an 
intensity increasing vertically. 
cross-section circumference is piecewise continuous and can be represented 
by a Fourier  s e r i e s  by the meridional coordinate ‘p. 

In the present paper we res t r ic t  ourselves to two te rms  of the ser ies  - the 
f ree  term and the term containing cos ‘p. The load corresponding to the f i r s t  
term is axisymmetrical  and produces therefore an axisymmetrical de- 
formation of the shell. The load corresponding to the second term causes 
ageneral  bending of the shell. 
called bending in what follows. 

The design standards assume 

The law of variation of the load along the 

The shell deformation in this case wi l l  be 
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2. In the case of axisymmetrical deformation of bodies of revolution, 
the solution is represented by one biharmonic function (Michell 111, 
Love /2/),  or by two harmonic functions (Papkovich 131 ,  Naiber 141). 
We shall make use here  of the solution given in 151,  according to which 
the s t resses  and displacements can be expressed through two s t r e s s  
functions + and 'p, defined by the differential equations in partial derivatives 

d3 1 d d2 
dz2 

+ --, v2 = drz - -- r dr vz+ = 0. LZ'P = 0, 

where r and z a r e  cylindrical coordinates (the z -axis coincides with the 
shell axis). 
functions + and 9: 

Designating by @ and Q the following combinations of the 

and introducing the curvilinear orthogonal isothermal coordinate system E ,  
q in such a way a s  to make the contour in the axial section of the body of 
revolution coincide with the coordinate line -q= qo- const, we obtain 
the following relationships between the functions CP and Q ,  and the external 
axial loads p r  and radial loads p ,  

Here H is LamGIs differential operator of the curvilinear coordinates. 

on both the external (q = qo)  and internal (q = ql) surfaces. 

formula with the normal forces in the c ross  section of the body ofrevolution: 

In the case of a hollow body of revolution conditions ( 3 )  must be satisfied 

Note further that the function 4, is connected by the following simple 

The surfaces of the hyperbolic shell a r e  defined by constant values of 
q (q = qo and 7 = ql) of the elliptic coordinates 

(5  

( 6 )  

r = c ch 5 cos q, z = csh E sin 7, 

whose differential parameter is 

H = c2 (ch2 E - cos2 q). 

The solution of equations (1) in these coordinates in the form $ = f l ( E ) f , ( q )  
leads to the following values for the s t r e s s  functions Q and 'p: 

$0, yo= ( A ,  s h  E + Bo) (Co sin T + Do), 
$k,'pk = [Akpi ( x )  + BkQR (XI1 [ckp; (Y) + DkQL (Y)] (ch E COS ?)', (7  1 

R = 1 . 2 . 3 .  ... 
Here y = s i n q ;  x=ishE; f ; ( x ) ,  Q ; ( x ) ,  Pi(y],Q;(y) a r e  derivatives of the 

Legendre functions of the f i rs t  and second kind of order k by x and y, 
respectively. 
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By selecting in different manners the s t r e s s  functions from ( 7 )  and 
using an assumption (to be explained below) obvious in the case of thin 
shells, we obtain values of the s t resses  and displacements in hyperbolic 
shells of the form considered which correspond to their loading by axi- 
symmetrical forces of different types. We shall consider the case of 
radial compression of a hyperbolic shell by a load uniform along the 
height ( see  figure) and distributed along the external surface e r = p  a t  
q = qo and pr  = 0 a t  q = TI,). Writing in this case 

II, = Aosin q + [A,  + B,Q; (y ) l  (ch E ccs r1I2, 
' P = C , s i n ? + ~ , +  [ C , + D , Q ~ ( y ) l ( c h E c o s ~ l ) ~  

(8) 

and requiring that the function 0 on the contour be independent of H-' we 
obtain C, = - 2 0 ,  and 

@=(Ao - 20,)  sin q + S ( y )  chZ E, ( 9 )  

(10)  

where 

S ( Y )  = [A, + B,Q; ( y ) ]  COS'T + 2 0 ,  sin 7. 

Since in the loading case considered the normal force N = 0, the following 
equalities must be satisfied: 

A, = 20,. S (bo) = S (b,) = 0, (11 1 
where bo = sin qo and 6, =sin ql. 

following two equalities: 
The fulfillment of the second contour condition of ( 3 )  leads to the 

4 0  ba 
1-b:- 

S ' ( b 1 ) - 2 ( I  +v) [C,+D,Q; (b , ) ]b ,+  A I - 0  

and to the requirement 

Co sin q + Do = 0 ( 1 3 )  
a t  q = qoand q = ql. 

The values of the constants A,, B,, C,, and D, a r e  obtained by solving 
the system of four equations (11 ) and ( 1 2 ) .  Equality (13) cannot be ful- 
filled simultaneously on the two contours (the external and internal). In 
the case of thin shells we can replace it, with an accuracy depending on 
the shell thickness, by the condition 

Cob + Do = 0, ( 1 4 )  

where b i s  some average value of s in?  between bo and b,, for instance 

(the surface corresponding to b can be considered by convention a s  the 
middle surface of the shell). 

contour conditions a r e  satisfied ''on the average. " 
The use of this assumption leads to an approximate solution. The 

The s t resses  a6 and TE,, 
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a r e  not equal to zero on the contour 7 = q1 and a r e  not equal to the cor- 
responding projections of the external load on the contour 3 = 'lo. 
s t resses  aq have on the contour q =  

Thus, the 
the value 

2 (1 - v) Cob: 
. E ,  a -- - 

H (b,) 1-b? '1- 

where c=b, - b = b - 6,. The s t resses  ?E,, on the contour q = q1 and the 
complements of the exact values ;,, and on the contour 7 = y o  appear 
multiplied by the factor E .  

in the loading case considered) do not have such a factor, and therefore 

a r e  - t imes larger  than a,, and Y,, or their corrections. 

s t ressed that 2; is not the thickness of the shell, but the difference 6, -60 
of the sine defining the shell surface; this is a small magnitude even for 
shells of relatively thick walls. 

A similar solution can likewise be obtained for the case of loading of 
the shell by symmetrical surface forces varying along the height according 
to an arbi t rary polynomial law, and for the case of central compression. i: 

The solution of the problem of shell bending is obtained by simplify- 
ing one of the boundary conditions, a s  in the axisymmetrical problem 
given above. In this case, the s t resses  and displacements of deformation 
of the body of revolution can be represented through the derivatives of the 
three functions x ,  +, and f, each of which is defined by a differential 
equation in partial derivatives of the second order 

The s t resses  aE and aq (which a r e  fundamental 

1 
e 

It should be 

3. 

By introducing the symbols 

d'P df 
d2 dr 

d'P ar 
dE ds 

P = - - 29 - f + r -, 

TE=--+ [ 2 v q J + ( 1 - 2 v ) f ]  - 9  

we can write the contour conditions in a concise form. Next, introducing 
a curvilinear orthogonal isothermal system of coordinates E and q ,  whose 
coordinate l ines ( for  instance 7 = qo = const) define the surface of the body 
of revolution, one obtains easily the relationships 

* In addition to the solutions given here, the author has also obtained solutions for the cases of central 
compression of the shell, pure bending, bending by a lateral force, axisymmetrical loading of the external 
surface by radial forces varying linearly with height, and bending by radial linear forces. 
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a t  1 = qo where pr ,  p7, and p L  a r e  the radial, tangential, and axial com- 
ponents, respectively, of the forces distributed over the shell surface. 

connected with the shearing force and the bending moment in the c ross  
sections of the body of revolution by the equalities 

The differences of the contour values of the functions 9 and F a r e  

This fact facilitates establishing solutions of particular cases  of shell 
bending. 

In elliptical coordinates (5) the solution of equations ( 1 6 )  in the form 
of a product of a function of 5 by a function of q yields the following values 
of the s t r e s s  functions X, +, and f :  

XO, 90, fo = [Aosh E + Bo (1 - sh* E)] [Cosin q + Do (1 -I- sin'q)], 

Xi, "1, f i =  [A1 + B l ( 3  + sh2 E) Sh E ]  [C1+ 0, ( 3  - sin'q) sin 71, ( 1 9 )  

X b ,  +k.  fk=[A#i  ( x )  + Bd& ( A ) ]  [CkpL (Y) f DkQ; (Y)] (ch E COS T)'? 
k = 2 ,  3, 4 , .  . . 

Pi ( x )  and (7; ( x )  a r e  second derivatives by x = i s h  E,  and Pi (y)  and QL(y) a r e  
second derivatives by y = sin p of the Legendre functions of x or y, respectively 
of the f i rs t  kind and of order  k .  

q uniform along the height and distributed along the external surface, 
i. e . ,  the problem corresponding to the following external forces: 

p ,  = p  cosp, pV = p z  = 0 a t  q = q o  (on the external surface), 

We shall solve the problem of the loading of the shell by radial forces 

p r  = pp = p ;  = 0 a t  = q1 (on the internal surface), 

with p = -2, q = const ( see  figure). 
iv 

Taking a s  fundamental s t r e s s  functions the values 

x = c ; D 1 ( 1  + s i n a ~ , ) + [ A l + B l ( 3 - s i n 2 ' q ) s i n q ]  (3+sh2E))shE, 

f = C, + D, (3 - sin2?) sin p f [.4,sin q + B, (1 + sin'q)] ( 1  - sh' E), 
9 = C, + D, ( 3  - sin' q) sin q + [Az  sln q + B, (1 + sinzq)]  ( 1 - sh2 E), ( 20 ) 

and successively forming the expressions for the functions Y (not given 
here) and 9, we obtain 

3A, - A, sin'q + A,(1 + sin' q) 4-2 (3B1 - E,  + 2B,) sin q + 
$ 

4- - (3A1 - A, sin2 q - A,cos* 1 + D, - 30, sin2 q - 3 0 ,  cos2 7) cosz qlsh E. ( 2  1 ) 
H I 

Since the function 0 does not depend on H-' (the shearing force is a 
linear function of z ) ,  the constants must be linked by the equalities 

3 A 1 + D l = A ~ + 3 0 , = A , + 3 D , .  ( 2 2 )  

Using the f i r s t  relationship of (18), we obtain 

Q = - - - - - + ( A ,  - A,) (4 - sin q)] (sin q - bJ sh E ( 2 3 )  
c P bo qczbo - bl 
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and two relationships between the constants 

1 9c2b06, 3A1 - -A2bob, - A,(1 - bob1). 
?i bo-b, 

We write the functions F and TE in the form 

where 
S, ( y )  =- (C, 4- C,) - 3 A , s i n q +  D?sin3q + Da (3-2sin’q) s i n ?  + 

+ (3B,-BB,)(3-s in2q)  - B 2 ( l  + s i n 2 q ) ,  

S, ( y )  = 3A, sin q + A, (4 - 5 sin2 q) sin q + A, sin’q - 
-33B,( l -5ssin?p+2sin4q)  +(B,-B,)(1 -3s inzq) ,  

V, ( y )  = ( I  - 2v) (C, - C,) sin q - 3.4, sin2 q + ( A ,  + 30,) (1  + sin2?) - 
- (1 - 2 ~ )  (D,  - D,) sin4 q + 3B, (3 - sin2 q) sin q + 

+ (1 - 2. )  (B ,  - 8,) (1 + sin2 q) sin 7, 

L, ( y )  = 3 A, - (3 - 2 ~ )  A, sin2 q + (1 - 2v) A, sin2 q + 
-+ 3 4  (3 - sin2 9) sin q - [ (3 - 2 v )  B, - (1 - Z v )  B,] ( 1  + sina ?) sin 1. 

( 2 6 )  

The following equalities must be fulfilled on the strength of contour 
conditions (17):  

1 
2ri S, (bo) = 0, S, (bo)= - 9c2b;, 

SI (bi) = 0,  Sz (bi) = 0, (27) 

V, (bo) = V,  (b,) = 0, V, (6,) = V, (bJ = 0. 

We thus have twelve equalities ( 2 2 ) ,  (24) ,  and (27)  connecting eleven 
constants. This means that all  the boundary conditions cannot be exactly 
satisfied. Therefore, a s  in the axisymmetrical problem, we shall satisfy 
one of the conditions approximately - “on the average’’ - on some middle 
surface, defined by 

1 
2 

sin q = 6 = - (6, + 61), 
instead of on each of the surfaces q = po and 11 = 7,. 

Instead of V,(bo) = V, (6,) = 0 we write 

Vi (b) 0, 

then V, (bo) and Vi (b,) can be written in the form 
1 
b V,(bo) = - Vi(b1) = -(3.4,+6B,b*+D,(1--b2) - (I-ZV) [(A,-A,)b$ 

+ 2 (Bs - B,)] bJ) € 9  ( 2 9 )  

where E = b - bo = b, - b is a small magnitude in the case of thin shells. 

not vanish on the surface 1 = q, a s  expected from the statement of the 
A s  a resul t  of the assumption adopted, the s t resses  a,,, q,,, and rTlP do 
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problem, and differ f rom the corresponding projections of the load on the 
surface q = q,. On surface q = ql, for instance, the s t resses  a,, can be 
written in the form 

i. e . ,  have a s  a factor the magnitude 6 small  in the case of thin shells 
(cf. ( 2 9 ) ) .  A similar formula, and a small  factor I, a r e  a lso obtained 
in  the expressions for the s t r e s ses  qq and T.,? a t  ?= q1 and for the com- 
plements which distinguish the approximate values of the s t resses  a?, q,,. 
and T~~ from the exact ones at q = qa. 
s t r e s ses  q, a?, and qI do not contain the factor E ,  i. e . ,  these s t r e s ses  

are - t imes la rger  than aqr rEq, and zT? or their corrections. 

that the number represents the measure of the e r r o r  of the approxi- 
mate solution. 

The expressions for the fundamental 

1 .  It follows 
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EXPERIMENTAL INVESTIGATION OF CYLINDRICAL 
AND SPHERICAL REINFORCED-CONCRETE SHELLS 

S . I .  S t e l ' m a k h  and T . K .  A v d e e v  

(Moscow 1 

A .  EXPERIMENTAL INVESTIGATION OF A 
REINFOR CED-CONCRETE SHALLOW 
CYLINDRICAL PANEL-SHELL FOR ROOFS 
OF INDUSTRIAL BUILDINGS 

D e s c r i p t i o n  of t h e  d e s i g n  

The dimensions of the panel-shell a r e  6 X 6 meters  in plan, the camber 
The contour [highest point] is 0 . 3 2 m ( 1 / 2 0 ) ,  andthe slab thickness 0.04m. 

is reinforced by flanges along the generatrix and by variable-height 
diaphragms in the direction perpendicular to it. 
are: 
diaphragms a r e  suspended (Figure 1). 

The boundary conditions 
the flanges a r e  freely supported along their entire length and the 

Layer ofRuberoid ontwolayers 
ofpergamin placed on bi- 

tuminous cement 
2-cm cement filter 
18-cm insulating layer, specific 

4-cm reinforced- concrete slab 
weight = 500 k g / d  

FIGURE 1. 
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I 

A i m  of  i n v e s t i g a t i o n  

This investigation was intended to check experimentally the strength 
and rigidity of the design, to determine the effect of precompressing the 
outermost elements of the shell on the s t resses  and ultimate carrying 
capacity of the cylindrical slab, and to establish the zone in which the 
edge s t resses  act. 

It was planned to subject the shell to a uniformly distributed static 
load, gradually increasing until ultimate failure. 

E x p e r i m e n t a l  r e s u l t s  

The following experiments were performed: 
1. P r e c o m p r e s s i o n  of o u t e r m o s t  e l e m e n t s  ( e d g e  

b e a m s  a n d  d i a p h r a g m s )  i n  2 - t o n  i n t e r v a l s  f r o m  0 t o  
1 2  t o n s  b y  a h i g h - s t r e n g t h  w i r e .  Since the behavior of the 
diaphragms in compression was of primary interest here, these were 
equipped with strain gages, deflectometers, and sensors.  One quarter 
of the upper surface of the cylindrical slab was also equipped withsensors. 

During the three loading cycles the deflections of the diaphragms did 
not exceed 0.83" under a force of 1 2  tons. Up to 1 0  tons the load was 
applied eccentrically; however, the strain gages on the upper reinforce- 
ment rod showed that the edge elements were fully compressed. The 
torsional deflections of the diaphragms were measured by dial gages. 
The compression forced both diaphragms inward. 
placements of the lower flanges were between 2 and 4". 

The horizontal dis- 

Above or to the lcft of line - 

FIGURE 2. 

-compression 
tension 

Figure 2 shows the s t resses  and strains at  the upper surface of the slab 
during the compression of No. 1 diaphragm. The s t resses  in the slab 

843 



[a re  partially given in the table below]. 
diaphragm is under tensile s t resses .  
zone of tensile s t r e s ses  spreads into the interior of the slab. 
points of the slab the transverse s t r e s ses  do not endanger the shell, since 
they do not exceed 30 kg/cm 

The par t  of the slab adjoining the 
In the direction of the shell apex, the 

At most 

either in compression o r  in tension (see  table). 

Stresses, kg/cm2 

Longitudinal s t r e s ses  in the shell, due to the compression of the 
diaphragms, a r e  nonuniformly distributed and differ in sign. 
s t r e s ses  (23kg/cm2) a r e  not dangerous. 

appreciably affect the s t resses  in the slab. 
supported along their entire length, these forces were to a considerable 
degree counterbalanced by friction between the lower surface of the edge 
elements and the supporting beam. 

The t ransverse s t r e s ses  in the cylindrical par t  of the shell [due to 
precompression of the edges] 
shell due to i t s  own weight and to a uniformly distributed vertical load. 
Precompression of the diaphragms thus gives r i s e  to s t r e s ses  which affect 
favorably the subsequent behavior of the slab when an external load is applied. 

2 .  S h o r t - t i m e  u n i f o r m l y  d i s t r i b u t e d  l o a d  a p p l i e d  t o  
t h e  s h e  11. The loads in these experiments were 150, 330, 450, 330, 
and 150 kg/cm2. 
lasting a day. 

diaphragm did not exceed 700 kg/cm2; the additional tensile s t r e s ses  in 
the high-strength wire mesh, subjected to a pretension of 12,000 kg did 
not exceed 1750 kg/cm2. In the same experiment the s t r e s ses  in No. 2 .  
diaphragm were higher; the additional s t resses  in i ts  upper and lower 
reinforcement rods were 2000 and 2940 kg/cm2, respectively. The 
diaphragm thus behaved satisfactorily at  loads of up to 450 kg/cm2. 

The t ransverse s t r e s ses  in the edge elements were low. The s t r e s s  in 
the reinforcement rod of the slab near the edge did not exceed 170kg/cm2. 
The s t r e s ses  in the shell a t  points adjacent to the diaphragms could not 
be determined. Most strain gages placed on the reinforcement rods a t  
the bottom of the slab indicated tension, while most strain gages a t  the top 

These 

Precompression of the edge elements by forces of up to 1 0  tons did not 
Owing to the edges being 

a r e  opposite in sign to the s t r e s ses  in the 

Three such loading cycles were carr ied out, each cycle 

The compressive s t r e s ses  in the upper [reinforcement] rod of the 
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indicated compression. 
readings i t  could be concluded that a t  the points adjacent to  the diaphragms 
the slab was mainly in tension, in correspondence to the central  p a r t s  of 
the diaphragms a t  points adjacent to  the slab. 

not exceed 170 kg/cm2 but were extremely nonuniform. 
observed close to  the diaphragms; toward the center the s t r e s s e s  de- 
creased gradually, becoming z e r o  at  the quarter-  span. Compressive 
s t r e s s e s  appeared close to  the center.  The longitudinal s t r e s s e s  in the 
shell  were insignificant, since in the center of the s lab the compressive 
s t r e s s  in the concrete did not exceed 16kg/cm2. 

A s  already stated, in one quarter  of the slab the longitudinal and 
t r ansve r se  s t r e s s e s  were investigated by sensors .  
readings the following conclusions can be drawn: 

was in nonuniform tension, 
in the slab became compressive.  
exceed 60 kg/cm2. 

in all  three tes t  cycles.  P a r t s  of the slab adjoining the edge elements 
were insignificantly compressed during the first cycle and in tension 
during the second cycle, while both tensile and compressive s t r e s s e s  
appeared in them in the third cycle. 

In all three cycles the bottom surface of the slab, away f rom the edge, 
was mainly in tension in both longitudinal and t r ansve r se  directions.  

3 .  I n v e s t i g a t i o n  o f  t h e  s h e l l  r i g i d i t y .  Short-t ime loadings 
(test-cycle duration = 1 day) gave the following resul ts .  
deflections of N o s  1 and 2 diaphragms were 7.7 and 8.59mm, respectively,  
this being 1 /780 and 1 /700, respectively, of the total span. 
relative deflection of the slab, not counting the deflections of the dia- 
phragms, was 5.17mm, or 1 / 1 1 6 0  of the span. Together with the de- 
flection of diaphragms, the deflection of the slab was 12.82mm, or 11468 
of the span. 
satisfactory.  

On the bas i s  of the majority of the instrument 

The s t r e s s e s  in the reinforcement rods  in the center of the shell  did 
Tension was 

On the bas i s  of their  

The upper par t  of the slab near  the diaphragms and edge elements a .  
Toward the center of the shel l  the s t r e s s e s  

The highest compressive s t r e s s  did not 

b. The lower surface of the slab near  No. 1 diaphragm was in tension 

The maximum 

The l a rges t  

The overall  rigidity of the shell  was thus found to be 

At a load of 450 kg/m2 torsion in the diaphragms was negligible. 
In the long- time experiments the shell  was instantaneousiy subjected 

to a load of 450 kg /m2  and kept thus for 11 days. 
creased everywhere, though only by a few mil l imeters .  Fo r  example, 
the deflection in the center of the shell  was 12.65 m m  on the first day and 
14.05 m m  on thc- ninth day. 
1.4/600 = 1/430 of the span. 

d r i c a 1  s 1 a b  . 
with the edges undeformed in the vertical  direction. 
three supports were put under each diaphragm. 
three consecutive loading cycles,  the shell  being subjected to the highest 
load for 20 hours. 

In the f i r s t  and second cycles the loads were increased from 
630kg/m2 in s teps  of 100 kg/m2 with subsequent load removal.  
the f i r s t  and second cycles the load exceeded by 60 70 the designload; in the third 
cycle, by90%. Ata loadof 630 kg/m2 thelargestdef lect ionafter  20 hours was 

The deflections in- 

Consequently, the total deflection was 

4. D e t e r m i n a t i o n  o f  t h e  u l t i m a t e  l o a d  o f  t h e  c y l i n -  
Further  experiments on the slab were performed only 

F o r  this purpose 
The t e s t  consisted of 

In 
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33.2 mm or  1/180 of the span. The residual deflection after load removal 
was 5.8mm, o r  1 / 1 0 3 0  of the span. Thus, a 9070 overload did not surpass 
the load-carrying capacity of the shell. 
in the elastic-plastic range. 

failure of the slab. 
(120  7' overload). 
new equilibrium shape in the form of a hyperbolic paraboloid and acquired 
a double-negative curvature. 
of 450 kg/m2 during several  loading cycles; 
the curved surface rose  by about 1.5 to 2.Ocm. 

The deformations of the slab were 

A further aim of the experiments was to find the pattern of ultimate 

A s  a result  the cylindrical slab gradually assumed a 
For  this purpose the load was increased to 730 kg/m2 

In this new shape the shell withstood a load 
when the load was removed 

CONCLUSIONS 

1. The experimental investigation of a cylindrical shell showed a 
positive influence of the edge effect, which in this case consisted in 
precompressing the diaphragms and edge elements. 

system of moments, characterized by bending in two planes and the 
appearance of shearing forces  at  the edges of the shell. 

of a reinforced-concrete shallow cylindrical shell is characterized by the 
fact  that before ultimate failure the cylindrical surface of the shell becomes 
a surface with a double-negative curvature. When the load is further 
increased, this equilibrium shape becomes a suspended system having a 
considerable load-carrying capacity, whose deformations a r e  in the elastic- 
plastic range. 

2. The cylindrical slab of the shell behaved like a three-dimensional 

3. When the edges a r e  precompressed the ultimate equilibrium state 

B. EXPERIMENTAL INVESTIGATION OF A PRECAST 

FLOORS OF INDUSTRIAL BUILDINGS 
REINFORCED-CONCRETE SPHERICAL SHELL FOR 

D e s c r i p t i o n  of t h e  d e s i g n  

The shell is a floor element consisting of: a) a precast  spherical slab 
assembled from four 4-cm-thick square spherical elements measuring 
3 x 3  m, bordered by curved 10x10 cmribs;  b) four precast  6-m-long edge 
diaphragms with full c ross  sections and curved upper flanges, measuring 
15 X 30 cm a t  the supports and 15 X 60 cm in the center; and c) four precast  
reinforced-concrete columns 45 X 45 cm in c ross  section (Figure 3). 

A i m  of  i n v e s t i g a t i o n  

The main purpose of the investigation was to check experimentally the 
strength and rigidity of the design, intended for mass  production for floor 
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assembl i e s  of industrial buildings. 
in various ways. 
dimensions has  sufficient strength. However, in the assembled version 
i t  was of interest  to check the behavior, under load, of the central  joints 
and, in particular,  of the joints between the spherical  e lements  and the 
diaphragms where, a s  is known from theory, considerable shearing fo rces  
appear.  

These elements can be preassembled 
It was already known that a monolithic shell  of these 

FIGURE 3. 

Although the experiments were undertaken for this practical  purpose, 
they were also valuable f r o m  the scientific aspect,  s ince the edge effects 
of the shear ing forces  on the contour and their  influence on the behavior 
of the shell  flanges (diaphragms) could be investigated experimentally. 

The existence of shear  a t  the contour of shells,  although proved 
theoretically, has  not yet been verified experimentally. In our  experiments 
on a spherical  shell  whose surface is nondevelopable, the edge shear  effect 
should appear most clearly; i t  was a l so  of interest  to investigate experi-  
mentally other edge effects, namely, the flexural effect in the slab and the 
torsional effect in the diaphragms. 

E x p e r i m e n t a l  r e s u l t s  

The components of the experimental element were cas t  a t  the con- 
struction s i t e  and then brought to the s i t e  of the experiments.  
the s labs  developed c racks  during t r ans i t  and were assembled in this 
state.  

To investigate the effect of tangential shea r  and i t s  influence on the 
edge elements of the shel l  (diaphragms) the upper reinforcement rods  of 
the diaphragms were equipped with r e s i s t ance  gages which were inser ted 
together with the reinforcement rods  into the upper flanges of the 

Some of 

A l l  elements were made from grade-ZOO concrete.  

847 



diaphragms before the concrete was poured, and connected to measuring 
instruments .  

The experiments consisted of 0-750-0 kg/m2 long cycles in  s teps  of 
250 kg/m2. 
was c a r r i e d  out. 
those present  before the experiment were found in  the p recas t  elements 
of the slab.  
between the edges of the s lab and the diaphragms. 

s ame  s t eps  to 1000 kg/m2, subsequently reducing i t  to zero.  
this could not be done, since failure of the shell  commenced a t  a load of 
850 kg/m2. 

to 750 kg/m2. At this load the cracks in the edge joints became l a rge r .  
At the beginning of the following state, a t  a load slightly in excess  of 
800 kg/m2, the c racks  in the edge joints began to open out and to spread 
rapidly over  the ent i re  circumference of the shell .  
old c racks  in the s lab also became l a rge r ,  while new c racks  appeared 
a s  prolongations of the old ones. 
deformed and failed gradually. 

After two runs  for instrument adjustment, the f i r s t  t e s t  cycle 
The shell  was then carefully inspected: no c racks  except 

However, c r acks  of insignificant s i ze  were found in the joints 

In the second t e s t  cycle i t  was intended to increase the load by the 
However, 

This  took place as follows. 
After no-load readings had been taken the load was increased by s teps  

At the same  time the 

P a r t s  of the slab became considerably 

D- 1 

2 92 
i5.65 15.65 

3-2 

22. .92 

B- 

9- 4 

FIGURE 4. 

During the experiments we studied in detail the behavior of the center 
joints, of a quarter-slab,  and, in particular,  of the diaphragms. 
center joints functioned satisfactorily.  

The 
The center r i b s  of the spherical  
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elements were nonuniformly compressed. 
show cracks.  
r ibs.  The slab w a s  bent by compression. The edge joints between the slab and 
the diaphragms were most highly stressed. Considerable shearing forces 
causing shearing of edge joints, radial cracks in the spherical slab, and an ap- 
preciable elongation of the diaphragms, developed on the contours of the shell. 

The shell failed through shearing of the edge joints, after which cracks 
developed rapidly i n  all par ts  of the slab in the direction from the periphery 
toward the center of the shell. 

In the f i r s t  
test  cycle, the resul ts  of which a r e  given in Figure 4, the diaphragms 
functioned satisfactorily. They were mainly in tension and only slightly 
bent in the vertical plane. Theoretical and experimental values of the 
s t r e s ses  in the upper flanges of the diaphragm showed good agreement. 

In the second test  cycle one diaphragm was more highly s t ressed 
(Figure 5); 
theoretical values. 
phragms remained in a state of elastic strain; 
s t r e s s  values were in good agreement. Over their height the diaphragms 
were mostly in tension, showing moderate deflections. The edge flexure 
effect and the torsion in the diaphragms were negligible. 

Nowhere did joints between r ibs  
The spherical slab was more highly s t ressed than the framing 

Of greatest  interest  was the behavior of the diaphragms. 

the experimental s t r e s s  values were much higher than the 
This diaphragm failed but the three remaining dia- 

theoretical and experimental 

D- 1 

49Y- 
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C 
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25.1 
17.95 e 

't 1'L I, 
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I 
n.35 

a 
2 25.1 

18.1 18.1 

3- 4 

FIGURE 5. 

CONCLUSIONS 

1. 
edge effect of tangential shear between the spherical slab and the dia- 
phragms, causing shearing of joints a t  the edges and gradual separation 
of the spherical par t s  of the slab from the diaphragms. 

2.  
by insignificant deflections in the vertical plane. 

The main resul t  of these experiments is a c lear  verification of the 

The edge elements of the shell were mainly in tension accompanied 
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THE LIMITING STATE OF THIN- WALLED SHAPES 
IN BIAXIAL BENDING WITH TORSION 

A . I .  S t r e l  b i t s k a y a  

(Kiev)  

In conjunction with the extensive use of thin-walled beams and shells 
in various branches of technology, investigation of their behavior beyond 
the elastic limit, and establishment of their load-carrying capacity acquire 
great importance. 

vestigated, at  the Strength of Materials Division of the Institute of Mechanics 
of the Ukrainian Academy of Sciences, the combined s t resses  in thin- 
walled beams under plastic biaxial flexure with torsion. 
relationships between the forces giving r i s e  to normal s t resses ,  and 
known formulas for calculating the ultimate loads. 
assumptions made for channel beams subjected at  the flange to external 
loads applied a t  various angles to the vertical, were checked experimentally. 

A s  an extension and development of previous studies 14-51 we in- 

We established 

The theoretical 

a .  THEORETICAL DATA 

The following assumptions a r e  made: a) the simplified s t ress-s t ra in  
diagram corresponds to that of a makerial exhibiting a yield-point plateau; 
b) the limiting state is defined a s  that in which the entire c ross  section 
begins to yield; c) tangential s t resses  a r e  neglected. Assumptions usually 
made when analyzing thin-walled beams 121  a r e  retained. 

We consider the normal s t resses  in a channel beam at the limiting state 
(Figure 1). 
away from or toward the channel web. 

from the principal axes of the c ross  sections a r e  denoted by u. d ,  and v; 
x,  is the distance from the y-axis to the center line of the web; A, 6. 8,, 
and 6fl a r e  the channel dimensions. 

The coordinates of A ,  the pole of the sectorial a r eas  ar and ay, a r e  
assumed to be known. 
the radius vector is rotated counterclockwise (in the general case the zero 
points of w will not coincide with the points of zero s t ress .  
o ~ , ~  and ay,r of web and flanges, respectively, differ in rolled sections. 

moments M x  and My,  in the principal planes and for the bimoment B :  

A force P ,  inclined at  an angle a to the y-axis- acts  either 

The distances of the points of zero plastic s t r e s s  in the flanges and web 

The sectorial area ~ i s  regarded a s  positive when 

The yield points 

From Figure l a  we obtain the following expressions for the bending 
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The l a s t  equation defines the condition of equilibrium, i. e . ,  the resultant 
normal  force N acting on the c r o s s  section is zero.  

y A  
' Y.1 

FIGURE 1. 

Equations (1  ) through (4) contain four unknowns (the distances u, d ,  
and v ,  and the limiting load in t e r m s  of which we can expres s  M,, My, and 
B ) .  

From ( 2 ) ,  ( 3 ) ,  and (4) w e  find 

where 

Substitution of these values in (1 ) yields the following relationship 
between the th ree  moments in the limiting s ta te  of the channel: 

We now expres s  the moments in t e r m s  of M and the angle a between 
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the applied force and the y-axis  

M,=.M cosz; M y  = -Msinz;  B = Me?,  

where e is the eccentricity of the load with respect to A 

and 7 is a coefficient which depends on the kind of load, beam length, and 
support conditions a t  the ends 1 2  1 .  

Inserting ( 8  ) into ( 7  ), we obtain 

here 

After rationalization of the radicals we arr ive a t  a fourth-degree 
NI 

Gy.1 
equation for -, which contains the limiting load. 

solved easily in the form given above. 

signs of te rms  containing ,My and v must in (1  ) through ( 4 )  be changed, 
a s  must be certain signs in subsequent equations. 
valid, but the expressions for A,, C,, and D, become 

Equation ( 1 0 )  can be 

If the force P is directed toward the channel web (Figure lb) ,  the 

Equation (10) remains 

The eccentricity of the load is 

If in one flange the plastic s t ress  is nowhere zero (Figure 2),  i. e . ,  
i f  there a r e  only two parameters ( u and (u, or v and d ) ,  (1 ) through ( 4 )  
become simplified. 
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FIGURE 2 .  

For the s t r e s s  diagram in Figure 2a (d = b-xo) we obtain the following 
relationship between M,, My, and B :  

where 

F1=26 b i- % 6,h. 
QY.1 

In this case the limiting load is found from the quadratic equation. 
Using the above method, similar equations can be obtained for the 

limiting state of other sections subjected to biaxial flexure with torsion. 

b. EXPERIMENTAL DATA 

To check the theoretical assumptions we tested three cantilever beams 
( I  = 130 cm) consisting of No. 12 channel iron (OST” 10017-39). 
external force acted a t  angles a = 15, 30, and 90 degrees to the y-axis. 

The mechanical properties of the steel used a r e  given in Table 1, 
separately for flange and web, a s  the average of tensile tes ts  of eight flat 
specimens. 

a five-ton hydraulic action beam-bending testing machine made by the 
Detroit Testing Machine Co. (Figure 3). 
was secured a t  the specified angle in a 48-cm-long double support by 
inserts,  wedges, and screws. 
beam, a device was fastened to the crosshead of the machine; the load 
was vertically transmitted to the channel flange through a 14-mm-diameter 

The 

The tes ts  of channels in biaxial flexure with torsion were performed on 

The end of the beam being tested 

To transmit the load to the free  end of the 

[Obshchetoyuznyi Standart - All-Union Standard. 1 
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ball. To maintain the shape of the section, a plate was welded to i t s  inside 
a t  the point of load application (F igu re  3). 

cult. 
6 ,  70 +, % 

Flange 3660 22.2 52.1 

Web 3990 27.4 55.8 

Length of yield- E, 

kg/cm2 

2.13. l o 6  
o'80 0.70 1 2.07.106 

point plateau, 
% 

The channels were marked out and measured before the tests;  i t  was 
found that the c r o s s  sections of channels being tested were almost  identical 
with those specified by OST 10017-39. 

FIGURE 3. 

The s t r a ins  in the longitudinal f ibers  of the beams were measured by 
wire s t ra in  gages and tensometers;  the angles of twist and deflection were 
measured by dial gages.  

The gages measured the elongations in the c r o s s  section adjoining the 
point of embedment, where the s t r e s s e s  a r e  highest. Twenty resis tance 
gages were glued to the contour of the beam a t  a distance of 1.5 c m  from 
the support. 
they had s i x  coils and their  sensitivity was 2. 
recorded by two SD-I instruments.  

f ibers  of the flanges in several  c r o s s  sections of the beam to determine 
the length of the yield zone along the span. 
were fastened by single or paired sc rew clamps on a base of 10". 

A l l  the gages had a gage length of 10" and were 4 m m  wide; 
The s t r a ins  measured were 

The tensometers  were used to measu re  the s t r a ins  in the outermost 

Ten to twelve tensometers  

1524 854 

- -  ._.___-------.--.-...--..--....-_____...I -. _-. . . 1 1 . . 1  . 
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The dial gages measured the angles of twist and deflection near the 
f ree  end and in the center of the cantilever. 
a t  each c r o s s  section; 
placements of the webs to determine the angles cf twist; the third was 
used to measure the deflection parallel  to the web. Displacements normal 
to the plane of the web were measured by two additional dial gages which, 
due to lack of space, had to be placed 6 c m  away f rom the previously 
mentioned c r o s s  sections. The ninth, control, dial gage was placed 
behind the rigid support a t  the beam end. 

The load was increased by s teps  of 100 or 
50 kg in the elastic range, and of 50 or 25 kg in the elastic-plastic range. 
The load was indicated by the pressure  gage. Loading was carr ied out 
in 1 2  to 17  steps, unloading in 6 to 8 steps.  In a l l  t es t s  yielding occurred 
f i r s t  in the upper par t  of the section. 
characterized by a noticeable increase in  the deformation, extending over 
the ent i re  c r o s s  section a t  the point of fixation. 

experimental data we took into account the differences in the yield points 
of the flanges and the web. 

The s t ra ins  in channel sections in biaxial bending with torsion a r e  
not symmetrical;  the upper flange and the web of beams 2-3 ( K = 15") 
and 2-2 ( a  = 30") were both under tension and compression, whereas the 
lower flange was only under compression. The s t ra ins  in both flanges of 
beam 2 - 1  ( a =  90") were of different signs, while in the web they had the 
same sign. 

s t r e s s e s  in the section a t  the point of fixation and then a t  the flange edges 
in other c r o s s  sections. These data were obtained for individual f ibers  
in the form of a, P curves a t  all stages of loading and unloading, and also 
in  the form of stress-distribution curves for the entire c r o s s  section a t  
discrete  loading stages. 

With increasing angle between the y-axis and the line of action of the 
applied force,  the range of elastic s t ra ins  and the load-carrying capacity 
of the beams decrease.  

theoretical values were obtained f rom ( 1 0 )  on the assumption that the 
coordinates of the pole A,  from which the sectorial  a r e a s  a r e  measured, 
a r e  the same a s  in the elastic state.  
satisfactory agreement with the theoretical values. 

s t ressed  f ibers  ( in  channels 2-3 and 2-2  these a r e  located at  the junction 
between flange and web; 

on the angle a t  which the external force is applied. 
most  noticeable in beam 2-1 along the edges of both flanges. 

We obtained the angles of twist and deflection a s  functions of the force 
P for all loading and unloading stages from dial-gage readings. We a lso  
obtained the distriSution of deflections and angles of twist aloog the beam 
for  individual loading stages (not reproduced here  due to lack of space).  

The vertical  component of the deflection var ies  inversely with the 
angle a t  which the force acts,  while its horizontal component var ies  

Three  dial gages were placed 
two were used to measure the t ransverse dis- 

The initial load was 25 kg. 

The limiting s ta te  of the beam was 

The tes t  resul ts  a r e  given in tables and diagrams. In analyzing' the 

The strain diagrams a r e  not l inear .  
The relative elongations of the f ibers  were used to determine the normal 

Figure 4 shows the s t r e s s e s  a t  the point of fixation in the limiting state. 

Table 2 gives the theoretical and experimental limiting loads. The 

The experimental data a r e  in 

After unloading the residual s t r e s s e s  changed sign in the most highly 

in beam 2-1 they a r e  a t  the flange edges). 
The spreading of the yield zone over the flange a t  i t s  f ree  edge depends 

The yield zones a r e  
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directly. 
of the force plane relative to the pole A ,  and of the magnitude of the load. 
The maximum angle of twist, obtained for channel 2-3 ( a  = 15"), was 13'10'. 

The change in the angles of twist is a function of the eccentricity 

2-3 (65 1 5 " )  2-2 (d=3Q0)  

650 

C 

a 

FIGURE 4. 

After unloading residual s t resses  and twisting were observed. 

TABLE 2 

I I i i i i 
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NATURAL VIBRATIONS AND STABILITY OF 
RECTANGULAR PLATES OF VARIABLE 
THICKNESS 

V . G .  T r e t ' y a k  

(Khar ' k o v )  

This paper attempts to extend Prof. Kan's method of shell calculation / 2 /  
to the calculation of rectangular plates with thickness constant (6 = a,) or  
variable ( 8  = 8,.8(,)) in one direction, and various boundary conditions 
(Figure 1 ). 
plate material  is assumed to be ideally elastic and homogeneous. 
general hypotheses of the theory of thin shells a r e  used in the study. 
plate position in space is defined by means of the rectangular system of 
coordinates xyz. 
direction of the x-axis wi l l  be designated by w .  

and curves, which a r e  easy to use in actual designing. 

The problem is considered in a linear formulation. The 
The 

The 

The displacements of the middle-surface points in the 

The resul ts  of the studies a r e  reduced to simple computing formulas 

1. N A T U R A L  VIBRATIONS 

In the process  of natural vibrations the plate i s  loaded by inertia forces,  
The corresponding state of s t r e s s  and strain is determined by calculating 
the plate a s  a multiply statically indeterminate system. A s  fundamental 
statically possible system we take a structure having the s t ressed state 
obtained in an ordinary thin-walled beam of constant c ros s  section. 
this case al l  the beamlike s t r ips  separated by planes perpendicular to the 
x-axis a r e  equally deformed. 
is easily determined from the calculation of the fundamental system. 

the s t r ips  obtained thus will be differently deformed. The conditions of 
strain compatibility will be satisfied, i f  we allow for the additional dis- 
placements of the middle-surface points y a d .  

law of variation of the additional displacements is approximately the same 
as  the law of variation of the fundamental system, we can write 

In 

The mode of vibrations of the s t r ips  f (y)  

Due to  the existence of different boundary conditions a t  x=O, x = L ,  

If it is assumed that the 

= F'(X)ad * f ( ) ' ) ' S i n W f ,  

where 'If(%) ad i s  a statically indeterminate function; 
of natural vibrations; 

w is the frequency 
t is time. 
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Values of the coefficients 
Kcofor different ratios of the  

plate dimensions 

X 

Built-in edge 
-P- Simply supported edge 

Free edge 

FIGURE 1. 

.. 

- 

! 
I 
I 
I 
I 
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. I  

1 
- 1. 
- 1  

By summing the displacements of the fundamental and additional systems 
we obtain 

w = Y(x) .J(y) sin w t ,  (1 1 
where the statically indeterminate function Y ( x )  and the frequency w a r e  
unknown. 
potential energy of the system. 
inertia forces of the masses; 

We shall determine them from the minimum condition of the 
The external forces a r e  in our case the 

their value per unit plate length is 
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where 7 is the unit weight of the plate material; g is the gravity accelera- 
tion; 

On the strength of ( 2 )  and of d'Alembert's principle we can write the 
following expression for the potential energy of the system per unit length: 

6 is the plate thickness. 

h 

where m x ,  my, mry a r e  bending and torsional moments per unit length; 
x X .  xy,xxyaare curvatures and relative angle of twist (m, ,  and x n  a r e  determined 
by the known formulas of the theory of plates and expressed through x ) .  

Using Euler' s variational-problem equation 

we obtain the resolving differential equation 

where 

p is the Poisson ratio. 
To determine Y(x) ,  consider the characteristic equation 

1 4  - 2 . ~ 4  - x 4  =o. 
We obtain 

where 

( 9 )  

Since equation ( 9 )  has two rea l  and two imaginary roots, by placing the 
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coordinate origin a t  the plate edge we obtain the solution of ( 5 )  in the form 

\y ( x )  = C, ch;,x 4- C, cos ' izx -+ C, shy,x + C, sin x. ( 1 2 )  

The determination of the constants C,. C,. C,. C, from the boundary con- 
ditions x =0, x = L yields a system of algebraic linear homogeneous 
equations. The condition of existence of natural vibrations i s  satisfied 
a s  known only if the determinant of this system is equal to zero,  
equating the determinant of the system to zero and expanding i t  we obtain 
a transcendental equation which yields the relationship between ?,L and 7 , L .  

By 

From ( 1 0 )  and ( 1 1 )  we find 

(7J)Z - ( y z L ) 2  =2?L*; 

( 7 J .  T J ) 2  = X4L4. 

By multiplying and dividing the right-hand side of (1 3 )  by b2 we obtain 

By multiplying and dividing the right-hand side of (14) by b4 and sub- 

stituting the values of ~4 from ( 7 )  and ($y from (15 ) we obtain 

where 

To simplify the calculations during design, we have plotted the curves 

f L = f  - on the basis of ( 1 5 ) ,  (17), and the solutions of the transcen- 

dental equations ( see  Figures 1 and 2).  Figure 1 gives the relationships 

K, = f 

constant 6 =6, o r  variable in one direction 6 Y =8,b(y) with nonsym- 

metrical  boundary conditions. The analysis of the curves shows that the 

frequency of the fundamental tone IO of short plates <2.6 of uniform 

thickness is higher than the frequency w of plates of variable thickness. 
This is due to the fact that the rigidity of the longitudinal strips,  which is 
higher in plates of uniform thickness, has a stronger influence in the case 
of short  plates. 

( 2  
(3 - for the frequency of the fundamental tone of plates with thickness 

8, /; 
(f ) 
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Figure 2 gives the computing formula and the cu rves  K,=f (t) for  

the frequency of the fundamental tone of plates of uniform thickness. 
examples which the author did not find in the l i t e r a tu re  a r e  represented 
by rhombes.  
It is seen from the curve that the r e su l t s  of the proposed solution co- 

The 

Uarburton’s  r e su l t s  141 are represented by tiny circles. 

incide pr actically with the known ones. 

b 
FIGURE 2.  

The approach proposed for  determining w was a l s o  used in determining 
the frequencies of natural  vibrations of plates loaded in the middle plane, 
and of plates supported on elast ic  r ib s .  
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The problem solution i s  considerably simplified if the edges x = 0, 
x = L a r e  simply supported. 
dental equation 

We obtain in this case the simple transcen- 

(7: + -(~).shy,L.sin,L=O. (18) 

Since 7: +- 7; +O.  sl17~L+O, then sin r,L=O. This is possible a t  
where m =t ,  2, 3:-. is the number of half-waves along the plate. 
the aid of (1 1 ) w e  obtain 

= mr 
With 

whence 

By substituting X4 in (1 9 ) we find ( 1  6 ) ,  where 

Thus, for the plate represented in Figure 1 

supported by the edges x = 0, x = L ,  the frequency of the fundamental tone 

= E o  I/x), but simply 

is given by 

If E=;, and all  the edges of the plate a r e  simply supported, ( 2 0 )  yields 
easily the Timoshenko formula / 3 /  

K,, = (5)’ + nz, 

n=Y 
b 

by writing f ( y )  = sin -. Here n = 1,2, 3, . . . is the number of half-waves 

across  the plate (when comparing with the formula of / 3 /  it is necessary to 
take into account ( 1 6 )  and (22)) .  

2. STABILITY 

The method exposed is easily applied to the calculation of the stability 
of plates with different boundary conditions. Then 

zu = + (x1.f (Y)  
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and the potential of the external forces in ( 3 )  must be altered by: -5$c?r, i f  in the direction of the x-axis the plate is compressed in 

0 - 02w 2 -Giy(dj2) ,  if  in the direction of the y-axis the plate is compressed in 

~~~8 * . z, ifuniformly distributed shearingforces 'cCI .a  act along 

Formulas (5), ( 1 0 )  to (14) will then be written, respectively, a s  follows: 

the middle plane by a uniformly distributed load gcr5; 

the middle plane by a load of ocr . a ;  

dx dy 
the edges. 

V ( x )  =C,cos ~ , n + C , s i n  ~ ~ x + C , c o s ~ , x + C , s i n ~ , n ;  ( 2 6 )  

( ' I l L ) 2 +  (Y2L)*  =2v2./.2, ( 2 7 )  
(28 1 ( ylL . T 2 L ) 2  = x 4 .  L 4 .  

If the plate is compressed in the direction of the x-axis by a uniformly 
distributed load ocr  . B ,  then 

b 

3D(Y).f.(y)dY 

Using ( 2 7 ) ,  (28) ,  ( 2 9 ) ,  and ( 3 0 ) ,  we obtain 

--. --. x2 . E 
acI = 

12 (1- p) ($>' 

where K is the stability coefficient, determined from the expression 
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.- 

where 
h 

( 3 5 )  

sb(y; - f ' (yWy 

B=O 

/ S ( Y )  f (YWY 
0 

Using the solutions of the transcendental equations ( 3 2 )  and ( 3 3 ) ,  it is 

easy to plot the curves K = f . Such curves for plates of uniform 

thickness a r e  given in Figure 3. 
not been met by the author in the literature. 

in 111, was solved incorrectly there. 

= 0 . 4 2 6 .  pendent of the boundary conditions a t  x =0, x=L, then for "H" K. = ~ 

supported. 

The solutions represented by rhombes have 
The problem designated "H", 

L 
b 

Since a t  -4 00 the value of K isinde- 

0 

Formulas ( 3 2 )  and ( 3 3 )  simplify if the edges x = 0, x = L a r e  simply 
In this case the transcendental equation reduces to 

(T: - r:).sin y,L*sin -i2L =0, 

whence 7,L = mx. r2L = m, x, where m and m, a r e  positive integers. 
( 2 4 )  o r  (Z5), we find 

( 3 6 )  

Using 

(yy - 2.f 7)'. x 4  =o. 

From ( 3 7 )  we obtain ( 3 1 ) ,  where 

( 3 7  1 

In the case of a plate compressed in the direction of the x-axis, of thickness 

varying according to the law 6 = 6, 1/ $, and having the side y = 6 clamped, 

the side y = O,free, and the other sides simply supported, 

90.226 . ( 3 9  1 

At p =  0 . 3  Krnin= 0.764.  
The f i rs t  mode of vibration of beams of uniform thickness was taken 

a s  f (y) in plotting the curves of Figures 2 and 3. In the derivation of 
formulas ( 2 1 )  and ( 3 9 )  and the plotting of the curve of Figure 1, f ( y )  was 
determined in a first approximation from the calculation of a s t r ip  of 
variable thickness loaded by a uniformly distributed load. 
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T H E R M A L  STRESSES IN A N  ANISOTROPIC 
CIRCULAR CYLINDRICAL V A U L T  

A .  I .  U z d a l  ev 
(Sara tov ) 

The two-dimensional problem of thermoelasticity of an infinite cylin- 
dr ical  vault of orthotropic e las t ic  and thermal  propert ies  i s  considered. 
The s t r e s s e s  appearing in the vault under the influence of the temperature  
field a r e  determined. 
cylindrical anisotropy under the action of a load was solved in Lekhnitskii‘ s 

The problem of the bending of a curved bar  with 

paper 11 I .  

The vault r ep resen t s  a pa r t  of an infinite hollow circular  cylinder 
l imited by two axial  sections forming an angle of 2 a .  The vault ma te r i a l  
is subjected to the generalized Hooke law and posses ses  cylindrical ani-  
sotropy of a particular type, i. e., is orthotropic; 
coincides with the cylinder axis.  The elast ic  and thermal  character is t ics  
of the mater ia l  a r e  independent of the temperature  (the range of variation 
of the temperature  is narrow). The inertia forces  and the volume fo rces  
a r e  not taken into account. 

the anisotropy axis  

The deformations and rotations are assumed to be small .  
The temperature  function T ( r .  0, t )  and the s t r e s s  function F ( r ,  0, t )  satisfy,  

in a cylindrical system of coordinates, the following differential 
equations 1 3 1 :  

where 

d4F 1 d4F 1 d4F  1 d”F 
dr’ r2 d r d 6  r4 d6’ r d r  P?* - -I- (281, + P,,, - - 7. 1- PI, - - -t2822 - -3 - 

1 d 3 F  1 d2F 1 d2F 
r3 d r d V  de2 r2 drz  - ( 2 b  + PI,) - . -- +(2e,l-t2812+P 1 -. - - P - + 

1 dF 1 d T  1 d 2 T  d 2 T  
r d r  . de2 dr2 

+e,,, -$ = ( B , - - 2 P * ) . - - - - - - 1 1 2 . - - - - B 1 . - ,  
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xl, z2, z3 a r e  temperature  coefficients of l inear  expansion of the ma te r i a l  
in directions r,4, and z ;  k, , ,  k,, a r e  diffusivities in the r and 0 directions; 
t is time. 

by the well-known formulas:  

The remaining symbols a r e  generally accepted / l / .  
The s t r e s s  components a r e  expressed through the stress function F 

Let  the boundary surface of the vault be f r ee  of the action of a n  external 
load.: 

i, = K,B = 0 a t  r s u  andr  = b, (1.6) 

00 rdr =O. Z,O dr =O (1.7) .s" 
a t  O=zand a=2a. 

section. 
Here a and b a r e  the internal and external radi i  of the cylinder c r o s s  

The conditions on the vault ends (1 .7)  a r e  presented in integral  form.  

We shall  now determine the l a w  of distribution of the temperature  

I. 
s t r e s s e s  for  the following two cases  of boundary conditions. 

and a t  the ends, while the temperature  on the external surface va r i e s  in 
the tangential direction according to a law 'p (b): 

A constant temperature  7; exis ts  on the internal surface of the vault 

T=T, a t  r = a .  T = y ( O )  a t  r = b ,  T = T ,  a t  9=Oand$=2a. (2.1) 

11. The internal surface of the vault is thermally insulated, on the 
external surface the temperature  va r i e s  in the tangential direction 
according to the law p(O), and a constant temperature  Tl is maintained 
a t  the ends: 

dT 
dr  

-0 a t  r = a ,  T=:;(9) a t  r = b ,  T=T, a t  O=O and6=2a. (2.2) -- - 

In the given cases  the functions T and F areindependentofthe t ime t .  
The solution of the equation of heat conduction (1.1) a t  conditions (2.1) 
or ( 2 . 2 )  is 

where 
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In formula ( 2 . 3 )  and in what follows the upper sign corresponds to the 
case of boundary conditions (2.1), and the lower sign to the case of 
boundary conditions ( 2 . 2 ) .  

By integrating equation (1 .2)  a t  a f Z  we obtain 
2 

F(r,13)= 2: Nln . r l+L + N2, .rl-.Yn .+N3, . r l  + N4, + 
"-1 - I  

+ I ,  . r2+vn * S  T L,. r2-vn .S sin -,,,e. ( 2 . 5 )  1 
Here Ni, a r e  arbi t rary integration constants, 

The expression for the constant a,, differs from r,, only by the minus 

The s t r e s s  components are ,  on the strength of ( 1 . 4 )  and ( 2 . 5 ) :  
sign before the second root. 

- 
or = 2 [ N I n  . (1 t Y n - 2 ) .  rYn-I + N z n . ( l - ~ , - v ; ) .  r-1n-l + 

n - 1  

+ Nan . ( 1 +  a,, - v;) r a G n  + N4, . (1- a,- v t ) .  r--an-l+ 

+ l n . ( 2 + v , . s - - ~ ) . r V n s q  1-,.(2-v,,~s-v~). r-vns ] sin v,O, 
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A 3 n = l n [ ( a  w n + Y n  . 6 - ( 0 n + r n ) + a - 6 " + r n ) 6 " i l  + Y n ) . ( y n - n ) ( U l n -  T~)+ 

* ( T n + o n ) ( ~ ~ n + j n ) -  + ( a w n  - *in 61" - a n  + urn - a n  . ~ W I  - I n  

) . ( w n  + a n ) . ~ n ]  T l - n . [ * . . ] 3 n  - 2 ( a w n - ' J n + 6 " n - ' J n  

All,., = I , .  [(a"" + Tn -6"" - +ao" - 7" -6"" -k 7' )( J" - ~ , ) ( w ,  + T")- 

(2.8) -(aa, - ' I n  .bWn + 7, +awn + In .ban  - In ) . ( o n  + y,,)(~,, - yn)+  

+ ~ ( u ~ " + " " + ~ " " ~ " " ) ~ ( u I ~ - u ~ ) . ~ , ] ~  I - ,  [. . *]4,,, 

A , = 8 .  7, .  on+ ( y n -  on)2.  (&yn + on ) + 6 2 h n  + ~n )) . a - ( ~ n  + an ) . b-(yn f a n  )- 

- (T,, + 3, , )2 .  (a2(on - ' ~ n  ) + 62(0n - 7n ) . urn - a* .61n - an 

(cont'd) 

0, = 1 + v, 'S, Yk = 1 - Y, .s. 

In the formula for 42, the factor following Ln, designated by [...]2,,, di f fe rs  
from the factor following 1, only in that w, is replaced by Y,. The same is 
true relative to the formulas for A3, and A4".  It is easily proved that the 
conditions a t  the vault ends (1 .7)  a r e  identically satisfied. 

If the vault is defined by the angle a = z ,  then, a s  follows from formula 
2 

(2 .4) ,  v,=n ( n = 1 , 2 , . . . ) .  At n = 1 the constants y n  and a, a r e  equal to 

The f i rs t  term of sum (2.5) for F ( r ,  0) will then be equal to 

The following te rms  of sum (2.5) remain unaltered. The constant N4, 
has no influence on the s t ressed state; N,,, N,,, N,, a r e  determined from 
the boundary conditions (1.6) and (1.7).  

s 3. 

Consider the case when a constant temperature TI is maintained on the 
internal surface of the vault, and a constant temperature TI on the external 
surface, and the vault ends a r e  heat-insulated: 

T= TI a t  r = a ,  T =  T, a t  r=6. (3.1) 
The temperature distribution in the body is defined by the function 

where 

The formulas for the s t ress  function and the s t ress  components a r e  

(3.2) 

(3.3) 

(3.4) 
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where 

By using the conditions a t  the l a t e ra l  surfaces  of the vault ( 1 . 6 )  and a t  
the ends (1 .7 ) ,  we determine the a rb i t r a ry  integration constants 

E x a m p l e  
equal to / 4 /  

3 
- 1  

1 1 3 1 a,, = a,, = -- u33 = - a,, = a,, = - - 
-"E' 4 E '  10.E' 20E 

where E i s  Young's modulus in the radial  direction 111. 
The constant 066 i s  taken by u s  a s  equal to - 56 . a1 = a2 = a, = a, u = 240 cm, 

2 5 . E  ' 

100.cle 

The s t r e s s  component 

b = 300cm. 

The numerical  values of the dimensionless magnitude at 
(T2 - 

different points of the vault a r e  given in the table. 
c, is very small  compared with ae . 

r c m  1 240 1 250 1 0.30 1 0.05 
1OO,o, 

( TI - T, 1. E.a 

TABLE 

260 1 270 I 280 I 290 I 300 

-0.11 1 -0.12 1 -0.08 I 0.04 1 0.23 

s 4. 

Consider a vault in a nonstationary s t r e s sed  state.  This  s ta te  appears  
under the following conditions. At the initial moment the temperature  
field is defined by the function f ( r q O ) ,  and a t  the subsequent moments 
the specified constant temperature  is maintained at the vault boundary: 

T = f ( r r 8 )  a t  t = O .  (4.1 1 
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T =  TI a t  r = u. T =  7, a t  r =  11, T =  7', a t  8=0 and 0 =2a. (4 .2 )  

We shall  look for  a temperature  function in the form 

T =  r; (Tr e) f 7; ( r ,  9, t) .  (4 .3)  

where T ,  is the stationary temperature  and TI is the deviation f rom the 
stationary temperature .  The function T, sat isf ies  the homogeneous 
equation corresponding to (1.1 ) a t  boundary conditions 

T, = TI a t  r = a ,  T s =  T2 a t  r = b ,  Ts = T, at 0 -=0 and 0 = 2a. (4 .4 )  

This  function is determined in the same way a s  in the f i r s t  considered 
case of Section 2. 

The function Tf  sat isf ies  equation ( l . l ) ,  the initial condition 

T, = f ( r ,  8)- T, ( r ,  0 )  a t  t = O  (4 .5)  

TI = O a t r - a a n d r = 6 ,  Tt=O a t  O=OandO=2a. (4.6) 

and the homogeneous boundary conditions 

The integration of the heat conduction equation (1.1) a t  conditions (4.5) 
and (4.6) yields 

- -  
TI ( r ,  fJ,f)=x .Z, (An i  . r ) . s i n  ~ , , O . e - ' ~ i ~ ~ ~ ~ ~  . (4.7) 

" = I  !=I  

The function Z, (knI r )  here is determined by the formula 

Z m  ( L i r )  = J m  (Li . r ) .  L'm ( h a )  - L" ( b i r ) . J m ( L t u ) ;  

J,,, (knir) is a cylindrical function of the f i r s t  kind of order  m; 
V ,  (knlr)is a cylindrical functio; of the second kind of o rde r  in; 

(4.8) 

(4 .9 )  

At fixed n the magnitudes A,,, A n 2 ,  An3 ,. . a r e  positive roots  of the equation 

Z m  ( L i b )  =Os (4 .10)  

The constants Ani a r e  the Four i e r  coefficients of the expansion of the 
function f (r, 0) - T, ( r ,  9) in a double series by the eigenfunctions Z ,  (kni r). 
sin v,8, and are determined by the formulas 

v (r.  8) - r, ( r ,  e)] .Z, ( ~ " ( r )  . s in  V, 8.r.dr.de 

.- - .. (4.11)  
a 6'. [Zk (Lib)] '  - a*. [Z, ( L [ a ) ] *  
2 fr 

A "I  - - . "  - 

It will be assumed that this expansion is possible. 

F, which is equal to 
The nonstationary s t r e s sed  s ta te  a t  a =+= is determined by the function 

(4 .12)  

2 

F= F, ( r ,  0 )  + Ft ( r ,  8, t).  
The function F, is found by formula (2 .5) .  The function Ft has  the 
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following form (cf. / 2 / ,  pp. 135-136): 

"-1 / - I  J 

where 

(4.14) 

The a r b i t r a r y  integration constants M.! , N.', ti,,, , L,, can be determined 
from conditions ( 1 . 6 )  with the aid of formulas (1 .4)  and (4.13). 
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SOME PROBLEMS OF THE EQUILIBRIUM OF 
ORTHOTROPIC CYLINDRICAL SHELLS AT 
LARGE DEFORMATIONS 

I . I .  F e d i k  

(Moscow)  

Similar problems for an isotropic material  a t  nonlinear s t ress-s t ra in  
relationship were solved in 11, 2 / .  
to the study of the membrane state of s t ress  of orthotropic shells with 
rigid bottoms a t  a l inear s t ress- t rue strain relationship. 

The standard assumptions of the membrane theory of shells a r e  used. 

This paper, just a s  /8 / ,  is devoted 

It is assumed that the shell material allows very large deformations. 

1. INITIAL RELATIONSHIPS AND EQUATIONS 

Consider a cylindrical (before the deformation) shell subjected to the 
action of an internal pressure q and of forces F applied to the centers of 
the rigid bottoms (figure). 
of coordinates r6 Y fixed to one of the bottoms. 

We shall represent i t  in the cylindrical f rame 
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LCt R,,L,, and H, be the initial radius, length, and thickness of the shell, 
L and Hits length and thickness after the deformation, 
the normal to the shell axis and the tangent to the meridian, C the value 
of Y for the undeformed shell, el. E*, ea the true principal elongations, and 
e,, e,, e, the usual principal elongations. 

the angle between 

Introduce the following dimensionless magnitudes: 

l = - ,  L I-- Ll 
R1 '- R, 

As seen from the figure 

1, e, = X-I. e, = B - - 1 .  dx 1 
dq cosy 

e,=--- 

But since E = In ( e + l )  we have 

The equilibrium equations in the given case a r e  11, 3 /  

F + xqr2 , 

2nrH sinrp 
d 

H o ,  = - ( rHo, ) ,  ol = 
dr 

(1.4) 

Here z1 is the meridional s t ress  and a2 i s  the circumferential s t ress .  

strains in a form similar to Hooke' s law: 
We shall write the relationships between the s t resses  and the true 

1 
3, 

e - - a - v ? !  02- V k o  1- 1 
E1 Ea E3 

- - k G - k o J  - 0  1 
a- 11- 9' 

E1 = E1 E3 
Here E,, E.. E3 a r e  the moduli of elasticity in the meridional and cir-  

cumferential directions, and the direction perpendicular to them; 
Y ~ J  a r e  the Poisson ratios /4/ representing the ratio of the strain in the 
j direction to the strain in the i direction when the force acts in the j 
direction. 
since it is small  compared with u1 and a2.  

Introducing the dimensionless s t resses  

In formulas (1.5) we shall neglect in what follows the s t r e s s  sa 

and using the relationship for the constants of an orthotropic material  / 4 /  
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we obtain in dimensionless coordinates the following system of equations 
from (1.3) to (1.7): 

d 
fix VI2 
- (xhp,)= !E hpa, 

d Y  - = tgcp. 
dx 

It follows from the fourth and fifth equations of (1.8) that 

Pi = - 

The substitution of (1.9 ) in the f i rs t  equation of (1.8) yields 

( 1 . 8 )  

(1.9) 

(1.10) 

where 

vza, h == 1 - v n .  c = ~ 2 2  (1.11) YaL, 
YlZ 

Introduce the designations a = In x ,  fi = In h ;  ( 1.1 0 ) wil l  then be written in 
the following form: 

* = _ a a + b P + c  
da ca+B+1 

We shall write the solution of this equation 
cl - hc#O. Introduce the designation 

A =4a - (b  + c)*. 

(1 .12)  

under the assumption that 

(1.13) 

If we use the condition 
written in the following form. 

At A>O we have 

= 8, = In h, a t  u =0, the solution of ( 1 . 1 2 )  can be 

(1.14) 
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If A=O,  then 

Here 

( 1 . 1 5 )  

- .. ~~~~ =O. (1.16) (p - k ) $  + (b  + c ) ( a  - ti)(? - It) + a (a - n)l  
(8, - k ) 2 -  ( b  + c) (Po - k )  n + an' 

6 - c  c2 - a 
a - be a - b c  

n.= - , k=- (1 .17)  

In the particular case when b -c=O, but A f . 0 ,  we obtain from (1.17)  that 
i z  = 0, k = -1, and equation (1.14) or (1 .16)  yields 

(2 + 2b (p + 1) a + u aa =(p0+1V (1.18) 

(1.19) 

or  i n x ,  IL variables 

(lnh +1)2 +26 (Inh + 1) lnx + nlrtz.x = ( h h 0  

Expression (1.18) coincides with the formula obtained in / 1 /  if we substitute 
there p = 1, i. e. ,  i f  we replace the exponential s t ress-s t ra in  relationship 
by a linear one and assume that all Poisson ratios a r e  equal to 0.5. 

p o = l n  ho.and center ( 0 ,  - 1 ) .  

terminant of equation (1 .12 )  vanishes. Note that if 6 = c  and A = 0, this 
is equivalent to saying that a - -  bc=O. 
to the expression 

Equation (1.18) represents a family of ellipses with parameter 

We have not considered so far  the case a - bc =U, i. e . ,  when the de- 

The condition u - br = 0 corresponds 

(1 .20)  

which is possible a t  either v21 = 0 or  v , ~  =vrJ=O. 

Equation ( 1 . 1 2 )  becomes meaningless in this case. 
means that either El = 00 or El = 00. 
equations (1.8 ) the coefficients vll and vI1 .  
these two cases is illustrated below by means of practical examples. 

The latter condition corresponds to Ea= 00, and therefore h = 1. 
Condition vtl = 0 

It is then possible to eliminate from 
The procedure to be used in 

2. PROBLEMS 

In the general case, when not all the Young moduli tend to infinity, 
we determine 4 by formula ( 1 . 1 3 )  and select the corresponding relationship 
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for x and h. 
ordinates. 
strength of (1.9): 

Specifying the parameter h,, we plot the curves in x ,  h co- 
We next use the second formula of ( 1 . 8 ) ,  which gives on the 

where 

From the symmetry, the extreme values for x and h will be a t  the middle 
of the shell height /1/, a t  -q =0.5 1 ,  sin cp = 1. 

The extreme values xm and h,  a r e  determined from the system 

xh (dnx + In h) = - ( Q1 -+ Q$), 
f(x, h. n o )  =o. (2.3) 

where the las t  equation is understood to mean one of the equations (1.14) 
to (1.16) or (1.18). namely the equation corresponding to the specific 
value of A. 

The following integrals a r e  obtained for -q and y a s  a function of x :  

I 

q =  Jc dx. y= 
coscp 

1 

where 

(2.4) 

and h and 'p a r e  understood to be functions of x .  
The dimensionless shell length before and after the deformation I ,  and 

1 a t  given h, is found by taking in (2.4) and (2.5) Xm a s  upper l imit  of 
integration and multiplying the right-hand par ts  by two. 

the value of h,. 111. Bysubstitutingin(2.1) sin? = I .  x = l ,  h = h 0  weobtainthe 
following condition for determining the upper boundary h, : 

At given Q, and Q2 it is, however, impossible to specify arbitrari ly 

holnh, = - (Q, + QJ. ( 2 . 6 )  

As easily seen, the upper boundary h, corresponds to a shell of zero length. 
The lower boundary wi l l  be determined a s  in 111: a t  given Q, and Qz we 

substitute in the right-hand part  of (2.1 ) the values of x and h a t  which this 
expression has the largest  value, and then require that this value be 
smaller  than or equal to unity. 

easy to solve the direct problem, i. e . ,  to calculate a shell of given initial 
length. 

Consider the particular cases which follow from the condition u-bs -0. 
Let El be infinite or very large as  compared with E, and E , .  

Having sdlutions for a number of values of h, a t  given Q, and Q,, it is 

In this 
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case E ~ = O .  System (1.8) yields 

d F + rqR, x2 - (xhp; )= hpy, 
d x  2rH,R, E x  ' 

sin 'p = 

dx -cos Lp. gx = tg '9. 
1 p , = I n x =  -- Inh,  -- 

V2J d l  d x  

d F + rqR, x2 - (xhp; )= hpy, 
d x  2rH,R, E x  ' 

sin 'p = 

(2.7 1 
dx -cos Lp. gx = tg '9. 

1 p , = I n x =  -- Inh,  -- 
V2J d l  d x  

(2.7 1 

Here p;=o,/E,. 
Eliminating it from the first two equations, using the third and fourth 
ones, we obtain 

This magnitude enters  in the equilibrium equations only, 

where 

and 'po is the value of 'p a t  x = 1. 

under the assumption that a -6c -0. We obtain: 
Formula (2.8) can be obtained from (2 .1 )  also, by integrating (1.12) 

x h-"'= ( 2 . 9 )  

i. e . ,  the same relationship a s  was obtained in ( 2 . 7 ) .  
for the particular cases E, = 03 and E, = 00 cannot be obtained directly from 
(1.12), since then either x = const or h = const, and (1.12) becomes 
meaningless . 
T and y leads a s  above to integrals. 
parameter 'po. 

only increases i ts  length. 
lengths of the deformed and undeformed shells: 

Note that solutions 

A s  seen from formulas ( 2 . 7 )  and (2.8),  the determination of the functions 
It is necessary to specify here  the 

In the case E2 = 00 (?2 =0) the shell preserves  the cylindrical shape and 
The following relationship exists between the 

1 = [ l h - l h  (2.10) 

h 1 n h = - v v , ,  ( Q ; + Q ~ ,  (2.11) 

where h = const and is determined from the condition 

where 

If E3 = m then h E 1. The f i rs t  and second equations of (1.8) yield 

Here 

(Q;'+Q; x z )  sin 'po 

x (Q;"+Ql + +xb (6 In x - I )  
sinLp= I--D (2.12) 

879 



The functions 7, and y a r e  once more given by integrals similar to (2.4): 

where 

and cosy is determined from (2.12) .  

3. LARGEST POSSIBLE LOADS 

We define the largest  possible load a s  the limiting load under which the 
shell shape obtained remains stable. 
a r e  imposed on the magnitude of the deformations (cf. 111, 1 2 1 ,  / 6 / ) .  

Taking into account that the dangerous section will be a t  'p = x/2,  we 
find the largest  load by writing sin 'p = 1. 
ing to ~ = x / 2  will be designated by x k  and h k .  

largest  value Q,= QlmnX. 
obtain from (2.1) and (1.10) 

It is assumed that no restrictions 

The values of x and h correspond- 

Consider the case when Q, = 0 and a -- bc +O. We shall determine the 
Equating the derivative of dQ, by d x  zero, we 

(3.1 1 h ~ & * I d W  

By substituting (3.1) into the equation connecting x and h which is correct 
for the given case, we obtain the values of x k  and hr for the given h, .  
for instance E 2 = o o .  we have for the values x k  and h k  

If 

(3.2 1 

(3.3) 

1 
e 

x&=l, h x =  -. 
and the largest  load will be 

(Q;+ Qi) man = e-.'* . 
Similar analyses a r e  possible in all  the particular cases mentioned above. 
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USE OF ELECTRONIC DIGITAL COMPUTERS IN 

AIRCRAFT STRUCTURES 
STRENGTH CALCULATION OF THIN- WALLED 

N .  V .  K h l e b u t i n  
(Moscow) 

Structurally, an aircraf t  usually represents a reinforced shell. Its 
surface has a complex shape, and the thickness of the she11 and the 
dimensions of i t s  supporting r ibs  a r e  variable. 
volved in the strength calculation of aircraft  structures is due to these 
peculiar features, and also to the great variety of types of loading to which 
they a r e  subjected. 
computing operations does not always lead to a substantial saving in time, 
due to the large amount of work necessary for preparing the input data 
and for analyzing the intermediate results of the calculation. That i s  the 
reason why the programing of the entire process of structure calculation 
for computer solution i s  of great importance. 

procedure in calculating complex structures was to split the calculation 
into separate parts, and to calculate each of these par ts  with the aid of 
narrowly specialized means (calculating methods). 
necessary to reassemble in a unique process these different operations 
of design and calculation of structures, and to create a system for the 
automatization of the calculations. 

solution of several  interconnected problems of the design of the force - 
transmitting members of structures and of the strength calculation. 
method must be further refined and developed. 
case of strength calculation of the aircraf t  structure a t  static loading. The 
automatization of the following calculations is envisaged: 
the coordinates of the surface points of the aircraf t  structure; 2) de- 
termining the dimensions of the force-transmitting members of the struc- 
ture in such a way a s  to ensure i ts  minimum relative weight; 3) con- 
ducting a check calculation of the structure strength on the basis of the 
applied theory of thin-walled bars  (by the beam theory); 4) refining the 
calculation of s t resses  and s t ra ins  of the structure by means of a method 
of calculation in which the equilibrium equations of a reinforced shell a r e  
written in finite differences relative to the displacements. 

Universal computer programs were established for conducting certain 
calculations relative to the strength of aircraft  structures. 
envisage the possibility of automatic fulfillment of the calculations of 
certain types of structures.  

The great difficulty in- 

The use of computers in conducting the separate 

Pr ior  to the appearance of electronic digital computers, the usual 

It now becomes 

This paper attempts to outline a f i rs t  approximation for the complex 

This 
We treat  here  the particular 

1) calculating 

These programs 
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Consider a shell  reinforced by stiffening r ibs .  The shell  is represented 
in  the rectangular system of coordinates xyz and in a Gaussian system of 
coordinates a ,  p. 
surface of the shell  in the direction of i ts  l ines  of connection with the 
stiffening r ibs  (with the s t r ingers  or wing ribs).  The coordinate l ines  a r e  
designated by the indices kj (.ai, t i k j ) .  The f i r s t  index designates the number 
of the coordinate l ine (the number of the stringer,  stiffener, o r  wing rib), 
and the second index the number of the point on this line. The shell region 
l imited by two adjacent coordinate l ines uk, a b - 1  or  t i ,  p j - 1  is called the span 
( k  or j ) ,  and the skin region enclosed between these two couples of l ines  is 
called the panel kj. 
by the vector a k j  = i M k j ( ( z k i p j k )  = d t 4 k j ( & j y k i Z b j )  , and i t s  coordinates in the 
rectangular system of coordinates a r e  

The coordinate l ines a and B a r e  taken on the middle 

The position of a point on the middle surface is defined 

x k j =  x ( a l / P l k ) ,  yC/ = y p i k ) .  z k j  = (a!,! p l k )  

The coordinate l ines a and p a r e  replaced by broken l ines  with corners  
at their  intersection points, and instead of the surface we consider a thin- 
walled system having the shape of a polyhedron. 
point M k j i s  characterized by the coefficients of the f i r s t  quadratic form of 
the surface, which is expressed in finite differences a s  follows: 

Each side (panel)  a t  

The expression with the parentheses is the sca la r  product of vectors,  - 
which in the given cases  represent  the finite differences of the vector M 
corresponding to unit finite differences of the coordinates a and 8. The 
symbols hj and designate the f i r s t  differences by the corresponding 
parameter ,  for instance A p k j = z r i - a h .  / - I .  

The components of the displacements of the middle-surface points in 
the direction of the r , y .  z axes a r e  designated by uT, riu. uz,  respectively, 
and the displacement vector by u = rc (u,u,ri,).  The unit elongations of the 
shell  elements in the directions of the coordinate l ines a and p a r e  de- 
signated by E. and E;, and the variation of the angle between the tangents 
to these l ines by 7 .  

A wide c lass  of problems relative to the strength of thin-walled a i rc raf t  
s t ructures  a r e  solved on the basis  of the theory of calculation of thin-walled 
bars ,  which makes u s e  of the hypothesis of invariability of the shell section 
contour 111. 
thin-walled bar  of variable c r o s s  section were established. The x axis  
is directed along the bar  length. 
we consider the l ines  of intersection of the shell  surface with the planes 
x k  = Const. 

The fundamental equations of such a theory for  the case of a 

Instead of ths coordinate l ines  $ = const 

The coordinates of point Mk/ a r e  written as  follows: 

Xkr yk ,=y  ( w k a k i ) ,  z k j  = ( & a k / ) .  (3) 

883 



Each stringer in span k i  can be adjoined by an arbi t rary number of 
panels of the shell, designated by the indices o x ( x = 1 ,  2, 3;s.). It is assumed 
that the shell thickness remains invariable within the l imits of one panel. 
It is also assumed that on the line connecting the shell and the stringer 
there act  only shearing forces 8 z T .  The tangential s t resses  do not vary 
through the shell thickness and along the span length. 
the shell temperature remains constant within the l imits of one panel. 
The stringer temperature can differ from the temperature of the skin, 
but i t  is assumed to be constant along the length of one span. 

It is assumed that 

Relationships ( 2 )  for a thin-walled bar with undeformable contour a r e  
c z i j  = a:; Tl;, 

were z1 is the coefficient of linear expansion and 7’the temperature of the 
structure element; +/k = v ( q 2 k q 3 ! + 7 4 h )  is the disphcement vector of the point 
of intersection of section XI.  = const with the x axis; 7 2 k ,  7p jk  a r e  the y and 
2,components of the displacements of this - point; 94e is the angle of rota- 
tion of the section about the .r axis; ab/ = ‘ w k j ( y , j z . k / ( o k  ) is the vector of the 
point in the y z ~  coordinate axes, where (U is the sectorial coordinate of 
the point lying on the contour of the bar c ross  section. In writing equations 
(4) i t  was assumed that the contour of the bar c ross  section is inextensible, 
but that it expands freely when heating the skin. 

xaxis  is 

- 

The projection of all  the forces acting on the stringer in one span on the 

q:; - P h i  = 0. 
( 5 )  

where Phi= P& +z Pi; is the axial force acting in the stringer section ( P i j )  

and in the shell panels adjoining i t  (Pi;); p is the external load per unit 
length acting along the stringer axis; m is the number of calculated c ross  
sections of the thin-walledbar, and n the number of stringers in the c ross  
section. 

The equilibrium equations of the external and internal forces acting on 
the thin-walled bar  on one side of the section k are  
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where or, Qr, Qz a r e  the components of the axial and l a t e ra l  forces  along 
the coordinate axes  and M,, M,, M, a r e  the torsional and bending moments 
in the c r o s s  section of the thin-walled bar .  

The Hooke' s law relationships for the skin of a thin-walled bar  with 
rigid cross-sectional contour a r e  written a s  follows in a n  oblique system 
of coordinates: 

The corresponding relationship for the s t r inger  is 

Here f i s  the a r e a  of the s t r inger  section. 
that the parameter  corresponds to the s t r inger .  

of algebraic equations which i s  written a s  follows in a matr ix  form: 

The superscr ipt  ' lc"  designates 

Introducing (4) in ( 8 )  and the resul t  in ( 5 )  and ( 6 ) ,  we obtain a system 

ziixi-B;= K ( 9  1 
The solution of this system of equations, using the boundary conditions, 

makes i t  possible to determine the s ta te  of s t r e s s  and s t ra in  of the thin- 
walled ba r .  

The curved l ines  on the middle surface of the shell  can be described 
by means of polynomials, curves of second order ,  or by means of the 
radius-graphic method. 
faces of a i rcraf t .  
points was worked out on the basis  of the radius-graphic method. 

The design calculation on the determination of the dimensions of the 
force s e t  in span " 4 "  for given external loads is conducted on the basis  of 
the beam theory. In accordance with the plane-sections hypothesis we 
have 

All these methods are used in designing the sur- 
A program for computerized calculation of the surface 

uxkj = 91k + %nyk/ f %!$k/, ( 1 0 )  

where -qIk, 7 s k ,  qeh a r e  components of the displacement of the section a s  a r i g i d  
body. 
by the formula 

The axial force per  unit length in the longitudinal s e t  is determined 

where 
transmitt ing members .  
minimum weight of the force- transmitt ing members  of the given span for  
given sys t ems  of external loads. 

a r e  coefficients allowing for  the nonhomogeneity of the force- 
Their  value is selected from the condition of 
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The internal forces per unit length Tij and qaj for each system of 
external lbads and combination of coefficients a r e  determined from equa- 
tions ( 6 )  and (7 ) ,  allowing for relationships ( 4 ) ,  (8 ) ,  ( l o ) ,  and (11). 
Next, the parameters of the optimum panels corresponding to these values 
of the internal forces a r e  selected by the method exposed in 121, and the 
weight of the force-transmitting members of the span is calculated. A set  
of values of the coefficients ckj is selected which satisfies the condition of 
relative extremum of the weight function of the force-transmitting members  
(the s t r ingers  and the skin). 

The check calculations of the structure is conducted in several  stages. 
In the first stage we make use of the theory of thin-walled beams based on 
the hypothesis of plane sections for closed shells, o r  on the hypothesis of 
deplanation by the sectorial-area law for open shells. In the case of a 
thin-walled beam the hypothesis of deplanation by the sectorial-area law, 
allowing for the initial and temperature deformations, is written a s  follows: 

( 1 2 )  
_ _  

= ( g h D k j )  - E l i ,  

where c & =  & a T k j T k j ;  E: i s  the initial strain; 
vector of point i on the contour of section tt; ,gk = g (gl&k&g4k) is the 
matrix-column of constant coefficients, which remain to be determined. 

akj E k j  ( g h w k j )  - E&. ( 1 3 )  

Using equations ( 5 )  to ( 7  ), the normal s t resses  akj and the shearing 

' u k ) = w ( l j i k j i z ~ j j L u k j )  is the radius- 

The normal s t r e s s  ?hi i s  calculated by the formula 
- -  

where Ea, is the secant modulus of the diagram g k , ( € ) .  

s t resses  T,/ = 

calculated for each case of loading. 
cri t ical  and collapsing s t resses  of the panel corresponding to the values 
obtained for a k i  and rXi  a r e  calculated. 

The skin and the thin-walled elements of the aircraf t  structure usually 
buckle before the carrying capacity of the structure a s  a whole is exhausted. 
The magnitude of the secant modulus E,, for these magnitudes is unknown 
beforehand, and the determination of the s t resses  and s t ra ins  of the thin- 
walled beam is realized by successive approximations, using the so- called 
method of reduction coefficients or  the method of secant moduli. 

capable of calculating without stoppage all  the design sections of the 
structure for a l l  given cases of loading by the method of reduction co- 
efficients. 
craft  fuselage for one case of loading is less  than a minute. 
in the determination of the s t resses  is higher than the accuracy of the 
method used in manual calculation by about 10 to 200/0, due to the more 
accurate allowance for the skin work after buckling. 
for determining the s t resses  by the method of secant moduli, allowing for 
the temperature s t ra ins  and the influence of the temperature on the mechan- 
ical properties of the material. The program was written for the Ural-2 
computer. 

cannot be determined in the f i rs t  stage of the check calculations. 
state in the refinement of the calculation of the s t resses  and strains must 

( k j  i s  the thickness of the Bki shell-panel) a r e  
6,i 

Using the method exposed in 1 3 1 ,  the 

On the basis of the method described, Sokolov wrote a computer program 

The machine time of the calculation of one section of the a i r -  
The accuracy 

Shin wrote a program 

Owing to the above-mentioned beam-theory hypotheses, the local s t resses  
The next 
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consist in the calculation of a thin-walled structure on the basis of the 
theory of thin-walled bars,  which leads to solving system (9 ) .  
for calculating a cylindrical reinforced shell by this method was written 
by Batalov; by this program the solution of system ( 9  ) is conducted by 
the method of the fastest descent. 

A program 
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STRESS CONCENTRATION IN A THIN PLATE 
WEAKENED BY AN INFINITE NUMBER OF 
CIRCULAR HOLES UNDER ELASTIC-PLASTIC 
STRAINS 

I .  Yu. K h o m a  

(Kiev ) 

The elastic-plastic problem in a thin plate weakened by an infinite 
number of identical circular holes is considered by the approximate 
method proposed by Kosmodamianskii 1 2 ,  3 1 ,  and by the method of 
approximating the s t r e s s  function in the plastic region by a biharmonic 
function / 41. 

holes of centers lying on the x axis a t  a distance I from each other. 

x and y directions, respectively, and le t  the plastic zones a t  the given 
forces completely enclose the holes, but without merging. 
of the dynamic and geometric symmetry, the shape of the lines separating 
the elastic and plastic zones will be the same about each hole. 
1 2 1 ,  the s t resses  in plastic zones a r e  independent of the forces a t  infinity 
and the influence of the adjacent holes, and therefore they will be the same 
a s  in the case of a single hole. 
considered to the corresponding problem for a plate with single hole. 

the contour separating the elastic and plastic zones. 

librium equations 

Consider a thin plate weakened by an infinite line of identical circular 

Let the plate be extended a t  infinity by constant forces C and D in the 

On the strength 

A s  known 

This makes i t  possible to reduce the problem 

Take the origin of coordinates a t  the hole center, and designate by L 

The s t r e s s  components in the plastic region must satisfy the equi- 

and the plasticity condition 

(.,-~0)~+4~~,=[2~,-~1,+os Il2, ( 2 )  

where as is the yield point. 
Equations (1 ) and ( 2  ) will be satisfied a t  zero boundary conditions 

0. = 0. +,e = 0 a t  t = R ,  if  the s t ress  components a r e  represented in the 
form 

or = 0, (1 - p). 01 =os, ‘LA = 0. ( 3 )  
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The s t r e s s  function corresponding to these s t r e s s  components is 

Following 141, we approximate this function by the biharmonic function 

where F, N, G, M a r e  constants which must be selected in such a way a s  
to minimize the e r r o r  in the determination of the contour L and the s t r e s s  
components in the elastic region. 

Calculating now the s t r e s s  components by function ( 5 ) ,  we write them 
in the following combinations: 

The s t r e s s  components in the elastic region a r e  expressed through two 
holomorphous functions ct, ( z )  and V ( z ) .  
linked with the s t r e s s  components, wi l l  be periodic in the direction of the 
x axis. A s  was done in 1 2 1 ,  we introduce the periodic function 

The function 0 (L), which is directly 

Y:3 (2) = Y ( 2 )  + zct,' (2). (7) 
The s t r e s s  components in the elastic region will then be expressed by the 
for mula s 

( 8  1 
o F ) + c ? ) = 4 R e  [@(z)], 

012) - 012) + 2 i.r(') = 2 [(; - 2) Q' ( 2 )  + Y* ( z ) ] .  
Y XY 

Since the functions 0 ( 2 )  and V : s  ( 2 )  a r e  analytical in the elastic region, 
they can be represented in the form 1 2 1  

where 

m 

I - k l =  o (C) = CC + 2 c,,,C-~ 
m - 1  

The f i rs t  sums of ( 9 )  a r e  holomorphous in the region outside contour 
They will be the components of some biharmonic function, which we 

The second sums a r e  holomorphous inside 
L .  
shall designate by U , ( x ,  y). 
the contour L and will be the-components of some biharmonic function, 
which we shall designate by U,(x ,  y). They depend in addition on the 
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R 
I 

small parameter E = - .  

this small  parameter and retaining the te rms  containing 2 we obtain 

By expanding them in a se r ies  by the powers of 

- 
0, (C) =21,c?i24 - 2a,c~i2~,u, (C), - 
Y, (C) = 2p2c2z2iz - 2p,C2i",w (t), 

where 

Introduce a new biharmonic function 

UJ ( x ,  y )  = r/, (4 Y) - [u: (4 Y) + G ( X ,  Y)f. ( 1 2 )  

From the continuity conditions of the s t r e s s  components a t  the boundary 
'I between the elastic and plastic zones in the plane I transformed by 
means of the function w ( : )  and the conditions a t  infinity the following 
boundary conditions a r e  obtained: 

0 on 1, 
C+ D - 43, (F + G )  - 43, In [ i l  - 43,GIn c + 
+ 4osGln R + Sa,c2A,-8z,c3i26,1 a t  C+w, 

Conditions (1 3 )  will be satisfied i f  the function O,(C) is represented in 
the form 

and the constant c is determined so a s  to satisfy the equation 

4 
- 0, ( F  4- G) + c G  In R + 2a2c2az82-a,G In c 0, 

whence 

On the strength of (1 1 ) and (12  ) the function O2 (t) will be written a s  
follows : 

1 (I) = - a , ~  In i - 2z,c3i24 (r. - - + as ( F  + G) - a,(; In R - 
c j  

- 2a,czi26, + a,G In w ( I )  + 2a,s2i26,w (C). 

By equating the coefficients of equal negative powers of we obtain 

a, = 2r*,~~a~3, (C + cl), (17) 
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Since E can take arbi t rary values, equality (1  7 )  will be satisfied i f  

The substitution of (15) in boundary conditions (14) leads to the following 
a, = 0. 

equality: 

where Q (C) is holomorphous outside of 7 ,  and Q (0) = 0. 
The f i r s t  condition of (14) yields 

[m - (C) J 0; (L) = - 0' (C) 'v, (C). (20) 
A functional equation has thus been obtained from which the transforma- 

tion function w(C) is determined. 
positive powers of L we obtain 

By comparing the coefficients of equal 

- 
c--- pICh26, ,  

a&:,, = 0 ( n  > 3). 
0s G 2- 

It follows that the transformation function w(C) will be of the form 

The expression of the function Y2(0) on the contour of the unit circle is: 

From here we find Yv,(C) by the Muskhelishvili method. 
coefficients of equal negative powers of C and taking ( 2 1  
account we obtain 

B1=0 

By comparing the 
and ( 2 2 )  into 

It is now seen from ( 2 2 )  that c2 = 0. 
an ellipse with semiaxes 

It follows that the contour f will be 

u = c ( I + : ) ,  b = c  1 - -  . ( 3 
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The s t r e s s  com,ponents a r e  determined by the formulas 

15 
30 
45 
60 
75 
90 

and the constants F, N, 0 ,  M a r e  determined from the equality of the f i rs t  
four te rms  in the expansion of U, and U; in a Taylor se r ies  near the point 
whose radius-vector is equal to the half-sum of the minimum and maximum 
radius-vectors of the points of contour L 141. 

0.5037 
0.4864 
0.4595 
0.4279 
0.4012 
0.3903 

The substitution of the values of the constants ( 2 9 )  in expressions (16), 
( 1 8 ) ,  ( 2 1 ) ,  and (26) ,  respectively, yields 

- 9  
osR 

20, -- ( D  + C )  - ~ ‘ J , A E ~ ~ ~ c ,  C =  

6, Rc, 
4cz 

I --I 2- 

g,Rc+(L>-  C ) C C , - G ~ , R C ,  = 
2 2  ( 1 - 2cr”2c,) 

We shall consider now a numerical example. Let 

R =  1 ,  1=10, C=0.7375aS, D=0.7125a,. 

The calculations yield 

0.195 
w(C) =1.841 f - ,  

C 

The table contains the values of the s t r e s s  components on contour L ,  
calculated from the plastic side by the exact expression ( 3 ) ,  and from the 
elastic side by the approximate expression (28 ) .  

TABLE 

0.5097 1 1 ~- 
0.5039 
0.4865 
0.4595 
0.4280 
0.4012 
0.4027 
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~~ ~ 

Lap’ 
- US 

1.0031 
1.0023 
1.0009 

1,0009 

0.9919 

I ,0002 

1 . on29 
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BIBLIOGRAPHY 

1. G a 1 i n  , L. A .  Ploskaya uprugo-plasticheskaya zadacha (The Two- 
Dimensional Elastic-Plastic Problem). - PMM, Vol. 10, No. 3. 
1946. 

izotropnogo massiva, oslablennogo beskonechnym ryadom odina- 
kovykh krugovykh vyrabotok (The Elastic-Plastic Problem for 
an Isotropic Body Weakened by an Infinite Line of Identical 
Circular Excavations). - Izvestiya A N  SSSR, OTN, Mekhanika i 
Mashinostroenie, No. 4. 1961. 

napryazhennogo sostoyaniya izotropnoi plastinki s konechnym 
chislom krugovykh otverstii (Approximate Method of Determining 
the Stressed State of an Isotropic Plate with a Finite Number of 
Circular Holes). - Izvestiya AN SSSR, OTN, Mekhanika i 
Mashinostroenie, No. 2. 1960. 

pr i  dvukhosnom rastyazhenii tonkoi plastinki (Plast ic  Regions 
Near a Circular Hole a t  Biaxial Extension of a Thin Plate).  
- Trudy Moskovskogo Aviatsionnogo Instituta, No. 69. 1956. 

Concentration about Holes). - GITTL. 1951. 
M u s k h e 1 i s h v i  1 i , N. I. Nekotorye osnovnye zadachi matematicheskoi 

teorii uprugosti (Some Fundamental Problems of the Mathematical 
Theory of Elasticity). - Izdatel' stvo AN SSSR. 

- GITTL. 1950. 

2. K o s m o d a m i a n s k i i ,  A.S. Uprugo-plasticheskaya zadacha dlya 

3. K o s m o d a m i a n s k i i ,  A.S .  Priblizhennyi metod opredeleniya 

4. Z a s 1 a v s k i  i , B. V. Plasticheskie oblasti vblizi krugovogo otverstiya 

5 .  S a v i n ,  G. N. Kontsentratsiya napryazhenii okolo otverstii (Stress  

6. 

1954. 
7. S o k o l o v s k i i ,  V.V. Teoriya plastichnosti (Theory of Plasticity). 

893 



INTEGRAL- DIFFERENTIAL EQUATIONS OF PLATES 
WHOSE MATERIAL BEHAVES ACCORDING TO 
LINEAR RHEOLOGICAL RELATIONSHIPS 

L . P .  K h o r o s h u n  
{Kiev) 

1. The author obtained in /1/ the following linear relationships in a 
f i r s t  approximation by the methods of the thermodynamics of irreversible 
processes, allowing for the mechanical and thermal phenomena only: 

Here e l j ,  q j  a r e  s t ra ins  and stresses;  
s t resses  taking place a t  quasistatic strains; ;{ = -,, 2.- s L j  ; 
temperature; b I j  is the Kronecker delta; a, b, e, d a r e  viscous constants; 
p, K a r e  elastic constants; 
expansion. 

the xa axis be perpendicular to them, 
hypothesis we assume that in relationships (1 ) -33 p a& = 0. 
eliminating from each system the magnitudes &, E$, ,& respectively, we 
obtain the relationships 

E;~ a r e  elastic strains; ufi a r e  
7 is absolute 

a is the coefficient of volume temperature 

Let the xl, x, coordinate axes lie in the middle plane of the plate, and 
In accordance with Kirchhoff-Love' s 

Then, by 

G 
~~j - a:; = - [( 1 - m )  1 - m.2 + mikk&i]; 

where 

and 

K=- E .  p =  -- E b =  G . a =  0 .  
3( 1-2v)' 2( 1-1- v)' 3(1 -2m)' 2 ( 1  +m) ' 

H .  H d = - -  , c=- 
3(1 -2n)  2 (1+ n) ' 

( 3 )  
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I 

Express  the s t r a ins  through the deflections: 

substitute these values in ( 2 ) ,  multiply by x 3 ,  and integrate in the interval 

[- 1' -F 1; the following expressions for  the moments a r e  then obtained: 
h h  

By applying the Laplace t ransform to relationships (5  ), eliminating the 
t ransforms of the magnitudes MFj. w ' ,  and returning to the original functions, 
we obtain 

where 

D ( I  4 - v )  k - -~-. D(I - v )  

I-=o B ( I  - n )  ' I -  R ( l  + n )  f m O  

By substituting (6) in the equation of motion of the plate we obtain an 
integral-differential equation for the deflection: 
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Ea 
i Ab. (W - TU? (0)) + -AT - 

3 ( 1 - v )  

where N,, AI,, N,, a r e  forces acting in the middle plane; q is the load; and 
p is the density of the material. 

In what follows the te rms  containing the s t resses  and the temperature 
refer  to the load q ,  i. e. ,  we shall consider the equation 

2.  Consider the vibrations of a hinged rectangular plate of sides !, 
and l , ,  and let N ,  = N,  = Nit P 0 .  Representing the deflection by the expansion 

(9) a m ,  fkxo 
w = 2 we? ( t )  sin -sin - , 

0 . 8 -  1.2 ... 4 4 
we obtain the following ordinary integral-differential equation for w+: 

0 

0 
2 pz I 

where q.@ a r e  the expansion coefficients of the load, r2 3 - "  - 
- Equation (10 )  will be solved by means of the Laplace transform, with 
w-0 and $9 standing for the transforms of the functions wm$ and qq. 
solution in the transform space will then be 

If_ +jT) - 
The 

&s (4 = [& + (phs + Arzd w.p (0)  + P&P (O)l(s + k,) (s +k2)s- '  phs2 + I 
J 4-'. ( 1 1 )  

f [ph ( k ,  + k,) + Ar$] s2 + [phk,k, + ( A k ,  + Ak,+D)r?p] s -t 
D(1  + v ) R 1 + D ( l - v ) h ,  

2 + [ A M  + ~ 2 

We shall now examine the roots of the denominator of (1 1 ). 
of the three remaining roots, they can either all be real ,  

One root 

In both cases, however, the real  par ts  of 
is equal to zerQ; 
or one real  and two complex. 
the roots a r e  negative, a s  can be seen by using the Gurvitz criterion. 
Since a more detailed analysis of the roots would be cumbersome, we shall 
not elucidate the conditions of existence of periodic solutions, noting only 
that in the case of complex roots the solution of the homogeneous equation 
corresponding to (10 )  will be 

w.p(t)=Co+ ~,l"'+ L""(C,sinp,t+C,cosp,t), (12) 
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where mr nr + ipr ,  nr - ipr a r e  the roots of the denominator of (1  1 ); C,, C,, C,, 
C, a r e  constants dependent on the initial conditions. 

Assume that k, = k, = k, i. e.,  n = V .  

the values of n and v being very close, 
This is a reasohgble assumption, 
Expression (1 1) simplifies then to 

( 1 3 )  - w.p (s) = - I& + ( ~ h s  + A ~ : B L w ~  (0) + P h i d O ) ~  (3 + k )  
s Iphs2 + (phk -j- A&) s + Akr$ + Of$,] 

and the denominator roots wil l  be 0, nr + i p r ,  n, - i p , ,  where 

phk+Ar: , .  1 / 4 p h D r f p - ~  (phk - Arf$ 
(14 )  n,=-- Pr= 

2Ph 2?h 

The necessary condition of existence of periodic solutions of (10 )  will 
thus be 

4phDr3, - (phk - > 0. (15 )  

This inequality will always be satisfied a t  A = 0, beginning with some re. 
If &a = 0, we obtain the following solution of (13) by passing to the 

original space: 

Consider now the forced vibrations of the plate under the action of the 
force 

44 ( t )  = q:p P', (17) 
considering that w.p (0) = &a (0) = 0. 
be the function 

The transform of the solution will then 

( 1 8 )  
- 

-. 

p h s ( s - i i w ) ( s - n r  - i p r ) ( s - n n r + i p r )  . 

By returning to the original space we obtain 
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where 

ik  
uo= -; 

u) 

At t - tm  we obtain the following steady forced vibrations: 

The amplitude here  is determined by the formula 

and the phase shift by the formula 
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STUDY OF THE STRESSED AND STRAINED STATE 
OF A PHYSICALLY NONLINEARLY ELASTIC 
PLATE WITH REINFORCED CIRCULAR HOLE 

I . A .  T s u r p a l  
(Kiev J 

The problem of the elastic equilibrium of a monoaxially extended plate 
with reinforced circular hole in the case of small  strains and a l inear 
s t ress-s t ra in  relationship was solved by Savin 11 1 by the method of the 
theory of functions of a complex variable. 
terizing the state of s t ress  and strain in the plate and the ring are: 

The s t r e s s  functions charac- 

for the plate 

for the ring 

The coefficients of these functions were determined from the boundary 
conditions and the conditions of contact between the ring and the plate 1 2 1 .  

Consider this problem for small deformations in the case of a non- 
linear s t ress -  strain relationship. 
elastic materials (nonferrous metals, alloys, polymers) will be re -  
presented in the form 13, 41 

The elastic law for physically nonlinear 

where D is the strain tensor; To, T' a r e  the tensor of the hydrostatic state 
of s t r e s s  and the deviator of the state of s t ress ,  respectively; k (so) and g (t t)  
a r e  functions of the reduced average s t r e s s  so and the reduced intensity 
of the shearing s t resses  to,  characterizing the physical nonlinearity of the 
material; the constants K and G are ,  respectively, the modulus of volume 
compression and the modulus of shear. 
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The differential equations and the computing formulas for the state of 
stress and strain will  be determined for the particular case of the non- 
linear elastic law ( 3 ) ,  when the functions k (so) and g (t:) a r e  given in the 

9 
where g ,  is the constant of the material; so = 3; t i = L  

9K G? 

four /5/ will contain one small parameter A, characterizing the deviation 
of the nonlinear elastic law from Hooke' s law. We shall represent the 
solution of this equation in the form of a power ser ies  in A: 

In this case the resolving quasilinear compatibility equation of order 

00 

F (r, pl; 1) = 2 AkFk(r, F), 
k -0 

(5) 

where F'"(r, 7).  F(')(r, 9). . . . a r e  Airy s t r e s s  functions of zero, first,  etc. 
approximations. 

The determination of the zero approximation Pfo'(r, rf) is equivalent to 
solving the linear problem obtained by (l), (2), and the Goursat formula 

dx 
dz 

2 F ( z .  ; )=z 'P (z )+z~~+w(z~ tx (z ) ,where  q(z)=-- .  

The following nonhomogeneous biharmonic equations a re  obtained for 
determining the higher approximations: 

For the f i r s t  approximation we obtain the expression 

where the operator L,(F(") has the form 

The material constant )r and the function H")(r. 9) in expressions ( 5 )  
and (8)  a r e  determined by the relationships 



It is seen from (6), (7), and ( 8 )  that each step of the successive 
approximations basically reduces to solving the classic biharmonic 
problem: i t  is required to find a particular solution of the nonhomo- 
geneous fourth-order equation (6). and then to determine with the aid 
of the boundary conditions and the conditions of connection the biharmonic 
function of the first, second, eic. approximations. 

The first-approximation function F'" must satisfy, in accordance with the 
statement of the problem and the method of solution, the following conditions: 

a) T h e  c o n t o u r  c o n d i t i o n s . *  If the inner contour L ,  of the 
r ing (the circle of radius R,)  is free of external forces, while a t  infinity 
the plate is extended by forces p along the x axis, then 

a t  r = - .  
b) T h e  c o n n e c t i o n  c o n d i t i o n s .  If the ring is soldered in a 

circular hole of the plate of radius R = R, ( R ,  is the external radius of the 
ring), then on the contour I- of contact between the plate and the ring we 
shall have 

(0) + h , T p  .UW + A.UC') 
vk 

Using ( 3 ) ,  (4), and ( 5 ) ,  the displacement functions u ( r ,  p) and v ( r ,  :)at 

a,, = - (ar + aT) a r e  found from the equations based on the nonlinear elastic 

law ( 3 )  for the particular case (4): 

1 
3 

where the s t resses  and displacements a r e  expanded in a se r ies  by 

* The superscripts "p" (plate) of the components of the stresses. displacements, e tc .  have been omitted 
for the sake of simplicity of the notation. 
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the powers of A, and 
@(@) &)2 + &'r + 3+2 - ,(o) ,(a); 

r Q r y  I w 

@(I)  = 2& r r  ~ ( 1 )  + 2c"W P .  'ja) + 67'0) rv ~ ! l )  ry - $4 8 G I i )  I - ~ ( 0 )  r 0;). ( 1 3 )  

Consider the particular case when the plate material is subjected to 
the nonlinear elastic law (3), ( 4 ) ,  and the ring material  follows Hooke's 
law. 

substituting ( l ) ,  ( 8 ) ,  ( 9 )  in (7): 
The following differential equation for the function F " )  is obtained by 

The solution of (1 4) can be represented a s  sum of a particular solution 
of (14 )  and of the general solution of the homogeneous equation A A F " = O .  
The latter is equal to the following, a t  boundary conditions (10) a t  r = CC: 

while the following expression is a particular solution of (14): 
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The integration constants C,,, Ci3, Ci4 (i = 2. 4, 6) a r e  determined from the 
contour conditions ( 1 0 )  and the connection conditions (11). The ex- 
pressions obtained will not be given here for lack of space. 
obtained for the coefficient of s t ress  concentration on the basis of the f i r s t  
approximation is 

The expression 

( $ ) , - R = + [ ( l  t- +)-(1 - ~ p - 3 ) c o s 2 y ]  2 - 

3 2  2 7 2  107 71 
2 2 24 48 

- - - - I  -- + 

We shall consider several  particular examples for a copper plate with 
soldered steel ring (washer), and determine the stress-concentration co- 
efficient oT in a first approximation. 

I. Absolutely flexible ring, i. e., no ring has been soldered in the plate 
hole of radius R .  The coefficients a r e  then equal, respectively, to a-1 = 2, 
p r l  = 2, p - 3  = - 2 and formula (17)  yields 

(9) = 1 - 2 c o s 2 ~ - ~ p z ( 3 , 0 G G - 4 . 3 3 ~ ~ o ~ 2 ~ ~ - 2 . 1 0 7 ~ ~ ~ 4 ~ -  
r - R  

- 0.775~0s 69). (18) 

11. Absolutely rigid ring. The coefficients a r e  then equal to 

1.217; p - I  = 1 --x - 0.604; (3-3 = -% = 1.247 and ( 1 7 )  yields 2 a - l = - - = -  
7. Y 

(:) = 0.349 + 0.4C3 cos 29 - 'h 2 (1 1.595 - 1.503 cos 29 - 
r - R  8 

- 3 . 1 7 9 ~ 0 ~ 4 ~ +  3 6 6 3 ~ 0 ~ 6 ~ ) .  (19) 
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III. Solid elastic circular washer. The coefficients a r e  equal to 

~- 

.--1.000 
0.7G8 
0.295 

0.998 
0.344 
0.463 

2.973 
-0.075 
0.633 

-2 I ,:2- I ]  -0.442 and (17) yields 

. ~.. - 

-1.000 
0.758 
0.291 

0.990 
0.230 
0.459 

2.894 
-U.O81 
0.631 

(:) r - R  8 
= 0.466- 0.169cos2.p - I *  ~(7.74S--0.219cos2y--!.059cos4p+ 

+ 1.316~0s 6 ~ ) .  (20) 
G 

Here x = 3 - 4 v  for the plate, x1 = 3 - 4-5 for the ring, p = - ; 
Poisson ratios for the plate and ring, respectively, determined from the 

formula v = 3 K -  - 2G 
6Y + 2G' 

K = 1.37 X 1 O6 kg/ cm2; G = 0.46X 1 O6 kg/ cm2; g ,  = 0.18 X 1 06; A = 0.255 X 1 0 - 6  

cm4/kg; open-hearthsteel K =  1.821X106kg/cm2; 
,pz =O.O85X106; 1. =0.032X10-6cm4/kg2. 

In the table a r e  given the values of the stress-concentration coefficient 
(18),  (19),  ( 2 0 )  as a function of the magnitude of the external load for the 
copper plate. 
a? - and the external load for an unsupported circular hole has been plotted 
P 
in Figure 1. 

V, v1 a r e  the 
G l  

The elastic constants for these materials are: copper 

GI = 0.87X106kg/cm2; 

The relationship between the concentration coefficient 

. .  

-1 .ooo 
C.717 
0.275 

0.961 
0.273 
0.440 

2.578 
-0.105 
0.624 

TABLE 
. .  ~ ~. I 

.. 

-1 .ooo 
0.703 
0.271 

0.951 
0.253 
0.433 

2.469 
-0.114 
0.622 

Q 

-1.000 
0.669 
C.258 

0 926 
0.206 
0.417 

2.203 
-0.134 
0.616 

- 

0" 

45" 

90" 

- 

-1.000 
0.650 
0.251 

0.912 
0.179 
0.408 

2.051 
-0.145 
0.613 

- 
I 
11 

111 

I 
11 

111 

I 
I[ 

111 - 

300 

-1 .oco 
0.741 
0.285 

0.978 
0.306 
0.451 

2.762 
-0.091 
0.628 

_. ... 

p' kg/cm2 
400 1 450 I 5CO I 550 ! 6% 
____~- 

-1 .w 
0.687 
0.265 

0.939 
0.231 
0.425 

2.341 
-0.123 
0.619 

The report  dealt with the case of elastic equilibrium of an axisym- 
metr ic  physically nonlinear plate with reinforced circular hole. We shall 
give here  the values of the s t r e s s  components for the plate: 

Using these formulas, curves of the variation of the stress U~ as a 
function of the external load p have been plotted in Figure 2 for different 
cases  of reinforcement; here  a? is the value corresponding to the l inear 
theory, and 06") the value corresponding to the nonlinear theory, allowing 
for the first approximation. 
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Iso' - Linear theory 
+3.c - - - Nonlinear theory 

-1.0 
FIGURE 1. 

-.- Solid elastic circular washer 
___Absolutely rigid ring 

FIGURE 2 ,  

A study of the influence of the second approximation on the state of 
s t r e s s  of a biaxially extended plate with circular hole has a lso been con- 
ducted. The 
process of determining the second approximation does not differ basically 
from the already described 15, 6/ process of obtaining the f i rs t  approxi- 
mation. 
allowing for the zero, f irst ,  and second approximations: 

This problem was treated in a first approximation in 161 .  

We shall give here only the expression for the stress function 

+- -+- * "')I + A2p5R1 [F In r + 
: ( :sa 2 r' 

R' 1 R' 47 IT 59 +- _ _ - - -  +--+-- ( rz 3 r' 36 r6 80 rS 
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Figure 3 represents the influence of the f i rs t  and second approximations 
on the stress os, calculated by ( 2 2 ) .  The unbroken line corresponds to 
the l inear theory, the dotted line to the f i rs t  approximation, and the third 
line to the second approximation. 

FIGURE 3. 
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CALCULATION OF A RIBBED TOROIDAL SHELL 
UNDER A SYMMETRICAL LOAD 

V . A .  S h a m i n a  
(Leningrad) 

A symmetrically loaded circular toroidal shell, with identical 
meridional r ibs  of uniform cross  section disposed close to each other 
and spaced through the same angle 'p, is considered (Figure 1). 
calculation is based on the model of structural anisotropy, which con- 
s is ts  in replacing the original shell by an equivalent smooth orthotropic 
shell. The main symbols used a r e  the same a s  those in 151,  161.  

The 

FIGURE 1. 

1. Shells a r e  usually stiffened by r ibs  in order to increase their 
flexural rigidity only. 
compared with the area of the shell belt, a fact which makes i t  possible 
to use the usual expression for the s t resses  in the skin (cf.  1 3 1 )  

E 

Hence the cross-sectional a r ea  of the r ib  is small 

0 -_- 11 - * - .+: [e, t =z -I- = (3 + %)I. 
(1.1 1 

E /l h 
aZ2 E __- I - y2 P* + Y ? 1 +  (x2 + 4 1 ,  - Q 2 4 ij- * 

The s t resses  in the r ib  are ,  assuming that the r ibs  a r e  strained in their 
planes only: 

*u  1, = E (P + 2x1). (1.2) 
Here z represents the distance, measured from the middle surface. 

The radius of curvature of the meridian is usually considerably larger  
than the dimensions of the r ib  c ross  section. 
treatment of the r ib  we meet the problem of the bending of a bar  of small  

In other words, in our 
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curvature. It is then possible to use for the equivalent orthotropic shell 
the simplified elastic relationships 

where r is the radius of the parallel circle; 
21 of the rib cross section relative to the axis z = 0 (Figure 2); 'po = - n '  

n is the number of ribs; E,, E*, 3. x2 are  the strain parameters, calculated 
by the standard formulas (cf. /5/). 

J is the momeht of inertia 

FIGURE 2. 

With the aid of ( 1 . 3 ) .  the equations of symmetrical deformation of an 
orthotropic shell given in /1/ and /2/ can be transformed, with an 
accuracy up to the order of hlR, to the form 

Here r = RasinB; .Rl, Ra are  the principal radii of curvature of the middle 
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S + J*l::ih; v') J-''I surface; 8 = - is the slope of the tangent to the 
V 

meridian; Y = is the s t r e s s  function, with whose aid the forces TI and 

Tz a r e  calculated by the formulas 

The aster isks  in (1.4) and (1.5) designate the functions of the static system 
151, representing some solution of the system of equations of equilibrium. 

we obtain the following single equation relative to the complex function: 
By neglecting in the f i rs t  relationship of (1.4) the term between braces  

i = a + iP; (1.6) 

Rf sin 0 - 

The reduction of (1.4) to (1.7) is possible in view of the fact that the 
coefficient 

V12(1 -q Rf sin B' 

represents, in a majority of cases, the product of some function of the 
order of unity and of a large factor 2k1, i. e . ,  that the asymptotic methods 
a r e  applicable to system (1.4).  
troduced when replacing (1.4) by (1.7 ) does not exceed the e r r o r  of the 
asymptotic solution of ( 1.7 ). 

It is easily checked that the e r r o r  in- 

2. In the case of a circular toroidal shell (Figure 1) 

a = -. (2.1 1 b R, = b=const; r = a (1  + asin e); 
4 

By substituting (2 .1)  in (1.7) and calculating the function of the static 
system a s  done in /6/ we obtain the equation - - 

8- acose d8  sin 0 - + i2kz d*8 
de2 I +as in0  de 1/1+asinB+f*(l+asin8)* 
-- 

where P is the axial force a t  section 0 = 0, 
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1 5.12(1 - v Z )  

P - 7' -- 
(2.3) 

The asymptotic solution of equation ( 2 . 2 )  will be determined by the method 
of "standard equations'' exposed in 161. 
conducted in / 6 /  we obtain 

By repeating the calculations 

(2.7 

A = V P .  
The Airy functions h,, h, and the Clark function E entering in (2.4) and 
(2.5) a r e  tabulated (the tables and the asymptotic representations a r e  
given in 1 6 1 ) .  

the same functions a s  in the case of a smooth torus, the only difference 
being the relationship between the argument w (8) and the variable 0. 
follows that the r ibs  do not introduce any basic difficulty in the calculation 
of the torus. 

A s  in the case of a smooth torus, the variability of the smooth function 
'p (0) can be neglected, and the following simplified relationships can be 
used instead of (2.4)  and (2.5): 

Thus, in the case of a ribbed torus, the solution is represented through 

It 

This does not introduce a considerable e r ro r  in the calculation of the 
s t resses ,  since the expression - 

'p (0) (C#, [ - iho (011 + ?*h2 [- i1.w (R]] 

characterizes a rapidly dampened edge effect, and the magnitude 

is substantial only near zero. 
It corresponds to a complete 

toroidal shell, cut by the parallel circle 6 = - 5 and loaded by the axial 

force P .  At the edges the slope of the tangent to the meridian and the 

Consider the particular solution (2 .9 ) .  

2 
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thrust a r e  equal to zero. 
the divergence of the shell ends: 

Starting from (2.9) ,  we find the s t resses  and 

(2.10) 

The basic s t resses  in the shell 
fibers) and a;, (circumferential) a r e  calculated by the formulas 

a; 1 

3 y  J 3 ( 1  - v Z )  I 

J;, (flexural meridional in the external 

h"w'(0) Re€'[-  ).w(h)] __- 
~~ > 

3 - ~- _-- 

(2.11) 

,v =< - . 
Paah 

Equalities (1.1) and (1.5) were used in the derivation of (2.11). 
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CALCULATING ARCH DAMS 

G.S. S h a k h r o m a n o v  
(Tbilisi)  

Contemporary arch dams represent a thick plate of doubly varying 
curvature and variable thickness, clamped elastically by the contour, or 
with an unbroken perimetric joint. Arch dams a r e  more flexible and 
stronger than buttress and gravity dams; they res i s t  overturning and 
sliding, and a r e  economical. 

A study of the materials of the Fifth International Congress on High 
Dams shows that in Europe, and in particular in France and Italy, there 
is a noticeable trend to use a rch  dams instead of gravity dams. In the 
USA, on the other hand, gravity dams a r e  predominant, a fact ex- 
plained by the specific economic conditions in that country. 
arch dams a r e  still a rari ty,  due to the fact that hydraulic structures have 
mainly been built on the r ivers  of the flat north country. 

of calculation used by u s  in designing the shells of the Ladzhanuri and 
Inguri hydroelectric power plants. 

determined on the basis of the membrane scheme of a thin-walled cylinder, 
by the Mariotte formula 

In the USSR 

The object of this paper is to illustrate several approximate methods 

In a first approximation the circumferential s t resses  in the dams were 

where P is the hydrostatic pressure per unit radius of the axial line; 
R is the radius of the axial line; 
Io0] is the allowable compressive s t r e s s  of the dam material per unit 
length. 
considering each arch section of the dam a s  closed hollow cylinders. 

s t resses ,  and the other computing factors, the dams were then calculated 
by the "pure arch" principle proposed by Ritter /1/, allowing for the 
elastic s t ra ins  of the supports according to Voigt. 

was realized on the basis of the Kalinovich-Rezal assumptions / 2 /  relative 
to the distribution of the external load between the arches and the wall. 
By Kalinovich's method, the dam calculation was reduced to an approximate 
integration of the equation of the bent axis of a cantilever beam of variable 
rigidity lying on a Winkler elastic foundation: 

ais the constant thickness of the ring; 

For  relatively thick rings we used the solution of the Lamb problem, 

In order to allow for the actual boundary conditions, the temperature 

The transition from the one-dimensional problem to the two-dimensional 

d2 J ( X ) . - -  = q ( x ) - - -  W 

k ( 4  ' 
E -  dx2 [ 2 ] 
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where E is the modulus of elasticity; 
the normal  deflection of the cantilever beam; 
k r x )  is the coefficient of e las t ic  yielding of the a r c .  

(by the method of finite differences) and by the direct  variational method 
of Bubnov-Galerkin. 

A t  the l imit  (infinite number of a r ches  and walls), expression ( 2 )  
becomes 

J ( x )  is the moment of inertia; w is 
q ( x )  is the external load; 

Equation ( 2 )  was solved both numerically with the aid of a computer 

where Li is the cylindrical rigidity; v is the Poisson ratio; a, a r e  the 
curvil inear orthogonal coordinate l ines  of the middle surface of the dam 
shell. 

Equations ( 2 )  and ( 3 )  can be refined by passing to the Filonenko- 
Borodich elast ic  foundation with two foundation moduli o r  to the generalized 
Vlasov elast ic  foundation 1 3 ,  41. 

( 2 )  does not allow for the influence of the shearing forces  S, , -S , ,=S ,  the 
normal fo rces  along the height of the dam T ,  and the torsional moments 
H,,zGH?,=H. More co r rec t  r e su l t s  a r e  obtained when the dams a r e  cal- 
culated by Vlasov's engineering moment theory of shells 1 3 1 ,  based on the 
Kirchhoff- Love hypotheses, 

of the principal displacement vector was obtained for calculating shallow 
a r c h  dam shells: 

The method of "arches and walls'' described by the equilibrium equation 

The following system of equations relative to the components u, Y, w 

where 
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1 du + v--& + w (It, + vk,) + 
(5 1 
(cont'd) 

In equations (4) k ,  = k, (a, 8 ) ;  k, = k,(a, e )  a r e  the principal curvatures  of 
the coordinate surface on the l ines  !3 = const, z = const, respectively; 
X= X (a, p),  Y = Y ( a .  ?), Z = 2 (a. B) a r e  the components of the vector of 
intensity of the surface load pe r  unit length in the axes of a mobile t r i -  
hedron; 

In o rde r  to obtain equations (4), the values of the l a t e ra l  forces  Q,, 
Q2 are eliminated f rom the equations of equilibrium of the shell  element, 
and the fo rces  ?M,, M,, H ,  TI.  T,. S a r e  then expressed through u, w ,  w by 
the standard relationships of the theory of elasticity. 

dam shells of conic and spherical  contours. 
relative to u, w, w and a l so  of a mixed type - relative to the normal dis-  
placements w and the generalized s t r e s s  function q ,  s imi l a r  to the Airy 
function in the two-dimensional problem of the theory of elasticity. 

absolutely rigid rock these conditions are:  

a t  the inclined shores  of the dam 

;=?,(a, p) is the dam thickness. 

The same  method was used to obtain the basic equations for  sloping 
These equations were formed 

To  equations (4) a r e  added the boundary conditions. 

a) in the plane of connection between the dam and the foundation, and 

In the case  of 

b) on the c r e s t  level 

du dv 
dz dp 
- + v - + w (k,  + rR , )=O,  

du dv - +--0, OB dz 

In equations ( 7 )  the coordinate l ines  a and (I are directed along the dam 
height and the ravine width, respectively. 
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The above-considered approximate methods of calculating a rch  dams, 
based on the Navier and Kirchhoff-Love hypotheses can be insufficiently 
accurate a t  certain values of the dam parameters.  The calculation of the 
dam by means of the general equations of the theory of elasticity is there- 
fore of practical importance. 

curvilinear parallelepiped in space relative to an arbi t rary system of 
triorthogonal curvilinear coordinates a, $, 7 a r e  represented by the follow- 
ing three equations, written in s t r e s s  components: 

A s  known 1 5 1 ,  the six conditions of equilibrium of an elementary 

where h, = h, (a ,  P. 7 ) .  h,= hz (a, $, T), h3= ha (a ,  $, 'I) a r e  differential parameters  
of the f i rs t  kind, representing the inverse values of the Lam6 coefficients. 

If the concrete dams a r e  built by the block system, in order to stabilize 
the slump strains,  then in equations ( 8 )  the components of the volume 
forces Pa, P p ,  Pl vanish, since deformations up to the closing of the las t  
block occur due to the dead weight. 
be allowed for, however, in a separate way (initial s t resses) .  

shells we shall attempt to obtain initial equations for an approximate 
calculation of a dam of arbi t rary contour. 

u, v ,  W ,  we obtain for the six independent components of the strain tensor 1 5 1  

The influence of the dead weight must 

By approximating the dam surface by a system of stepped cylindrical 

Neglecting the squares and products of the displacement components 

dU dh-I dh-1 
e.. = h , x  + h,h,v 1 + h , h , w L  I 

de dT 
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The generalized Hooke law for an isotropic and homogeneous elastic 
body in an arbi t rary system of orthogonal coordinates is 

ue= = x.A + 2pe,,, ucs = waP, 
uSs = LA + 2pe,,, apI = pep,, (10) 

0 11 = a l l  + 2W11, O1' - Pe,,, 

where A and p a r e  the Lam6 elastic constants. 

dam material  a t  small  deformation 
In accordance with ( 9  ) we obtain for the unit volume expansion of the 

By replacing in equations ( 9  ) the independent variable 
l e s s  coordinate 0 and taking the Dupin theorem into account (/5/, s 1 9 ) ,  
we obtain 

by the dimension- 

du 
e - = = ;  

1 

d v  1 dur, w + Rx-  - .  R 

du dw 
dT +der' el0 = - 

In accordance with (1 1 ) we obtain for the volume expansion 

By substituting (12 )  and (13) in (10)  we obtain for  the s t r e s s  components 

dw 
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( 1 4 )  
(cont'd) 

By eliminating from equations ( 8 )  the values of the s t r e s s  
with the aid of ( 1 4 ) ,  w e  obtain the following initial conditions 
a thick-walled dam shell: 

components 
for calculating 

The connection between the external load and the s t r e s s  components 
will be realized through the boundary conditions. 
head- and ta i l races  will be 

These conditions a t  the 

X E  = oa..cos (a, E )  + aln cos (0. E) t oar cos (y,  E). 
COS ( y, E ) ,  

2: = ol0cos (a, E)  + ole cos (e, E) + all cos (7, E). 

V i  = onl cos (a, E)  + 008 COS (0, E) + ( 1 6 )  

In formulas (1  6 )  XE, YE, Z: represent  the projections of the surface load 
in the direction of the tangents to  the coordinate l ines  a, p. y.  The l e t t e r  E 
designates the direction of the normal to the inclined plane of the elementary 
tetrahedron. At the c r e s t  we have 

a,. = anl = am1 = 0. (17) 
The boundary conditions ( 6 )  remain in force in the plane of connection 

between the dam and the foundation and on the inclined s h o r e s  of the dam. 
If the dam has  a uniform thickness in the horizontal sections, without 

thickening toward the abutments ( this  condition is usually satisfied in 
practice),  the elementary tetrahedron degenerates into an elementary pr ism,  
and the conditions on surfaces  ( 1 6 )  simplify, taking the fo rm 
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where ?, is the angle of inclination of the boundary curve toward the direction 
of the coordinate line u. 

By replacing equations (15 )  by the corresponding equations in finite 
differences, using a net of nonuniform mesh side, we obtained for the 
parameters  of the Inguri hydroel'ectric power plant dam a system of linear 
algebraic equations with 93 unknowns. 

placements u. 
relaxation method. 
turned out to be unsuitable for the system considered. 

of the central cantilever of the Inguri hydroelectric power plant dam, 
calculated by different means. 

In a f i r s t  approximation it was assumed that there a r e  no vertical dis- 
The simplified system with 62 unknowns was solved by the 

The ordinary iteration and the Seidel iterative method 

The table gives the values of the normal deflections w a t  the c res t  level 

. -. -. 
TABLE 

~~ 

Normal deflection w. in meters 
- ~ - 

By the shell theory, On the basis of the 
By the "pure on the basis of the general equations 

Kirchhoff-Love of the theory of 
hypotheses elasticity 

___ . _ _  

0.07030 1 0.08140 
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REFINING THE LINEAR MOMENT THEORY 
OF THIN SHELLS 

M . P . S h e r e m e t f e v  a n d E . I .  L u n '  

( L  ' 21021) 

The exposition of the moment theory of shells in treatises and articles 

The theory obtained a s  a result  has many shortcomings. 
is usually based on the Kirchhoff-Love hypothesis. 

impossible to transfer the variational principles of the theory of elasticity 
to the theory of shells. 
always necessary to take into account a sixth equilibrium equation. There 
a r e  many other generally known incompatibilities between the theory of 
elasticity and the theory of shells. 

the middle surface remains straight during the shell deformation, does 
not suffer extensions or  compressions, but does not remain perpendicular 
to the middle surface after the deformation. When this hypothesis is used 
the position (after deformation) of the normal to the middle surface of the 
shell i s  determined by the angles of rotation r3 and r4 relative to the unit 
vectors < and z ,  and by the displacement vector 

Thus, i t  is 

When establishing the elastic relationships i t  is 

We adopt here the hypothesis 1 3 ,  61 according to which the normal to 

* +  + + 
6 S U T ,  + u Tp + mn 

of i t s  middle point. 

The vectors and a r e  tangential to the K and lines, respectively; 
n represents the unit vector of the normal.) 

components on the middle surface of the shell: 

(The surface i s  represented here in orthogonal Gaussian coordinates. 

On the basis of the hypothesis adopted we shall have the following strain 

1 du d A  v w I dv d B  u 
e, =T da + + R1l e@ = - - + - - + 5. B d$ da AB R, 

(1 1 

Here 
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On the equidistant surface the corresponding strain components will be 

It is seen from here that the assumption of a linear o r  parabolic distribution 
of the shearing s t resses  through the shell thickness contradicts in the given 
case the hypothesis of straight normal adopted. 

expressions through the derivatives of the angles of rotation of the normal: 
The bending strain components xlr xz ,  T~, r2 a r e  defined by the following 

The equations of strain compatibility a r e  obtained from the condition 

at;* dzg* 
dgda dadB 
- = -. 

.. 
where 6* is the displacement vector on the equidistant surface 

and has the form 
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If e,,,, =een =O we obtain from ( 6 )  the compatibility relationships which 

Introduce new bending strain components 
correspond to the Kirchhoff-Love hypothesis. 

The compatibility conditions 2, 3, 4 can be written through ens, T;, T;, 

The work increment in the shell in the given case will be determined 
instead of through wl, w2, 

by the formula 

rl . 

aL = ss (TI6e, + T&pp + N , k n  + N2kgn + W, -t 
Sf" 

4.P) 
From (7), the second term of ( 9 )  reduces to 

where 

and therefore 

Using ( l o ) ,  we eliminate the forces S, and S2 from the five differential 
the sixth (algebraic) equations of equilibrium and the boundary conditions; 

equation is transformed into an identity a s  a result. 
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We proceed to the derivation of the elastic relationships. 
Let wo be the potential energy p e r  unit area of the middle surface of the 

By reasoning in the same way a s  in the theory of elasticity we shell, 
obtain the following formulas, similar to Green's formulas: 

The unit potential energy of the shell =lo is obtained by integrating by 
z the expression 

The integrand of ( 1 2 )  was obtained by writing e, = uzz = 0 in the expression 
for  the unit potential energy used in the l inear theory of elasticity. By sub- 
stituting in (12) the values of the strain components according to ( 2 )  and 
(8 ) ,  and integrating, we can represent the unit potential energy of the shell 
in the form wo =wl+w2 ,  where w, depends on e,, eo$, enn, e>,, 3, x2, and w2 on 
cap, .;. 7 ;  . 

The unit potential energy of a spherical shell, obtained by this method, is 

where TO = T~ + T*. 
The corresponding elastic law is defined by the equalities 

The comparison of this elastic law with the elastic law proposed for 
shells by Novozhilov and Bolabukh shows that their law is correct  lor 
spherical shells, within the l imits of the hypothesis adopted. 

we become more complicated. 
In the case of nonspherical shells the coefficients in the expression for  
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The elastic relationships for any shell can be obtained from ( 1 2 )  with the 
aid of formulas (11). 
obtained from (1 2 ) by expanding the coefficients of the quadratic form in 

h h2 
ser ies  by the powers of - and retaining the te rms  up to the order of -. R Rz . 

We give a s  an example the elastic relationships 

Eh 
N2 = l+v ' 

Eh 
y= I + v  e=n 

The dependence of S, and S2 on the strain components is  obtained from 

Relationships (15) a r e  resolvable relative to the s t ra in  components. 
If the quadratic form ( 1 2 )  is not simplified, the s t ress-s t ra in  relation- 

formulas (1 0 ) .  

ship will be of the type of ( 15 1, the only difference being that the co- 
efficients will be more complex in the general case.  

becomes free of inner contradictions. 
theory of elasticity a r e  transferred to the theory of shells. 
Castigliano' s variational principle the equations of strain compatibility 
follow, the problems of s t r e s s  concentration in the shell a re  formulated 
more rigorously, etc. 

plicates the resolving equation of specific shells - spherical, cylindrical, 
etc. 

It coincides in form with Gol'denveizer's equation (cf. DAN SSSR, Vol. 49, 
No. 5. 1945), but differs from it by the constants 

When this hypothesis relative to the normal element is used, the theory 
The variational principles of the 

From 

Naturally, the question a r i ses  how much this formulation com- 

A resolving equation was obtained for the case of a spherical shell. 

R'Au + (- Y + i k )  u = 0, 
where 

G 3 R2 
u = ( I  + i k )  - - (1 + Y) T ,  R kZ= ( 1  - "2) - 112 - 1 
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DYNAMICS OF ELASTIC A N D  E L A S T I C -  VISCOUS 
SHELLS  F I L L E D  WITH A N  IDEAL LIQUID 

Yu.S. S h k e n e v  
(Moscow ) 

The vibrations of e las t ic  and elastic-viscous cylindrical shells partially 
filled with an ideal liquid a r e  considered. The hypotheses of the nonlinear 
theory of shells a r e  used in solving the nonlinear problem of the vibrations 
of a liquid-filled shell .  
of the shell  and liquid, the frequencies of the nonlinear vibrations, and 
the cr i t ical  frequencies of the exciting loads a r e  determined. 

The frequencies of the small  coupled vibrations 

1 .  EQUATIONS OF MOTION OF THE ELEMENTS 
OF THE SHELL AND LIQUID 

Let a c i rcular  cylindrical shell of middle-surface radius  R and length I 
be filled up to height It by an ideal liquid, loaded by a uniformly distributed 
load q and a longitudinal force P. 
middle surface points, win the initial deviation f rom the regular  shape, 
p,,, the surface density of the shell, D = Eh?/12( 1 - v 2 )  the cylindrical rigidity, 
E the modulus of elasticity, 
ratio, and Z the inertia force and reduced load, normal  to  the deformed 
surface.  

Le t  w be the radial  displacement of the 

h, the cross-sect ional  height, Y the Poisson 

The shell  bottom is flat and undeformable (figure). 
In accordance with / 1 /  we have 

L (F) - R ~ Z  = 0, ( 1 )  

where F is a resolving function; 
tudinal coordinate; 

w = t 4 F ;  s.=z/R;  !=SIR; z is the longi- 
s is the length of the arc;  

Here Po and OD a r e  constant components of the loadsj  p ( f )  is the disturbed 
hydrodynamic p res su re ;  p is the density of the liquid; 0 is the velocity of 
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the liquid particles. The potential will be sought in the form 

@ = @1+ @2, ( 4 )  

where and '@* satisfy the Laplace equation and the boundary conditions 121 

2% =- =o; - d@l  =w; 
d3 =-o da = - W R  dr r - R  

Here g is acceleration due to gravity; 
By representing Ql and 
obtain 

is the coefficient of surface tension. 
a s  products of functions of a,  p, and r ,  we 

nrc R where Im(kkr) a re  Bessel functions of an imaginary argument; A,, = -. 
h '  

kx R kk.a=-- I '  A: is a root of the equation 

coefficient of &J in a se r ies  by cos An.; 

Jh (A:/?) = 0; C,, is the expansion 
a- 

t 
I 

- -  
-- 

I i --- 
- 

L R  - 
FIGURE. 

From the las t  equation of ( 5 )  we obtain for the function f ( t )  a 
order equation, which i s  the equation of forced vibrations of the 
in a cylindrical vessel: 

second- 
liquid 
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Here  w,, is the frequency of free vibrations of the liquid; 
coordinates . 

Y,, a r e  generalized 

)Y,,,, + F k a n 6 i k , +  F k b n , * f n m =  0,  

j ; l m + w ~ m f + ~ e n a i ; h m = O ,  
n. k I 

N,,, is the norm of the functions Jm(Xir).  

( 1 0 )  

2.  SMALL VIBRATIONS AND PARAMETRIC 
RESONANCE 

Write for a hinged shell  

F = F (a ,  t )  = 2 y,, ( t )  sin ba 's in  mp. 
k. m 

In accordance with the Bubnov-Galerkin method 

( 9 )  

wf",=u);m( 1 - 5 - -- Q0 ) ; P,: 9 s  
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In the case  of f r ee  vibrations of a shell  ( A  = ~ r = = o )  loaded by constant 
components of longitudinal and radial  forces,  we obtain the system of 
equations 

(11 1 
I 
I 

y;m + (l);,yjm = X U n &  Yk, + 2 b”k j n m  = 0, 
n,  k 11, .4 

in“ + u):,nfnfs,n + 2 = 0. 
fl.C 

The equations for the frequencies 9 of coupled vibrations of the shell  and 
liquid can be presented in the ma t r ix  form 

I c - a201 Y =  0, ( 1 2 )  

where C is a ma t r ix  made of the elements UI?,,,. . 
generalized coordinates y,,, f n m .  

Y is a matr ix  of the 
The ma t r ix  D is of the form 

1 1 + “ I ,  Ql? . 01, 621 . 
a21 1 +nzz : 4 2  4 2  : 
e11 e12 ‘ 1 

e21 e22 , I ’  

. . . . . . . . . . .  

. . . . . . . . . . . . .  
By successively considering determinants of increasing o rde r  we obtain 

successive approximations for determining the frequencies of coupled 
vibrations of the elast ic  body and the liquid. 
separate  due to the presence of the liquid. 
mations i t  is possible to use the conditions of interconnection of the modes, 
i. e . ,  to  allow for the interaction of modes with nea r  par t ia l  frequencies. 

tions of the liquid under the assumption that the displacement vector of the 
ideal liquid par t ic les  can be expanded in a s e r i e s  by a complete system 
of functions. If the r e a l  liquid r ep resen t s  a system with a limited number 
of lower modes of vibrations, of frequencies considerably lower than the 
lowest frequencies of e las t ic  vibrations, then the la t ter  have almost  no 
influence on the frequency of vibrations of the liquid. A s  to the dynamics 
of the elast ic  cavity, the lower modes of the liquid only slightly influence 
the frequency of vibrations of the cavity. 
of the attached liquid m a s s e s  corresponding to each mode of e las t ic  
vibrations, i t  is also necessa ry  to es t imate  the interaction between them, 
caused by the liquid motion. 

o rde r  determinant to z e r o  

The vibration modes do not 
When determining the approxi- 

We obtained above an infinite system of differential equations of vibra- 

In addition to the magnitudes 

Taking into account the ma t r ix  equation ( 1 2 ) ,  we equate the fourth- 

‘ - _ _ _ _ _ _ _ - - - _ _ -  I ez1Q2 - ez2QZ 0 IO?”* (2, - 4 
With an accuracy of up to a second-order determinant (in the middle 

part) ,  allowing for  the interaction between one harmonic of the shell  
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vibrations and one harmonic of the liquid vibrations, we obtain the following 
expression for the square of the frequency of the coupled vibrations: 

Since w:~(?). we obtain from ( 1  3 )  

The plus sign corresponds to the shell, and the minus sign to the liquid, 
The frequency of vibrations of the shell increases in the case of a wavy 
motion on the liquid surface. 

to zero we obtain for the square of the frequency of the coupled vibrations 
of the shell (allowing for the interaction between two harmonics of the 
vibrations of the shell with the attached masses): 

By equating the second-order determinant in the upper left-hand corner 

The correction of this approximation is of about 2%.  If the internal 
pressure in the shell is so high that the frequency of flexural vibrations 
of the shell is considerably lower than the frequency of vibrations of a 
string, then the interconnection between the vibration modes increases 
and the correction of the approximation for the lowest tone is of about 10%. 

Assuming that the undisturbed state is practically identical with the 
undeformed state, consider the parametric resonance of the filled shell. 
The system of equations (10 )  will be, in a matrix form, 

DY+c[f?-A~p(t)] Y =  0, ( 1 5 )  

where A is the diagonal matrix of the elements 
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Let 'p ( t )  = cos et, where 8 is the frequency of the external load. 
presenting the solution of system (15) in the form 

By re- 

we obtain for the principal region (i = 1) the following matrix equation 
relative to 8: 

With an accuracy of up to a second-order matrix, we obtain in accordance 
with expression (1 3') 

Here 
liquid loaded by constant and transient components of the loads and the 
hydrostatic pressure.  

is the frequency of the coupled vibrations of the system shell - 

The lowest cri t ical  frequency is determined by the formula 

Allowing for the interaction between the harmonics of the shell vibrations 
in accordance with (1 4'), we obtain 

Successive approximations for 8 a re  obtained by considering determinants 
of increasing order.  

3. THE NONLINEAR PROBLEM 

In accordance with 13 ,  41, the equations for the function F and for the 
function @ of the two-dimensional state of stress, averaged over the shell 
thickness, can be presented in the form: 

Here L(F) i s  the operator ( 2 ) ;  x r  is the coefficient of temperature expansion; 
(I) is the temperature gradient; T , ( a , p )  is the temperature of the middle 
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surface; 

FrP is the dissipative force. 

(temperature, static lateral  load, initial deviations), so that 
Let Fia Oiw and win be the functions determined by the intial factors 

F = F, + 66 O = + mi; W = w:!: + Win. (21 1 
The functions Fh, @ i n ,  and Win satisfy the equations 

The functions F,, a*, f e r ,  a r e  determined from the equations 

I L (F,) - R ~ Z = O ,  

- v4a,*=L (w*, W i d ,  
1 

Eh, 

where L (F*) is an operator of the form of ( 2 ) ,  

The function ain is an integral of the second equation of ( 2 2 )  and is made 
of the integral a0in of the homogeneous biharmonic equation V'@omn= 0 and the 
integral a t i n  of the nonhomogeneous second equation of ( 2 2  ). 
deflections of the shell being small, we can writeOiin= 0, SO that @ i n = O o i n  

q n = W o i n .  The function cP* is an integral of the second equation of (20 ' )  and, 
just as 9in, is made of @,,,and Qla. 

The initial 

We then have 

93 1 



For a cylindrical shell  hinged by the ends take: 

F::: = 2 sin A k a  sin mj3. 

Only one of the pa rame te r s   for instance y.,)  is not small .  
a s  a r e su l t  for 

5, = 2 yckm sin X k a  sin m!3. (23 )  
k .  m 

We obtain 

4- (Ai + m2)'. 
By the Bubnov-Galerkin method we obtain from ( 2 3 )  and (24 )  the following 
equation for determining y.,: 

+ Eo $- y,'cosBt=O. (25 )  

Here  2 ( 6  -I- 8,y3,) y., is the generalized dissipative force in the scale of the 
density; e and a r e  constants allowing for  the viscous friction. Equa- 
tions (25 )  and ( 7  ) form the system of equations of vibrations of the shell  - 
liquid a t  not-small  deflections of the shell. 

R2Eh, 
16 E, = - 4' [ "i" $- (m2- 1 ) 1 2 1 ,  E, = 3E&, . E ,  = E1y,2,. 

I E, = '1 [m 9 + (m2- 1) Rq, Y,,, 
A; 

)\Z 

Y; = q 1 LP, 2 n  R + (+- 1) Rq,] yOl. 

Consider the natural  not-small  vibrations (yo = 0). Represent the solution 
of ( 2 5  ) in the fo rm 

y,, = A,  sinr + B:, cos 7, 7 = Qt.  ( 2 6 )  

Substituting (26 )  in (25 )  and calculating the integrals 

2a 2r: 

(y,,, 7) sin sdx = 0 and (Y.~, 5 )  cos d r  =0, 
u O 

we obtain the system 
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I 

1 3 [ QG - 9 2  ( M,+ + w ) + M,+ ;i- E ~ ~ ; ~ ( ~ )  AS B,  + 

G, = 1 + a,, -- bllell; A2 = A? + B?; M,= (1  + a ) ~ l , ~ ( ~ ) +  w&) ; 

M2 = W 2 m n c l ) q m ( l ) .  

( 2 7 )  
(cont'd) 

By equating the determinant of the system to zero we obtain an algebraic 
equation of the eighth degree relative to 8, which expresses the amplitude- 
frequency relationship in the presence of linear and nonlinear damping. 
In the case of undampened vibrations system ( 2 7 )  splits into separate 
equations of the form 

By writing & 2 =  Qi+ (A', where 9, is the frequency of the small coupled 
vibrations of the system, we obtain by substituting in (28 ) and equating 
the coefficients 

For the shell a; > 0, since S&,> w&); 2Q;+,G, > M,. 
For the liquid a; > 0, since &il <w'fnnCl,; 2Qi1 G,<M,. 
The frequency of vibrations thus continues to increase. 

represented in the form ( 1 6 ) .  
of (27 ) ,  which expresses the amplitude-frequency relationship. 
6 = 8 , =  0 we obtain for the solution of period T ( i  -2)  the following simplified 
relationship between 8 and A, on the one hand, and yo on the other: 

The solution of equation ( 2 5 )  a t  parametrically excited vibrations is 
We obtain a s  a result  a system of the form 

At 

By representing 

and determining 

= 0. 3 Y N l n (  1 1 + % + 7 E l A * W L ( l )  + A 

0' in the form . 
1 

2 A  
8' = 8; + o;'AZ+ a**- 

the coefficient, we obtain 

Here a y > O  and a;'>o. 

A corresponding to the extremum value of 8 .  
@is equal to the frequency of vibrations of the liquid obtained by solving 

From the condition d('2) ~ - - 0 we find the value of dA 
The lowest cri t ical  frequency 
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the linear problem of parametric resonance of the shell-liquid system. 

4. 

Consider the vibrations of an elastic-viscous shell under the assumption 
that l inear relationships exist between the tensors of s t ress ,  ra te  of 
s t ress ,  and ra te  of strain. 
medium, in the case of a two-dimensional state of stress 15, 6 / ,  we have 

For  a homogeneous and isotropic Maxwell 

where 

2 2G(1 +.) , 
K c  = -3 ( I - 2 ~ )  K" = g p  + A, 

G is the modulus of shear; 
time operators: 

p, A a r e  rigidity coefficients; and Do and D, a r e  

DO=I+--, ~d Dl=l+- -  K. a 
G at K ,  d t  

By solving relationships (32 )  relative to the s t resses ,  determining the 
forces M, H ,  and N, and using the equilibrium equation 

we obtain finally one equation for the rate  of deflections: 

By substituting the solution w = woel@t-LI) cos m$ and allowing for equation 
(7), we obtain for each tone of vibrations of a liquid-filled elastic-viscous 
shell an equation of the seventh order relative to Q .  
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ON THE CRITERION OF DYNAMIC STABILITY OF 
SHALLOW SHELLS OF REVOLUTION 

L . I .  S h k u t i n  
(Novosib i n k )  

The question of the stability of shailow shells of revolution a t  axi- 
symmetrical vibrations was treated in / I / .  
a shell of given geometry there exists a definite initial velocity distribu- 
tion, such that i ts  potential energy attains an extrema1 value when the 
shell velocity becomes equal to zero. 

A simple cri terion was proposed in / 2 /  for determining the minimum 
value of a uniformly distributed transient impulse causing the popping 
of a shallow shell, considered a s  a system with one degree of freedom. 
This cri terion was of the form: 

It was established that for 

K * = m s x  (n), ( 1  1 
Using it, the critical values of the impulse for a shallow spherical dome 
and for a lengthy cylindrical panel were determined in / 2 /  for some 
particular cases  of boundary conditions. 

to the case of a solid shallow shell of revolution with meridian described 
by an exponential function a t  arbi t rary elastic clamping of the edge. 

1. Symbols. K,, represents kinetic energy of the minimum initial 
impulse causing the popping of the shell, ll potential strain energy of the 

shell, v the Poisson ratio, E Young's modulus, D =  Eh3 the cy- 

lindrical rigidity, 
unit length, M, the meridional bending moment per unit length, r the 
radius of the point of the middle surface of the shell, b i t s  maximum 
value, z the equation of the middle surface of the shell, h the shell thick- 
ness, / I  the deflection of the middle surface, u, w the displacements of 
the middle-surface points in the radial and axial directions. 

In the present paper the solution of Humphreys and Bodner is generalized 

12 ( 1  -9) 
T,, T, the meridional and circumferential forces per  

p=', f=--. z 
b H 

n T* = K* 8- 
2xpaHgEh ' 2*p9HaEh 
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The dot wi l l  designate differentiation by p. 
2. Having in view an axisymmetrical deformation of a shallow shell of 

revolution, we neglect the inertial forces in the radial direction, which 
makes it possible to introduce the force function + by means of the relation- 
ships 

A s  a result, the expression for the dimensionless potential energy can be 
represented in the form 

The condition of strain continuity gives the following relationship between 
the functions $ and W: 

Knowing f and W a s  functions of p, the function ~p is easily found from ( 3 ) .  
The two constants appearing a s  a result of the integration of ( 3 )  a r e  de- 
termined from the condition of finite meridional force a t  the shell top and 
the condition of elastic displacement of the edge in the radial direction: 

( 3 is the proportionality factor). 
3. 

form 
The equation of the middle surface of the shell wi l l  be taken in the 

We shall a lso specify 
shell edge is considered 
clamped, so  that 

f = p "  ( n >  1). ( 4 )  

the post-buckling shape of the deflection. 
a s  unmovable in the axial direction and elastically 

The 

b M ,  ( 1 )  
BD 

w (l)--T- 

( T is the proptjrtionality factor). 
Such conditions a r e  satisfied by the expression 11 1 

In addition, for a solid shell W (0) = 0 
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where 

By substituting ( 5 )  and ( 4 )  in ( 3 )  we obtain 

Here 

At II = 1 (conical shell) and n = 2 (spherical  shell) expression ( 6 )  co- 
incides, up to a constant factor, with the corresponding expression of 11 1. 

4. Substituting now ( 5 )  and ( 6 )  in ( 2 ) ,  we obtain 

wf: w; w; 
2 ' 3  ' 4  Q z= (X2x0 + w,,) - - 2 w  - 4- w - * 

where 
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' [ (1 - Y) A' -2 (1 - v) AB + 12 (5 - 3 ~ )  k4 - 
18( 2k- 1 )' 

UP= 

--Q8 (2-V) ka +4 (17-7~) k' -8 13- V) k 4- - --Y 

25 7 1 
(note that XI, and op a r e  independent of n ) .  

the equation 
The procedure for finding the maximum of Q a s  a function of Woleads to 

Wo ( ~ 2  W', - 2 ~ 1  Wo + wo + A* xo)  =O, 

whose solutions a r e  

wo, =o, 

The first solution corresponds to the initial state of equilibrium. The 
second and third ones a r e  meaningful if  the following condition is satisfied: 

( i t  becomes clear 
With the aid of 

form 

from a careful analysis that xo>O and (b2w). 
( 9 )  the second formula of ( 8 )  can be represented in the 

The analysis of this formula leads to the conclusion that a t  h 2 < k ?  
formula (10) gives two extrema1 points of expression ( i ' ) ,  the f i rs t  of 
them ( WOZ) representing a maximum, and the second one ( W w )  a minimum. 
A t  k2 = A? the two points coalesce and form an inflection point of curve (7 ) . 

Thus, according to criterion (1 ): 
1) elastic popping of the shells considered is possible only for kz < A!; 
2) the minimum value of the kinetic energy which causes this popping 

is calculated by the formula 

where 

represents the maximum displacement of the shell top. 

shells a t  the following boundary conditions: 
5 .  Numerical calculations were conducted for conic and spherical 

1) clampled edge (p=  00. k = I ) ,  

2) simply supported edge p=m, & =  - , 
3+ I +  y '> 
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T A B L E  1 

boundary) No. of le - 1  we I 01 I 
conditions 

C o n i c  s h e l l  (n=1) 

0.17778 
0.16534 

4 3.6037 1.37185 
i 1 10 6667 0.81270 

10.6667 
3.6037 

0.16303 0.14266 o .OOI 801 2 
0 0033163 0.08669 3.6037 0.12282 0.10809 0,0065378 

0.54488 0.46032 
0,0228465 

10.6667 0.16889 

0,57524 

1 
2 
3 
4 1 '::%$ 1 0.69697 I 0.68989 I 0.61072 1 

0.12751 0.08669 0,0056072 
0.0079167 0.64286 0.46032 
0.0469996 0.97019 0.61072 

S p h e r i c a l  s h e l l  (n=2) 

boundary No 'of  
conditions 

' 0 I 0.2 I 0.4 A? I 0.6 k? I 0.8 k? 1 1: 

1 
2 
3 

0.916 
0.859 1.012 1 

2 
4 0.762 

!.?55 1.471 
1.204 1.397 

0.825 0.861 
I. I65 

S p h e r i c a l  s h e l l  ( n =  2) 

0.0224 0.0247 

0.2132 0.2356 

2 
3 
4 

0.0273 0.0302 0.0338 

0.2607 0.2894 0.3241 

No. Of 

boundary 
condir ion 

I 
2 
3 
4 

T A B L E  3 
V a l u e  o f  T. 

A' 

0 1 0.2 A? I 0.4 A? 1 0.6 A? 

c o n i c  s h e l l  (n=l) 

0.0127 0.0140 0.0153 0.0168 
0.0115 0.0124 0.0135 0.0146 
0.0452 0.0499 0.0550 0.0608 
0.0503 1 0.0554 1 0.06U9 I 0.0672 

S p h e r i c a l  s h e l l  ( n =  2) 

0.8 A: 

0.0186 
0.0159 
0.0673 
0.0743 

A? 

0 .  om6 
0.0175 
0.0753 
0.0829 
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3) restrained edge @ =O. k = I ) ,  

4) rigidly supported edge 

(the Poisson ratio was taken a s  equal to 0.3 ). 
Table 1 gives the values of the coefficients entering in (11 ), and the 

magnitudes 1:. andTables 2 and 3 the values of W, and T,, respectively. 
It is seen from the las t  table that the restriction of the radial displace- 
ment of the edge causes a considerable increase of the critical value of 
the kinetic energy. 
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